Center of Walled Brauer algebra and the Supersymmetric polynomials

Myungho Kim

IMJ-PRG(CNRS/UP7D/UPMC)

Algbraic COmbinatorics in Representation Theory / August 2016, Luminy

Joint work with Ji Hye Jung (IMJ-PRG(CNRS/UP7D/UPMC))

Jucys-Murphy elements in Symmetric groups

- \mathfrak{S}_r : symmetric group of r letters.
- $\mathbb{C}[\mathfrak{S}_r]$: the Group algebra of \mathfrak{S}_r over \mathbb{C} .
- (a, b): the transposition exchanging a and b $(1 \le a, b \le r)$.
- The elements

$$L_k := \sum_{j=1}^{k-1} (j, k) \quad (1 \le k \le r)$$

are called the *Jucys-Murphy elements* of $\mathbb{C}[\mathfrak{S}_r]$.

Properties of Jucys-Murphy elements in $\mathbb{C}[\mathfrak{S}_r]$

- **1** $L_k L_{k'} = L_{k'} L_k$ for $1 \le k, k' \le r$.
- **2** $\{p(L_1, ..., L_r) \mid p \text{ is a symmetric polynomial in } X_1, ..., X_r\}$ is equal to the center $Z(\mathbb{C}[\mathfrak{S}_r])$ of $\mathbb{C}[\mathfrak{S}_r]$.
- **3** On a simple module $S(\lambda)$ of $\mathbb{C}[\mathfrak{S}_r]$ corresponding to a partition λ of r, the central element $p(L_1, \ldots, L_r)$ acts by a scalar multiplication given by the *content evaluation*:

$$p(L_1,\ldots,L_r)=p(\operatorname{cont}(\lambda,1),\ldots,\operatorname{cont}(\lambda,r))$$

on $S(\lambda)$, where $cont(\lambda, k)$ denotes the *content of* λ *at* i.

Properties of Jucys-Murphy elements in $\mathbb{C}[\mathfrak{S}_r]$

Recall that, for a tableau $\mathfrak t$ of a shape λ , $c_{\mathfrak t}(k)$ is defined by the integer u-v, when k is located at the position (u,v) on λ . Set $\operatorname{cont}(\lambda,k):=c_{\mathfrak t^\lambda}(k)$, where $\mathfrak t^\lambda$ is the standard tableau such that the entries $1,2,\ldots,|\lambda|$ appear in increasing order from left to right along successive rows.

Example:

$$\lambda = (4, 2, 1),$$
 $\mathfrak{t}^{\lambda} := \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 \end{bmatrix}.$

We have

$$\operatorname{cont}(\lambda,1)=0$$
, $\operatorname{cont}(\lambda,2)=1$, $\operatorname{cont}(\lambda,3)=2$, $\operatorname{cont}(\lambda,4)=3$, $\operatorname{cont}(\lambda,5)=-1$, $\operatorname{cont}(\lambda,6)=0$,

$$\operatorname{cont}(\lambda,7)=-2.$$

Aim of talk

- We are interested in the walled Brauer algebra $B_{r,s}(\delta)$, which can be regraded as a generalization of $\mathbb{C}[\mathfrak{S}_r]$ in the context of Schur-Weyl duality:
 - $\mathbb{C}[\mathfrak{S}_r]$ is the centralizer of the action of \mathfrak{gl}_n on the tensor space $(\mathbb{C}^n)^{\otimes r}$
 - $B_{r,s}(n)$ is the centralizer of the action of \mathfrak{gl}_n on the mixed tensor space $(\mathbb{C}^n)^{\otimes r} \otimes ((\mathbb{C}^n)^*)^{\otimes s}$.
- We will introduce the *Jucys-Murphy elements* for $B_{r,s}(\delta)$ which generalize the ones for $\mathbb{C}[\mathfrak{S}_r]$, and will explain a relation between these elements and the center of $B_{r,s}(\delta)$ via the *supersymmetric polynomials*.

Walled Brauer diagrams

Let r and s be nonnegative integers. An (r, s)-walled Brauer diagram is a graph consisting of two rows with r + s vertices in each row such that the following conditions hold:

- (1) Each vertex is connected by a strand to exactly one other vertex.
- (2) There is a vertical wall which separates the first *r* vertices from the last *s* vertices in each row.
- (3) There are two kinds of strands: A *vertical strand* connects a vertex on the top row with one on the bottom row, and it cannot cross the wall. A *horizontal strand* connects vertices in the same row, and it must cross the wall.

