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. Pitman’s theorem



GUE
A GUE matrix is a hermitian n x n matrix M chosen with the
probability distribution
o= Tr(M?)/2
(2m)n/2
The eigenvalues A1, A2, ..., A\, are random variables whose
distribution occur in many fields:

am

e Statistics

e Wireless communications

e Zeros of Riemann zeta function
e Atomic physics

e |ntegrable systems



A good way to obtain a gaussian variable is to use the central limit
theorem.

Equivalently we will construct a random matrix by using a random
walk on the space of matrices.

This will be closely related to representation theory.



Classical random walk
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Brownian motion
Scale by ¢ in time and /¢ in space.
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Matrix Brownian motion M(t) is obtained by letting coordinates of
the matrix evolve as independent Brownian motions (modulo
relations M;; = M;;).

The eigenvalues (A\1(t), A2(t), ..., An(t)) evolve according to a
Brownian motion " conditioned to stay forever in the Weyl

chamber”
X1 >Xo > ... > Xp

At time 1 the matrix is a GUE matrix.



Conditional probability:
P a probability measure, B an event, we condition by the formula:
P(AN B)
P(B)
here B=the Brownian motion remains forever in the Weyl chamber.

One has P(B) = 0 so the definition of P(A|B) is somewhat
indirect.

P(A|B) =

It requires some theory of harmonic functions, Martin boundaries
etc.



Brownian motion on 2 X 2 matrices:

U Vi + iWs
Vi — iW —U;

4/ U2+ VZ+ W2

this is the norm of a three dimensional Brownian motion.
This is the same as " Brownian motion conditioned to remain
positive”

eigenvalues:



PITMAN THEOREM (1975)
B:; t > 0 Brownian motion; /; = info<s<¢ Bs
R: = By — 2l;; t > 0 is distributed as the norm of a three
dimensional Brownian motion(=Bessel 3 process)
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DISCRETE VERSION

Xi==x1, S, =X1+Xo+...4+X,

1/2 1/2

Ry = Sn — 2ming<k<p Sk is a Markov chain(=discrete Bessel 3
process)
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when n — 00 Spp/+/n —ns0o Brownian motion

R[nt]/\/ﬁ — o0 Norm of 3D-Brownian motion



PROOF OF PITMAN’S THEOREM
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| will explain how Pitman's theorem is related to representation
theory of SU(2) and SUg4(2).

1=rank(SU(2))
3=dimension(SU(2))



A crash course on quantum mechanics

H = (complex) Hilbert space
Observables=self-adjoint operators on H

® unit vector + A observable
— probability measure

P(X) = |magl?

) = orthogonal projection on eigenspace of A

P is supported on the spectrum of A.



Expectation of A is

<AQ07 S0> = TI’(AT('(p)

More generally: expectation of f(A) is
(F(A)e, ) = Tr(f(A)my)
One can convexify: replace 7, with a positive operator of trace 1.

E[f(A)] = Tr(pf(A))



Basic example

(Q, F, P) probability space
H=L%(Q,F,P)

x=real random variable

is a self-adjoint operator
Spectral theorem: any self-adjoint operator on a Hilbert space can
be put in this form.



If A1,..., A, commute — diagonalized simultaneously

Their joint distribution makes sense:

Tr(pf(A1,...,An)) = / f(x1,...,xn)dp

for u proba on R"



Spins

dim(H)=2
The space of observable has dimension 3

Pauli matrices give a basis

=(0) 7= (o) o



=) (%) =00

In the state e,
X and Y are symmetric Bernoulli
Z=1as.

In the central state Tr(.3/d) all three are symmetric Bernoulli.

By choosing state appropriately on can realize any Bernoulli
distribution.



Quantum Bernoulli random walks

We "quantize” the set of increments of the random walk {£1} to
obtain M,(C).

The subset of hermitian operators in M,(C) is a four dimensional
real subspace, generated by the identity matrix / as well as the
three matrices

(01 (0 i (1 0
>=\10) »\i o) 27 0 -1

The matrices oy, 0,0, are the Pauli matrices. They satisfy the
commutation relations

[ox,0y] =2i0,; [oy,0,] =2i0s; [07,0x] =2ic, (1)

and form (up to i) a basis for the Lie algebra su(2)



The random walk

Xp = j@(n=1) oy ® I®(N—n—1)’ Vo = 1©(n=1) & o, ® [@(N—n—1)
Zp = /®(”_1) R0, ® I®(N—n—1)

Xp is a commuting family of operators, a sequence of independent
Bernoulli random variables.

n n n
Xn = § xi;  Yn= E Yi Zn= § Zj
i=1 i=1 i=1
are Bernoulli random walks.

27 NTr(A(X1) ... £2(Xn)) = E[A(A1) ... F2( A)]
They do not commute but obey
[Xm Ym] = 2/.Zn/\m (2)

as well as the similar relations obtained by cyclic permutation of
X, Y, Z.



