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Definition
A complex reflection group of rank n is a finite subgroup of GL,(C), which
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0 Ga= (s,2|ss=s55=1, s1%5 =5%)
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0 Gii= (s1,9,8|sf=s3=5]=1, 5195 =555 = $35%)

s?=s3=s52=1

° Gi3= 51,52,53 | 5152535152 = $351525351

53515253 = 52535152
Coxeter-like presentation: (s,...,s, s,."(s") =1,{v; = w;}ie/) , Where | is a

finite set of relations such that, for each / € /, v; and w; are positive words
with the same length in elements s1,...,sp.
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Complex braid groups

Let W be a complex reflection group and let X be the set of all the points
of C" that are not fixed by a pseudo-reflection.

By Steinberg’s theorem we have that the action of W on X is free.
Therefore, it defines a Galois covering X — X /W, which gives rise to the
following exact sequence, for every x € X:

1—-m(X,x) > mX/W,x) - W —1

Definition (Broué-Malle-Rouquier 1998)

The complex braid group B associated to W is the fundamental group
T (X/ W, x).

Examples:
@ For the symmetric group S,,, B is the usual braid group on n strands.

@ For any finite Coxeter group B is a generalized braid group.
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Generic Hecke algebras

Let (usj)1<j<o(s) be a set of indeterminates, where
@ s runs along the pseudo-reflections of W (if s ~ s’ then usj = uy j).
@ 0o(s) denotes the order of s.

Let R := Z[uZ}, ..., ut? )].

s,1» s,0(s

Definition

The generic-Hecke algebra H\y associated to W is the algebra
RB/(0 — us1) ... (0 — us o(s)), where o runs among the braided
pseudo-reflections associated to s.

Examples:
e G, — <51752 sf = 52 =1,5155 = 525152>
HG4 = <0’1,02 010201 = 020102, ﬁ[(ai - Uj) = O>
j=
@ Gy = (s1,%:5 =53 =1595%=555s5)
He, = (01,02 101020102:02010201vﬁ(“lfuf): ﬁ(@*VJ) 0)

j=1 j=1
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The BMR freeness conjecture

Let W be a complex reflection group of rank n.

Conjecture (Broué-Malle-Rouquier 1998)

Hy is a free R-module of rank |W/|.

Proposition (Broué-Malle-Rouquier 1998)

If Hy is spanned over R by |W/| elements, then it is a free R-module of
rank |W/.

Every complex reflection group is a direct product of so-called irreducible
ones.

Conjecture (equivalent form)

Hy is spanned over R by |W| elements, where W is an irreducible
complex reflection group.
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The finite irreducible complex reflection groups were classified by Shephard
and Todd (1954). They belond either to

@ The infinite family G(de, e, n) of groups of n x n monomials such
that their non-zero coefficients belond to pi4.(C) and their product to
wd(C). v (Ariki, Ariki-Koike 1993)

o A finite set of 34 exceptions.

We only have to deal with the 34 exceptional groups, nicknamed as

G47 "'Glla G127 G137 ceey G227 G237 G241 G253 6263 6273 6287 G297 G30; G31', G327 G337
G34a G35: G36: G37-

Among them there are 6 finite Coxeter groups.
We have some recent results from Marin and Pfeiffer (2015).

Marin has proved the cases of Gys, Gpe and Gsp (2011, 2012).
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A first approach: The finite quotients of Bs

Let B3 be the braid group on 3 strands. It admits a presentation

Bz = (51, % | 515251 = S251%2)

Theorem (Coxeter 1957)

The quotient W of B, by the relations s,-k = 1 is a finite group if and only
if £+1>1

For n=3and k = 3,4,5, we have W = G4, Gg, G16.
Theorem (C. 2013)

The BMR freeness conjecture holds for the generic Hecke algebras
associated to Gy, Gg and Gig.