Fix a complex number δ .

 $B_{r,s}(\delta) := \text{the } \mathbb{C}\text{-vector space spanned by the basis consisting of all the } (r,s)\text{-walled Brauer diagrams}.$

Walled Brauer algebra

Multiplication of (r, s)-walled Brauer diagrams:

For (r, s)-walled Brauer diagrams d_1, d_2 , put d_1 under d_2 and identify the top vertices of d_1 with the bottom vertices of d_2 .

Remove the loops in the middle row, if there exist.

Then thus obtained diagram, denoted by $d_1 * d_2$, is again an (r, s)-walled Brauer diagram.

We define the multiplication of d_1 by d_2

$$d_1d_2:=\delta^n\,d_1*d_2\in B_{r,s}(\delta),$$

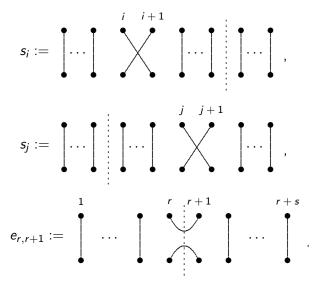
where n denotes the number of loops we removed in the middle row.

Extending this multiplication by linearity, we obtain a multiplication on $B_{r,s}(\delta)$, which can be easily seen to be associative.

We call thus obtained \mathbb{C} -algebra the walled Brauer algebra.

Generators of $B_{r,s}(\delta)$

For $1 \le i \le r-1$ and $r \le j \le r+s-1$:



Presentation of $B_{r,s}(\delta)$

The algebra $B_{r,s}(\delta)$ is generated by s_i $(1 \le i \le r-1)$, s_j $(r \le j \le r+s-1)$, and $e_{r,r+1}$ with the following defining relations:

$$\begin{split} s_i^2 &= 1, \\ s_i s_{i+1} s_i &= s_{i+1} s_i s_{i+1}, \quad s_i s_j = s_j s_i \quad (|i-j| > 1), \\ e_{r,r+1}^2 &= \delta e_{r,r+1}, \quad e_{r,r+1} s_j = s_j e_{r,r+1} \quad (j \neq r-1,r+1), \\ e_{r,r+1} &= e_{r,r+1} s_{r-1} e_{r,r+1} = e_{r,r+1} s_{r+1} e_{r,r+1}, \\ e_{r,r+1} s_{r-1} s_{r+1} e_{r,r+1} s_{r-1} &= e_{r,r+1} s_{r-1} s_{r+1} e_{r,r+1} s_{r+1}, \\ s_{r-1} e_{r,r+1} s_{r-1}^{-1} s_{r+1} e_{r,r+1} &= s_{r+1} e_{r,r+1} s_{r-1} s_{r+1} e_{r,r+1}. \end{split}$$

Semisimplicity criterion

Proposition. (Cox-De Visscher-Doty-Martin, 2008) The walled Brauer algebra $B_{r,s}(\delta)$ is semisimple if and only if one of the followings holds:

- (1) r = 0 or s = 0,
- (2) $\delta \notin \mathbb{Z}$,
- (3) $|\delta| > r + s 2$,
- (4) $\delta = 0$, and $(r,s) \in \{(1,2), (1,3), (2,1), (3,1)\}.$

In particular, for a fixed pair (r, s), $B_{r,s}(\delta)$ is semisimple except for finitely many values $\delta \in \mathbb{C}$.

Cell modules

For a partition $\mu=(\mu_1,\mu_2,\cdots)$, set $|\mu|:=\sum_{i\geq 1}\mu_i$ and set $\ell(\mu):=|\{i\geq 1\mid \mu_i\neq 0\}|$. Let us denote Λ the set of pair of partitions (bipartitions). Set

$$\begin{split} & \Lambda_{r,s}^t := \left\{ \left(\lambda^L, \lambda^R \right) \in \Lambda \mid |\lambda^L| = r - t, \ |\lambda^R| = s - t \right\}, \\ & \Lambda_{r,s} := \bigsqcup_{t=0}^{\min(r,s)} \Lambda_{r,s}^t, \\ & \dot{\Lambda}_{r,s} = \begin{cases} \Lambda_{r,s} & \text{if } \delta \neq 0 \text{ or } r \neq s \text{ or } r = s = 0, \\ \Lambda_{r,s} - \{(\emptyset,\emptyset)\} & \text{if } \delta = 0 \text{ and } r = s \neq 0. \end{cases} \end{split}$$

The elements in $\dot{\Lambda}_{r,s}$ are called the *weights* of $B_{r,s}(\delta)$.

