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Complex reflection groups

Definition

A complex reflection group of rank n is a finite subgroup of GLn(C), which
is generated by pseudo-reflections

i.e. elements of finite order whose vector
space of fixed points is a hyperplane.

Examples:

Any finite Coxeter group C = 〈s1, ..., sn | s2
i = 1, si sjsi . . .︸ ︷︷ ︸

mij−factors

= sjsi sj . . .︸ ︷︷ ︸
mij−factors

〉

G4 = 〈s1, s2 s3
1 = s3

2 = 1, s1s2s1 = s2s1s2〉
G11 = 〈s1, s2, s3 s2

1 = s3
2 = s4

3 = 1, s1s2s3 = s2s3s1 = s3s1s2〉

G13 =

〈
s2

1 = s2
2 = s2

3 = 1
s1, s2, s3 s1s2s3s1s2 = s3s1s2s3s1

s3s1s2s3 = s2s3s1s2

〉
Coxeter-like presentation: 〈s1, . . . , sn s

o(si )
i = 1, {vi = wi}i∈I 〉 , where I is a

finite set of relations such that, for each i ∈ I , vi and wi are positive words
with the same length in elements s1, . . . , sn.
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Complex braid groups

Let W be a complex reflection group and let X be the set of all the points
of Cn that are not fixed by a pseudo-reflection.

By Steinberg’s theorem we have that the action of W on X is free.
Therefore, it defines a Galois covering X → X/W , which gives rise to the
following exact sequence, for every x ∈ X :

1→ π1(X , x)→ π1(X/W , x)→W → 1

Definition (Broué-Malle-Rouquier 1998)

The complex braid group B associated to W is the fundamental group
π1(X/W , x).

Examples:

For the symmetric group Sn, B is the usual braid group on n strands.

For any finite Coxeter group B is a generalized braid group.
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Generic Hecke algebras

Let (us,j)1≤j≤o(s) be a set of indeterminates, where

s runs along the pseudo-reflections of W (if s ∼ s ′ then us,j = us′,j).

o(s) denotes the order of s.

Let R := Z[u±1
s,1 , ..., u

±1
s,o(s)].

Definition

The generic-Hecke algebra HW associated to W is the algebra
RB/(σ − us,1) . . . (σ − us,o(s)), where σ runs among the braided
pseudo-reflections associated to s.

Examples:

G4 = 〈s1, s2 : s3
1 = s3

2 = 1, s1s2s1 = s2s1s2〉

HG4 = 〈σ1, σ2 : σ1σ2σ1 = σ2σ1σ2,
3∏

j=1

(σi − uj) = 0〉

G10 = 〈s1, s2 : s3
1 = s4

2 = 1, s1s2s1s2 = s2s1s2s1〉

HG10 = 〈σ1, σ2 : σ1σ2σ1σ2 = σ2σ1σ2σ1,
3∏

j=1

(σ1 − uj) =
4∏

j=1

(σ2 − vj) = 0〉
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and Todd (1954). They belong either to
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matrices such that their non-zero coefficients belong to µde(C) and
their product to µd(C).

The finite set of 34 exceptions.
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A first approach: The finite quotients of B3

Let B3 be the braid group on 3 strands.

It admits a presentation

B3 = 〈s1, s2 | s1s2s1 = s2s1s2〉

Theorem (Coxeter 1957)

The quotient W of Bn by the relations ski = 1 is a finite group if and only
if 1

k + 1
n >

1
2 .

For n = 3 and k = 3, 4, 5, we have W = G4, G8, G16.

Theorem (C. 2013)

The BMR freeness conjecture holds for the generic Hecke algebras
associated to G4

1, G8 and G16.

1The case of G4 has been proven by Broué - Malle 1994, Berceanu - Funar 1994,
Marin 2011.
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The cases of G4, G8, G16

Let W1 be the subgroup of Gn, (n = 4, 8, 16) which is generated by s1.

Let J denote a system of representatives of the double cosets W1\Gn/W1.

Gn =
⊔
w∈J

W1 · w ·W1.

For every w ∈ J we fix a factorization fw = sa1
i1
sa2
i2
. . . sarir , where ai ∈ Z.

We define the element Tfw inside HGn to be the product σa1
i1
σa2
i2
. . . σarir

inside Hk (Tf1 = 1).
Let u1 be the subalgebra of HGn (n = 4, 8, 16) which is generated by σ1.

HGn

?
=

∑
w∈J

u1 · Tfw · u1
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that σ2U ⊂ U.
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The cases of G4, G8, G16

Let ui be the subalgebra of HGn (n = 4, 8, 16) which is generated by σi .