The case of G; has been proven by Broué - Malle 1994, Berceanu - Funar 1994,
Marin 2011.
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Let Wi be the subgroup of G, (n = 4,8,16) which is generated by s;.
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The cases of G4, Gg, Gig

Let Wi be the subgroup of G, (n = 4,8,16) which is generated by s;.
Let 7 denote a system of representatives of the double cosets
Wi\ Wi/ Wi

G, = |_| Wi - w - W.
weJ

For every w € J we fix a factorization f,, = SZISZZ .. si’, where a; € Z.
We define the element Ty, inside Hg, to be the product o7'07? ... 07"
inside H (Tf, = 1).

Let uy be the subalgebra of Hg,, (n = 4,8,16) which is generated by o7;.

?
HGn: Zul-wa-ul
weJ

U

Since 1 € U, it is enough to prove that o;U C U i.e. it is enough to prove
that oo U C U.
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The cases of G4, Gg, Gig

Let u; be the subalgebra of Hg, (n = 4,8,16) which is generated by o;.
We know that Z(B3) = (z).

HG4 = u+ U12_1 + uiuruy

_ — —1 —1
He, = w4+ umz+wz Yoz 2+ muou + uo, 010, Ui+
-1
+u1020¢ 02U

Hey, = wm+wmz+uwmzt+wuzZ2+wuz2+wuzd+umz3+
+unzt +mz iz + o + ulagla%az_lul—l—
+u10201_202u1 + ulagafagul + u102_201_202_2u1+
+u1020f205u1 + u10271050272u1 + uloglolaglul—i—
+u102af102u1 + u1052af205ul + ulaga%0;2u1+
—|—u1r7§<71_20§u1 + u102_20%02_2u1 + u102_20102_1u1+
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The cases of G4, Gg, Gig

Let u; be the subalgebra of Hg,, (n = 4,8,16) which is generated by o;.
We know that Z(B3) = (z).
He, = i+ wmz '+ uuu

— — —1 —1
He, = i+ wmz+wuz t+wmz 2+ uu + uo; toroy i+
—1
+u1020¢ 02U

H(;16 = uy+uz+ ulz’1 + u122 + ulz’2 + u123 + u12’3—|—
b+ mz ™+ nmz7d oy + ulagla%arz_lul—l—
+u10201_202u1 + ulagafagul + u102_201_202_2u1+
+U1020;20§U1 + ulaglofrf;Zul + ulaglologlul—i—
+u1020f102u1 + u1052af205ul + u1050%0;2u1+
—|—u10§<71_2<7§u1 + u102_20%02_2u1 + u102_20102_1u1+
+u102_10102_2u1 + ulagza%oz_lalagluﬁ
+u10§0f2020f102ul + ulazofzogofzogul—f—
+u102710%(72720%0272u1
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The exceptional groups of rank 2

Let W be an exceptional group of rank 2.
We know that W := W/Z(W) < SO3(R). o
Up to classification of the subgroups of SO3(R), W is the tetrahedral, the
octahedral or the icosahedral group.
The groups Gy, ..., Gop fall into three families:
@ Tetrahedral family Gy, ..., G;.
o Octahedral family Gg,...Gi1, ..., Gis.
@ lcosahedral family Ggg, ..., Gig,...G2o.

In each family there is a maximal group W such that every W in this
family is a subgroup of W.

Proposition (C. 2013)

If Hw is torsion free and the BMR conjecture is true for Hj;;, then the
conjecture holds for Hyy, as well.
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A more global approach: Etingof-Rains 2004

We know that W is the group of even elements in a finite Coxeter group
C of rank 3 of type A3, B3, H3, respectively, with Coxeter matrix (mj;).

Let t; x be set of indeterminates, where i # j, k € Z/mj;Z and
-1 D .
tij,k = tjj —k- Let R := Z[t,'j’k].

mjj
A(C) = (Y1, Yo, Y3 | Y7 =1, i #jimplies [[(Yi¥j—t;4) =0)
k=1

A(C)

(Aj = YiY,i %)

Example: When C is the finite Coxeter group of type Bs the R-algebra
A1 (C) can be presented as follows:

(A3 — t13,1)(A13 — t132) =0
A137 A327 A21

(As2 — t32,1) ... (A2 — t323) =0, A3A3An =1 >
(Axn —t211) ... (A1 —t14) =0




A more global approach: Etingof-Rains 2004

For every reduced word wy that represents x inside W, we denote by T,
the corresponding element in AL (C).