Cell modules

For $\lambda \in \dot{\Lambda}_{r,s}$, there is an indecomposable module, $C_{r,s}(\lambda)$, called the *cell module*, which has an irreducible head $D_{r,s}(\lambda)$ and the family

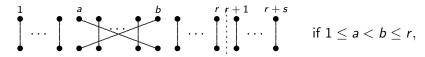
$$\left\{D_{r,s}(\lambda)\mid\lambda\in\dot{\Lambda}_{r,s}\right\}$$

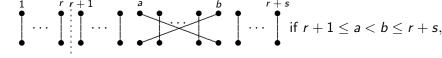
is the complete set of mutually non-isomorphic simple modules over $B_{r,s}(\delta)$ (Cox-De Visscher-Doty-Martin, 2008).

Jucys-Murphy elements

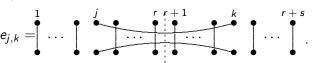
Conventions:

$$(a, b) = (b, a) =$$





and



Jucys-Murphy elements

Definition

For each $1 \le k \le r + s$, we define

$$L_k := egin{cases} \sum_{j=1}^{k-1} (j,k) & \text{if } 1 \leq k \leq r, \\ -\sum_{j=1}^{r} e_{j,k} + \sum_{j=r+1}^{k-1} (j,k) + \delta & \text{if } r+1 \leq k \leq r+s. \end{cases}$$

We call these L_k 's the Jucys-Murphy elements of $B_{r,s}(\delta)$.

Proposition

The elements L_k 's are commuting to each other.

Remark

The above Jucys-Murphy elements are similar to those in Brundan-Stroppel (2012) and those in Sartori-Stroppel (2015), but different. Still, we were strongly motivated by their works.

Jucys-Murphy elements

The Jucys-Murphy elements are designed to satisfy the following:

Proposition

For each $k \in \mathbb{Z}_{\geq 0}$, the element

$$L_1^k + \cdots + L_r^k + (-1)^{k+1} (L_{r+1}^k + \cdots + L_{r+s}^k)$$

belongs to the center of $B_{r,s}(\delta)$.

The elements in the above is known as the k-th power sum supersymmetric polynomial in L_1, \ldots, L_{r+s} .

Supersymmetric polynomials

Definition

Let r, s be nonnegative integers. We say that a polynomial p in $\mathbb{C}[x_1, \ldots, x_r, y_1, \ldots, y_s]$ is supersymmetric if

- (1) p is doubly symmetric; i.e, it is symmetric in x_1, \ldots, x_r and y_1, \ldots, y_s separately,
- (2) p satisfies the cancellation property; i.e., the substitution $x_r = -y_1 = t$ yields a polynomial in $x_1, \ldots, x_{r-1}, y_2, \ldots, y_s$ which is independent of t.

We denote $S_{r,s}[x;y]$ the set of supersymmetric polynomials in $x_1,\ldots,x_r,y_1,\ldots,y_s$, which is a subalgebra of the polynomial ring $\mathbb{C}[x_1,\ldots,x_r,y_1,\ldots,y_s]$.

Supersymmetric polynomials

Example. In $S_{2,2}[x;y]$

- **2** $<math>p_2 := x_1^2 + x_2^2 (y_1^2 + y_2^2).$
- **3** $e_2 := x_1x_2 + (x_1 + x_2)(y_1 + y_2) + y_1y_2 + y_1^2 + y_2^2$. Indeed, it is doubly symmetric, and the substitution $x_2 = t, y_1 = -t$ gives $x_1t + (x_1 + t)(-t + y_2) + (-t)y_2 + (-t)^2 + y_2^2 = x_1y_2 + y_2^2$, which is independent to t.

Power sum supersymmetric polynomials

For $k \ge 1$, the k-th power sum supersymmetric polynomial is given by

$$p_k(x_1,\ldots,x_r,y_1,\ldots,y_s):=x_1^k+\cdots+x_r^k+(-1)^{k+1}(y_1^k+\cdots+y_s^k).$$

It is known that $S_{r,s}[x;y]$ is generated by $\{p_k \mid k \geq 1\}$ (Stembridge(1985)).

Corollary

For every supersymmetric polynomial p in $S_{r,s}[x;y]$, the element

$$p(L_1,\ldots,L_{r+s})$$

belongs to the center $Z(B_{r,s}(\delta))$ of $B_{r,s}(\delta)$.