-jn(X7 Y7Z) = (Xn7 Yn,Zn); n Z 1

is a quantum Bernoulli random walk.
It is obtained by tensoring the basic representation of su(2), n
times.



The spin process

Let S, = /I + X2+ Y2+ Z2

Proposition For all n, m one has

[Sh, Sm] =0

We can diagonalize simultaneously the S,,.
Then we can evaluate

27 NTr(£(S1) ... ,(Sn))

S is the image of the Casimir operator generating the center of
U(su(2)).



Theorem
Sy is distributed as a Markov chain on the positive integers, with
probability transitions

k+1. k—1

kok—1)= —=.
P p(k, )

i.e. the quantities

27" TH(A(S1). .. £2(Sn)) = E[A(RL). .. fo(Ry)]

where R is a Markov chain as above



E = aset (e.g. Z9)
Q a probability space

A random variable with values in E: X : Q — E
this gives an algebra morphism:
F(E) — F(Q)

f—foX

We could drop the condition that the algebras are commutative
An algebra morphism between two (non-commutative) algebras is
a (non-commutative) random variable.



A = group algebra of SU(2)

Jn : A = My(C)®>=n-fold tensor product of 2-dimensional
representations for n = 1,2, ... form a sequence of
non-commutative random variables =stochastic process with
values in a non-commutative space (the "dual” of SU(2)).



The dual of SU(2) as a noncommutative space

G = SU(2) = unitary 2 x 2 matrices with determinant 1.
Irreps are parametrized by {1,2,3,...}

A(SU(2)) = @321 Ma(C)

is the noncommutative space dual to SU(2).

The Pauli matrices belong to the Lie algebra su(2), they define
unbounded operators X, Y, Z, on L2(SU(2)).

They generate oneparameter sugbroups isomorphic to U(1). This
is true also of any linear combination xX + yY + zZ with

X2 +y?+22=1.



Noncommutative space underlying A(SU(2))
If you are in this space and measure your coordinate in some
direction (x, y, z) using the operator xX + yY + zZ, and you will

always find an integer.
You cannot measure coordinates in two different directions at the

same time.



The operator D = /[ + X2+ Y24+ Z2 — | is in the center of the
algebra A(SU(2)), and therefore can be measured simultaneoulsy
with any other operator.

Its eigenvalues are the nonnegative integers 0,1,2..., and its
spectral projections are the identity elements of the algebras M,(C)

D=> (n—1)ly,q)
n=1

M,(C) is a kind of "noncommutative sphere of radius n —1".
Looking at the eigenvalues of the operators xX + yY + zZ the
coordinate on this "radius” can only take the n+ 1 values
nn—2n—4, ... ,—n.



One can restrict the j, to commutative subalgebras.
Restriction to a one parameter subgroup gives a Bernoulli random

walk.
1/2 1/2

The spin process (radial part) is obtained by restriction of j, to the
center of the group algebra.

The restriction of the Quantum random walk to this center can be
computed by the Clebsch Gordan formula

P2 @ pk = Pk—1 D Pk+1

(k-1)/2k (k+1)/2k

k-1 k k+1






RESTRICTION TO A MAXIMAL ABELIAN ALGEBRA
Restrict the random walk to the maximal abelian subalgebra
generated by the center and a one parameter subgroup.

In the decomposition A(SU(2)) = ®M,(C) this is the algebra of
diagonal operators.
One gets probability transitions
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Kashiwara’s crystallization
Replace SU(2) by SU,(2) then

/ SN
N N
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Let g — 0 then one obtains Pitman's theorem.
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We can generalize the preceding construction to the quantum
groups SUq(n).



Il. Generalized Pitman theorem and Littelmann paths



PITMAN OPERATORS
Y:[0,T] >R,  Y(0)=0
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PY(t) = Y(t) -2 infogsgt Y(S)
For all t one has PY(t) > 0, in particular PPY = PY.



MULTIDIMENSIONAL PITMAN OPERATORS

V'=real vector space, a« € V, a¥ € V* a"(a) = 2.

P.Y(t) = Y(t) — inf a¥(Y(s))a

0<s<t

PoP.Y = P,Y



BRAID RELATIONS
Let a,b € V, of norm 1, {(a,b) = —cosf. If nf < 7 then

(nterms) P,PyP,...f(t) = f(t)—

2infesg > >5,>0[ 500 (F(s51), a) + S22 (f(s,), b) +

sin 6 . sin 0
g (F(s3):a) + ...+ BB (F(sn), )] a

—2infisg > 25120300 (F(s1), b) + 22 (f(s,), a) +

sm39< (53) b> 4+ M<f(5n—l)a d>] b

sin 6@ sin 6@

If @ = 7/n then

P.PyP, ... = PyPiPy. .. (n termes)



Corollary: Let (W,S)=Coxeter system on V and «,a"=simple

roots and coroots,
C=Weyl chamber. To each s, € S associate Ps_. For each

w € W with reduced decomposition w = s,, ... s,, there exists

P = P

Saq * So‘k

If wo=longest element then P, X takes values in C.