A more global approach: Etingof-Rains 2004

For every reduced word wy that represents x inside W, we denote by T,
the corresponding element in AL (C).

Example: Let C be the finite Coxeter group of type Bs. Let
Wx = Y1Y2y1)3.



A more global approach: Etingof-Rains 2004

For every reduced word wy that represents x inside W, we denote by T,
the corresponding element in AL (C).

Example: Let C be the finite Coxeter group of type Bs. Let
Wx = y1yoy1y3. Then, T, = A12A13.



A more global approach: Etingof-Rains 2004

For every reduced word wy that represents x inside W, we denote by T,
the corresponding element in AL (C).

Example: Let C be the finite Coxeter group of type Bs. Let
Wx = YV1Y2Y1y3- Then, wa = A12A13.

Proposition (Etingof-Rains 2004)

A, (C) is generated as R-module by the elements T, , x € W.




A more global approach: Etingof-Rains 2004

For every reduced word wy that represents x inside W, we denote by T,
the corresponding element in AL (C).

Example: Let C be the finite Coxeter group of type Bs. Let
Wx = YV1Y2Y1y3- Then, wa = A12A13.

Proposition (Etingof-Rains 2004)

A, (C) is generated as R-module by the elements T, , x € W.

Let Rt = R|[z,z '], where z is the action of the image of the center of B
inside Hyy.



A more global approach: Etingof-Rains 2004

For every reduced word wy that represents x inside W, we denote by T,
the corresponding element in AL (C).

Example: Let C be the finite Coxeter group of type Bs. Let
Wx = YV1Y2Y1y3- Then, wa = A12A13.

Proposition (Etingof-Rains 2004)

A, (C) is generated as R-module by the elements T,,, x € W.

Let Rt = R|[z,z '], where z is the action of the image of the center of B
inside Hyy.

Proposition (Etingof-Rains 2004)

There is a ring morphism ¢ : R — R, inducing ¢ : A, (C) ®s Rt — Hyy,
considering Hyy as RT-module.
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The conjecture for the first two families

For every x € W we fix a reduced word w, in letters y;, y» and y3 that

represents x in W.

Wx = y2Y3
From the reduced word w, one can obtain a word w,:

— Wx forx=1
Wy — )
g wx(y1y1)™ (y2y2)™ (ysy3)™  for x # 1

W = yay3(y1y1)*(y2y2)
Moving the pairs y;y; somewhere inside w, and using the braid relations

between the generators y; one can obtain a word Wy:
o ((vy) = £(wy), where ¢(w) denotes the length of the word w.

@ Let m be an odd number. Whenever in the word W, there is a letter y;
at the mth-position from left to right, then in the (m + 1)th-position
there is a letter y;, j # i.

@ W, = wy if and only if w, = wy. In particular, wq = wy.

Wx = VoY1Y1Y2Y2Y1Y1V3
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The conjecture for the first two families

Let W be an exceptional group belonging to the tetrahedral or octahedral
family.

For every x € W we found a specific word Wy and we set

Z(W)|-1 )
Ui=2_ >, R(Ta),
xeEW k=0

where Ty, is the corresponding element in A, (C) ®¢ RT.

Theorem (C. 2015)

Hw = U, and, hence, the BMR freeness conjecture is true for the groups
belonging to the first two families.




Remaining cases

Conjecture (equivalent version)

Hw is spanned over R by |W/| elements, where W is an irreducible
complex reflection group.

Gs, ..., Gy, Gs, ..., Gis, Gis, Gi7, Gig, Grg, Gog, Go1, Goo, G2z, Gog, ... Gz, Gay.
———
T o 7




Last slide

Thank you!

o>