Elementary supersymmetric polynomials

The elementary supersymmetric polynomials

$$e_k(x_1,\ldots,x_r,y_1,\ldots,y_s)$$
 $(k \in \mathbb{Z}_{\geq 0})$

are given by the generating function

$$\sum_{k=0}^{\infty} e_k(x_1,\ldots,x_r,y_1,\ldots,y_s)z^k = \frac{\prod_{i=1}^r (1+x_iz)}{\prod_{j=1}^s (1-y_jz)}.$$

It is also known that $\{e_k \mid k \in \mathbb{Z}_{\geq 0}\}$ generates the ring of supersymmetric polynomials (Stembridge, 1985). Then the next lemma follows immediately.

Elementary supersymmetric polynomials

Lemma

Let $(a_1, \ldots, a_r, b_1, \ldots, b_s)$ and $(c_1, \ldots, c_r, d_1, \ldots, d_s)$ be elements in \mathbb{C}^{r+s} . Then the followings are equivalent:

(1) For every supersymmetric polynomial $p \in S_{r,s}[x;y]$, we have

$$p(a_1,\ldots,a_r,b_1,\ldots,b_s)=p(c_1,\ldots,c_r,d_1,\ldots,d_s).$$

(2) We have an equality

$$\frac{\prod_{i=1}^{r}(1+a_{i}z)}{\prod_{j=1}^{s}(1-b_{j}z)} = \frac{\prod_{i=1}^{r}(1+c_{i}z)}{\prod_{j=1}^{s}(1-d_{j}z)}$$

of rational functions in z.

For a partition μ , let \mathfrak{t}^{μ} be the standard tableau such that the entries $1,2,\ldots,|\mu|$ appear in increasing order from left to right along successive rows. Define

$$\operatorname{cont}(\mu,i) := c_{\mathfrak{t}^{\mu}}(i)$$
, the content of \mathfrak{t}^{μ} at i .

Note that the multiset $\{\operatorname{cont}(\mu,i)\mid 1\leq i\leq |\mu|\}$ determines the Young diagram $[\mu]$ and hence the partition μ . For each $\lambda\in\Lambda^t_{r,s}$, set

$$c(\lambda,i) := \begin{cases} \cot(\lambda^L,i) & \text{if } 1 \leq i \leq r-t, \\ 0 & \text{if } r-t+1 \leq i \leq r+t, \\ \cot(\lambda^R,i-r-t) + \delta & \text{if } r+t+1 \leq i \leq r+s. \end{cases}$$

Example.
$$r = 6, \ s = 4, \ t = 1. \ \lambda = \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right), \begin{array}{c} \\ \\ \\ \end{array} \right) \in \Lambda^1_{6,4}.$$
 Then $c(\lambda,1) = 0, \ c(\lambda,2) = 1, \ c(\lambda,3) = -1, \ c(\lambda,4) = 0, \ c(\lambda,5) = -2, \\ c(\lambda,6) = 0, \ c(\lambda,7) = 0, \\ c(\lambda,8) = 0 + \delta, \ c(\lambda,9) = 1 + \delta, \ c(\lambda,10) = -1 + \delta.$

Lemma

Assume that $B_{r,s}(\delta)$ is semisimple. If $\lambda \neq \mu$ for $\lambda, \mu \in \dot{\Lambda}_{r,s}$, then there is a supersymmetric polynomial $p^{\lambda,\mu}$ such that

$$p^{\lambda,\mu}((c(\lambda,i))_{1\leq i\leq r+s})\neq p^{\lambda,\mu}((c(\mu,i))_{1\leq i\leq r+s}).$$

Proof. Let $\lambda \in \Lambda_{r,s}^t$, $\mu \in \Lambda_{r,s}^{t'}$ for some $0 \le t, t' \le \min(r,s)$. It is enough to check that for each case when $B_{r,s}(\delta)$ is semisimple,

$$\frac{\prod_{i=1}^{r-t}(1+\mathrm{cont}(\lambda^L,i)z)}{\prod_{j=1}^{s-t}(1-(\mathrm{cont}(\lambda^R,j)+\delta)z)} = \frac{\prod_{i=1}^{r-t'}(1+\mathrm{cont}(\mu^L,i)z)}{\prod_{j=1}^{s-t'}(1-(\mathrm{cont}(\mu^R,j)+\delta)z)}.$$

Implies $\lambda = \mu$. One can check it for the cases (1) - (4) in the semisimplicity criterion.