Relation with Littelmann’s path model

Let W be crystallographic, then each path starting from 0 belongs
to some Littelmann module (if we take a lattice with infinitesimal
spacing!). The Pitman operator P,, sends the path to the
dominant path in the Littelmann module.

When W is not crystallographic there is no lattice any more, but
Py, still makes sense and there is a " continuous Littelmann
module (or "continuous crystal™).



GENERALIZED PITMAN THEOREM

Let X be Brownian motion in V

then P,, X is Brownian motion " conditioned to stay in C".



Random matrices and representation theory
Kirillov's formula for characters:
a=>)_;ajjej € gl
22 AijUji
eil du
tr((e= %P (%))) = fOA—
p(a)

O, is the coadjoint orbit of A=matrices with spectrum Aq1,..., Ap.

This formula shows that the "non-commutative random variables”

pa(ejj) behave almost like the coordinates wuj of a random matrix u
taken with uniform measure on O,.

The matrix
> paley) ® €
p

commutes with the action of gl,,.

The ujj commute and the e; "almost” commute:

[ejj, ex1] = term of degree 1



Connexions with symmetric groups:
The operators

N
Xj=> 19..90I0gele.. .0l
k=1

behave almost like the coordinates of of a GUE matrix. Let us put
them in a matrix:

M:ZX,'J'@)GJ,'

This matrix commutes with the action of g/, on (C")®(N+1) hence
can be expressed using Sp1.

M:Zeij®ej,-

is the transposition on (C") ® C")

M=AN+1)+Q@N+1)+...+(NN+1)

is the Jucys Murphy element



UNIFORM DISTRIBUTION ON AN ORBIT

Let (A1,...,An) € RV, the orbit

O, = {UDU* | U € U(N)}

of
M O ... 0
0 X ... O
p=|. 2
0 0 ... Ay

by conjugation has a unique probability distribution invariant under
U(N).



HIZ FORMULA

The Fourier transform is given by Harish Chandra formula

dét[(e™"); 4]
V(N V(1)

where 1 are the eigenvalues of A and V/()) is the Vandermonde

V() = TTOw =)

j<k

/ exp(iTr(UDU*A))dU = Zy
U(N)

The Fourier transform is determined by its values on diagonal
matrices A.
Remark: the formula is given by the stationary phase method.



DUISTERMAAT-HECKMAN MEASURE
For A = diag(ai,...,an)

Flar, ... an) = [y exp(iTr(UDU*A))dU
= fU exp(i ), a;(UDU");)dU

is the Fourier transform of the distribution of
((UDU")11, ..., (UDU*)nn)

This measure on RV is supported by the hyperplane
Zx,- = Tr(D
i

It is the Duistermaat-Heckman measure.



SOME PROPERTIES OF DH MEASURE

The support of the Duistermaat-Heckman measure is the convex
hull of the points (Ay(1),- -, As(n)), Where o € Sy.
It has a piecewise polynomial density on this set.

It is the image by an affine map of Lebesgue measure on a convex
polytope of dimension W



EXAMPLE; N=2
A0 o
D= (0 _)\> A > 0, the orbit is

X z
zZ —Xx
such that x? + |z|> = A\2. A sphere S2 of radius \.

D-H measure is the projection of uniform measure on 52 onto a
diameter.

It is Lebesgue measure on [— A, ], for A = (a 0 >

. det(
/ exp(= Tr(UDU*A)dU = Z,
U(2)

_sin(Aa) 1 A jax
= 3557 = 53 JO, edx



N=3

Take
A 0 0
D=10 X 0 A1+ A+ A3=0
0 0 X3

the measure is supported by a convex set.

Images par le groupe de Weyl /

spectre de D




Density is piecewise polynomial with degree

(N—=1)(N-2)
2

degree= 1 for N=3



This measure is the image by an affine map affine of Lebesgue

measure on a convex polytope

O<x<a
O<y<b
0<z<(a-x)+(b-y



BROWNIAN INTERPRETATION
OF DUISTERMAAT-HECKMAN MEASURE

B = (Bjj(t))1<ij<n U(N)-invariant brownian motion on N x N
hermitian matrices

Duistermaat-Heckmann measure is the conditional distribution of
(B11(t), ..., Bun(t)) knowing that B(t) has spectrum

(A1, An)-



CONVERSE THEOREM

The conditional distribution of X(t) knowing P,,X(t) = p is the
Duistermaat-Heckmann measure on the convex polytope with
vertices w(p); w € W.




Its Fourier transform is

H,BeRﬁ y) Z

weW

density is piecewise polynomial



In order to recover X from P,,X we need a positive real number Xx;
for each s; in Py, = Pg; ... Ps,.

Lemma Given P, X(t) the numbers (x1,...,xq) belong to a
certain convex polytope. Their distribution is the normalized
Lebesgue measure on this polytope.

Cristallographic case: string polytopes

The Duistermaat-Heckman measure is the image of this measure
by an affine map.



O<x<a

O<y<b

O<z<(a—x)+(b-y




THANK YOU