We know that Z (B3) = 〈z〉.
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The exceptional groups of rank 2

Let W be an exceptional group of rank 2.

We know that W := W /Z (W ) ≤ SU2(C)/Z (SU2(C)) ' SO3(R).
Up to classification of the subgroups of SO3(R), W is the tetrahedral, the
octahedral or the icosahedral group.
The groups G4, ...,G22 fall into three families:

Tetrahedral family G4, ...,G7.

Octahedral family G8, ...,G15.

Icosahedral family G16, ...,G22.

In each family there is a maximal group W̃ such that every W in this
family is a subgroup of W̃ .
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octahedral or the icosahedral group.
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The exceptional groups of rank 2

Let W be an exceptional group of rank 2.
We know that W := W /Z (W ) ≤ SO3(R).
Up to classification of the subgroups of SO3(R), W is the tetrahedral, the
octahedral or the icosahedral group.
The groups G4, ...,G22 fall into three families:

Tetrahedral family G4, ...,G7.

Octahedral family G8, ...G11, ...,G15.

Icosahedral family G16, ...,G19, ...G22.

In each family there is a maximal group W̃ such that every W in this
family is a subgroup of W̃ .

Proposition (C. 2013)

If HW is torsion free and the BMR conjecture is true for H
W̃

, then the
conjecture holds for HW , as well.



A more global approach: Etingof-Rains 2004

We know that W is the group of even elements in a finite Coxeter group
C of rank 3 of type A3,B3,H3, respectively, with Coxeter matrix (mij).

Let tij ,k be set of indeterminates, where i 6= j , k ∈ Z/mijZ and
t−1
ij ,k = tji ,−k . Let R̃ := Z[tij ,k ].

A(C ) = 〈 Y1,Y2,Y3 | Y 2
i = 1, i 6= j implies

mij∏
k=1

(YiYj − tij ,k) = 0 〉

A+(C ) = 〈Aij := YiYj , i 6= j〉

Example: When C is the finite Coxeter group of type B3 the R̃-algebra
A+(C ) can be presented as follows:

< (A13 − t13,1)(A13 − t13,2) = 0
A13,A32,A21 (A32 − t32,1) . . . (A32 − t32,3) = 0, A13A32A21 = 1

(A21 − t21,1) . . . (A21 − t21,4) = 0 >
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A more global approach: Etingof-Rains 2004

For every reduced word wx that represents x inside W , we denote by Twx

the corresponding element in A+(C ).

Example: Let C be the finite Coxeter group of type B3. Let
wx = y1y2y1y3. Then, Twx = A12A13.

Proposition (Etingof-Rains 2004)

A+(C ) is generated as R̃-module by the elements Twx , x ∈W .

Let R+ = R[z , z−1], where z is the action of the image of the center of B
inside HW .

Proposition (Etingof-Rains 2004)

There is a ring morphism φ : R̃ � R+, inducing φ : A+(C )⊗θ R+ � HW ,
considering HW as R+-module.
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The conjecture for the first two families

For every x ∈W we fix a reduced word wx in letters y1, y2 and y3 that
represents x in W .

wx = y2y3

From the reduced word wx one can obtain a word w̄x :

w̄x =

{
wx for x = 1

wx(y1y1)n1(y2y2)n2(y3y3)n3 for x 6= 1
.

w̄x = y2y3(y1y1)2(y2y2)
Moving the pairs yiyi somewhere inside w̄x and using the braid relations
between the generators yi one can obtain a word w̃x :

`(w̃x) = `(w̄x), where `(w) denotes the length of the word w .

Let m be an odd number. Whenever in the word w̃x there is a letter yi
at the mth-position from left to right, then in the (m + 1)th-position
there is a letter yj , j 6= i .

w̃x = wx if and only if w̄x = wx . In particular, w̃1 = w1.
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The conjecture for the first two families

Let W be an exceptional group belonging to the tetrahedral or octahedral
family.

For every x ∈ W̄ we found a specific word w̃x and we set

U :=
∑
x∈W

|Z(W )|−1∑
k=0

RzkTw̃x ,

where Tw̃x is the corresponding element in A+(C ).
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Remaining cases

Conjecture (equivalent version)

HW is spanned over R by |W | elements, where W is an irreducible
complex reflection group.

G4, ...,G7︸ ︷︷ ︸
T

, G8, . . . ,G15︸ ︷︷ ︸
O

, G16,G17,G18,G19,G20,G21,G22︸ ︷︷ ︸
I

, G23,G24, ...G36,G37.



Last slide

Thank you!