Proposition

For $\lambda \in \Lambda_{r,s}^t$ and for $k \geq 0$, we have

$$p_{k}(L_{1},...,L_{r},L_{r+1},...,L_{r+s})$$

$$= L_{1}^{k} + ... + L_{r}^{k} + (-1)^{k+1}(L_{r+1}^{k} + ... + L_{r+s}^{k})$$

$$= \sum_{i=1}^{r-t} \operatorname{cont}(\lambda^{L},i)^{k} + (-1)^{k+1} \sum_{i=1}^{s-t} (\operatorname{cont}(\lambda^{R},i) + \delta)^{k}$$

$$= p_{k}(c(\lambda,1),...,c(\lambda,r+s))$$

on the cell module $C_{r,s}(\lambda)$.

Corollary

Let f be a supersymmetric polynomial in $S_{r,s}[x;y]$. Then we have

$$f(L_1,\ldots,L_{r+s})=f(c(\lambda,1),\ldots,c(\lambda,r+s))$$

on
$$C_{r,s}(\lambda)$$
 for every $\lambda \in \Lambda_{r,s}$.

Supersymmetric polynomials in JM elements

Theorem

If the walled Brauer algebra $B_{r,s}(\delta)$ is semisimple, then the supersymmetric polynomials in L_1, \ldots, L_{r+s} generate the center of $B_{r,s}(\delta)$.

It can be proved by combining two facts in the previous pages:

1 If $\lambda \neq \mu$ for $\lambda, \mu \in \dot{\Lambda}_{r,s}$, then there is a supersymmetric polynomial $p^{\lambda,\mu}$ such that

$$p^{\lambda,\mu}((c(\lambda,i))_{1\leq i\leq r+s})\neq p^{\lambda,\mu}((c(\mu,i))_{1\leq i\leq r+s}).$$

2 A supersymmetric polynomial p in Jucys-Murphy elements acts on the cell module $C_{r,s}(\lambda)$ by the contents evaluation $p(c(\lambda,i)_{1\leq i\leq r+s})$.

Supersymmetric polynomials in JM elements

Conjecture

The supersymmetric polynomials in $L_1, ..., L_{r+s}$ generate the center of $B_{r,s}(\delta)$ for any choice of δ .

Quantized walled Brauer algebras

Definition (Kosuda-Murakami (1993), Leduc (1994))

Let r and s be nonnegative integers. Let R be an integral domain and let q, ρ be elements in R such that q^{-1}, ρ^{-1} and $\delta := \frac{\rho - \rho^{-1}}{q - q^{-1}}$ belongs to R. We denote by $H_{r,s}^R(q,\rho)$ the associative algebra over R generated by $S_1,\ldots,S_{r-1},\ S_{r+1},\ldots,\ S_{r+s-1},\ E_{r,r+1}$ with the defining relations

$$(S_{i}-q)(S_{i}+q^{-1}) = 0,$$

$$S_{i}S_{i+1}S_{i} = S_{i+1}S_{i}S_{i+1}, \quad S_{i}S_{j} = S_{j}S_{i} \quad (|i-j| > 1),$$

$$E_{r,r+1}^{2} = \delta E_{r,r+1}, \quad E_{r,r+1}S_{j} = S_{j}E_{r,r+1} \quad (j \neq r-1, r+1),$$

$$\rho E_{r,r+1} = E_{r,r+1}S_{r-1}E_{r,r+1} = E_{r,r+1}S_{r+1}E_{r,r+1},$$

$$E_{r,r+1}S_{r-1}^{-1}S_{r+1}E_{r,r+1}S_{r-1} = E_{r,r+1}S_{r-1}^{-1}S_{r+1}E_{r,r+1}S_{r+1},$$

$$S_{r-1}E_{r,r+1}S_{r-1}^{-1}S_{r+1}E_{r,r+1} = S_{r+1}E_{r,r+1}S_{r-1}^{-1}S_{r+1}E_{r,r+1}.$$

JM elements of Quantized walled Brauer algebras

Definition

Set

$$\widetilde{L}_1 := 0, \quad \widetilde{L}_{r+1} := \rho \Big(\sum_{i=1}^r -E_{j,r+1} + \delta \Big) \in H^R_{r,s}(q,\rho),$$

where

$$E_{j,k} := (S_{k-1} \cdots S_{r+1})(S_j^{-1} \cdots S_{r-1}^{-1})E_{r,r+1}(S_{r-1}^{-1} \cdots S_j^{-1})(S_{r+1} \cdots S_{k-1})$$
for $j \le r < k$.

Then we define

$$\widetilde{L}_{i} := \begin{cases} S_{i}^{-1} \widetilde{L}_{i-1} S_{i}^{-1} + S_{i}^{-1} & \text{if } 2 \leq i \leq r, \\ S_{i} \widetilde{L}_{i-1} S_{i} + S_{i} & \text{if } r+2 \leq i \leq r+s \end{cases}$$

We call these \widetilde{L}_i 's the Jucys-Murphy elements of $H_{r,s}^R(q,\rho)$.

Center of quantized walled Brauer algebra

Remark

If we take a limit $q \mapsto 1, \rho \mapsto 1$, then we have

$$\widetilde{L}_i \longmapsto L_i \quad (i=1,\ldots,r+s).$$

Theorem

The center $Z(H_{r,s}^{\mathbb{C}(q,\rho)}(q,\rho))$ of $H_{r,s}^{\mathbb{C}(q,\rho)}(q,\rho)$ is generated by the supersymmetric polynomials in the Jucys-Murphy elements $\widetilde{L}_1,\ldots,\widetilde{L}_{r+s}$.

framed HOMFLYPT skein modules

Set

$$T(j) := -(q - q^{-1})\widetilde{L}_j + 1 \quad (1 \le j \le r),$$

$$U(k) := \rho^{-2}(q - q^{-1})\widetilde{L}_{k+r} + \rho^{-2} \quad (1 \le k \le s).$$

Corollary

The elements

$$\sum_{j=1}^{r} (\rho^{-1} T(j))^{m} - \sum_{k=1}^{s} (\rho U(k))^{m} \quad (m \in \mathbb{Z}_{\geq 0})$$

generate the center $Z(H_{r,s}^{\mathbb{C}(q,\rho)}(q,\rho))$ of $H_{r,s}^{\mathbb{C}(q,\rho)}(q,\rho)$.

Proof. It is equivalent to saying that $p_m(\widetilde{L}_1, \ldots, \widetilde{L}_{r+s})$ $(m \ge 1)$ generate the center.

framed HOMFLYPT skein modules

Let R be the subring of $\mathbb{C}(q,\rho)$ generated by $q^{\pm 1}, \rho^{\pm 1}$ and $(q^k-q^{-k})^{-1}(k\in\mathbb{Z}_{>0})$.

Let F be a planar surface with some designated input and output boundary points.

The framed HOMFLYPT skein module S(F) of F is a R-linear combination of oriented tangle diagrams on F, modulo Reidemeister move II and III, and the two additional local relations:

(*These diagrams are taken from [Morton-Samuelson, 2015])

framed HOMFLYPT skein modules

We consider the following cases:

- ① F = A is the annulus without designated boundary points, so that S(A) consists of oriented link diagrams on the annulus. Then S(A) has a product induced by placing two diagrams together on the annulus (the product is commutative).
- **2** $F = \mathcal{R}_{r,s}^{r,s}$ is the rectangle with r outputs and s inputs on the top, and r inputs and s outputs on the bottom. In $\mathcal{S}(\mathcal{R}_{r,s}^{r,s})$, a tangle diagram is either a link diagram or a matching two designated boundary points according to the orientation. The product on $\mathcal{S}(\mathcal{R}_{r,s}^{r,s})$ is defined just by stacking two diagrams.

Then $\mathcal{S}(\mathcal{R}_{r,s}^{r,s})$ is isomorphic to $H_{r,s}^R(q,\rho)$ as an R-algebra.

framed HOMFLYPT skein modules and the center

In 2002, Hugh Morton introduced an interesting R-algebra homomorphism

$$\psi_{r,s}: \mathcal{S}(\mathcal{A}) \to \mathcal{Z}(H_{r,s}^R(q,\rho)).$$

Theorem (H. Morton (2002))

$$\psi_{r,s}(P_m) = (q^{-m} - q^m) \Big(\sum_{j=1}^r (\rho^{-1} T(j))^m - \sum_{k=1}^s (\rho U(k))^m \Big) + \langle P_m \rangle \mathbf{1}$$

where $\langle P_m \rangle \in R$.

Corollary (Conjecture in Morton (2002))

The image of $\psi_{r,s}$ generates the center of $H_{r,s}^R(q,\rho)$.