Introduction	4-partition	Nodal partitions	Vertical strips	Simulations	Hexagonal partitions	Transition
00	0	000	000	00	00	00

Spectral minimal partitions for a family of tori

V. Bonnaillie-Noël

DMA, CNRS, ENS Paris

with C. Léna

Shape Optimization and Isoperimetric and Functional Inequalities

CIRM Marseille November, 23rd 2016

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

▶ $\mathsf{T}(a,b)$: two-dimensional flat torus $(\mathbb{R}/a\mathbb{Z}) \times (\mathbb{R}/b\mathbb{Z})$ with $0 < b \leq a$

• \mathfrak{P}_k : set of all *k*-partitions $\mathcal{D} = (D_i)_{i=1,...,k}$ of T(a, b)

 D_i open, connected, and mutually disjoint subsets of T(a, b)

Notation

▶ $\mathsf{T}(a,b)$: two-dimensional flat torus $(\mathbb{R}/a\mathbb{Z}) \times (\mathbb{R}/b\mathbb{Z})$ with $0 < b \leq a$

• \mathfrak{P}_k : set of all k-partitions $\mathcal{D} = (D_i)_{i=1,...,k}$ of $\mathsf{T}(a, b)$

 D_i open, connected, and mutually disjoint subsets of T(a, b)

► $\lambda_1(D) < \lambda_2(D) \leq \cdots$ eigenvalues of the Dirichlet-Laplacian on D $\Lambda_k(D) = \max_{i=1,...,k} \lambda_1(D_i)$ $\mathfrak{L}_k(\mathsf{T}(a,b)) = \inf \{\Lambda_k(D) ; D \text{ is a } k\text{-partition}\}$

Notation

▶ $\mathsf{T}(a,b)$: two-dimensional flat torus $(\mathbb{R}/a\mathbb{Z}) \times (\mathbb{R}/b\mathbb{Z})$ with $0 < b \leq a$

• \mathfrak{P}_k : set of all k-partitions $\mathcal{D} = (D_i)_{i=1,...,k}$ of $\mathsf{T}(a, b)$

 D_i open, connected, and mutually disjoint subsets of T(a, b)

► $\lambda_1(D) < \lambda_2(D) \leq \cdots$ eigenvalues of the Dirichlet-Laplacian on D $\Lambda_k(D) = \max_{i=1,...,k} \lambda_1(D_i)$ $\mathfrak{L}_k(\mathsf{T}(a, b)) = \inf \{\Lambda_k(D); D \text{ is a } k\text{-partition}\}$

• If $\Lambda_k(\mathcal{D}^*) = \mathfrak{L}_k(\mathsf{T}(a, b))$, then \mathcal{D}^* is called a minimal *k*-partition

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	4-partition	Nodal partitions	Vertical strips	Simulations	Hexagonal partitions	Transition
O●	O		000	00	OO	00
		Min	imal part	itions		

Some theoretical results

Theorem

For any k, there exists a minimal k-partition \mathcal{D}

[Conti-Terracini-Verzini, Helffer-Hoffmann-Ostenhof-Terracini, Bucur-Buttazzo-Henrot, Caffarelli-Lin]

Introduction	4-partition	Nodal partitions	Vertical strips	Simulations	Hexagonal partitions	Transition
O●	O		000	00	OO	00
		Min	imal part	itions		

Some theoretical results

Theorem

For any k, there exists a minimal k-partition DUp to zero capacity sets, D is strong

• Int
$$\overline{D_i} = D_i$$
 and $\bigcup_{1 \le j \le k} \overline{D_i} = \mathsf{T}(a, b)$

[Conti-Terracini-Verzini, Helffer-Hoffmann-Ostenhof-Terracini, Bucur-Buttazzo-Henrot, Caffarelli-Lin]

Some theoretical results

Theorem

For any k, there exists a minimal k-partition \mathcal{D} Up to zero capacity sets, \mathcal{D} is strong, regular

- Int $\overline{D_i} = D_i$ and $\bigcup_{1 \le j \le k} \overline{D_i} = \mathsf{T}(a, b)$
- N(D) = ∪_{1≤j≤k}∂D_i is smooth curve except at finitely many points and N(D) satisfies the Equal Angle Property

[Conti-Terracini-Verzini, Helffer-Hoffmann-Ostenhof-Terracini, Bucur-Buttazzo-Henrot, Caffarelli-Lin]

For any k, there exists a minimal k-partition DUp to zero capacity sets, D is strong, regular and equispectral

• Int
$$\overline{D_i} = D_i$$
 and $\bigcup_{1 \le j \le k} \overline{D_i} = \mathsf{T}(a, b)$

- N(D) = ∪_{1≤j≤k}∂D_i is smooth curve except at finitely many points and N(D) satisfies the Equal Angle Property
- The D_i are connected and $\Lambda_k(\mathcal{D}) = \lambda_1(D_j)$, for any $1 \leq j \leq k$

[Conti-Terracini-Verzini, Helffer-Hoffmann-Ostenhof-Terracini, Bucur-Buttazzo-Henrot, Caffarelli-Lin]

For any k, there exists a minimal k-partition DUp to zero capacity sets, D is strong, regular and equispectral

• Int
$$\overline{D_i} = D_i$$
 and $\bigcup_{1 \le j \le k} \overline{D_i} = \mathsf{T}(a, b)$

- N(D) = ∪_{1≤j≤k}∂D_i is smooth curve except at finitely many points and N(D) satisfies the Equal Angle Property
- The D_i are connected and $\Lambda_k(\mathcal{D}) = \lambda_1(D_j)$, for any $1 \leq j \leq k$

Aim:

determine $\mathfrak{L}_k(\mathsf{T}(1, b))$ and minimal k-partitions according to b (a = 1)

[Conti-Terracini-Verzini, Helffer-Hoffmann-Ostenhof-Terracini, Bucur-Buttazzo-Henrot, Caffarelli-Lin]

Numerical simulations for the 4-partitions of T(1, b)

[Bourdin-Bucur-Oudet, Bonnaillie-Noël-Léna]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Numerical simulations for the 4-partitions of T(1, b)

[Bourdin-Bucur-Oudet, Bonnaillie-Noël-Léna]

3

(日)、

Let u be an eigenfunction of $-\Delta$ on T(a, b)

• The nodal sets of u are the components of $T(a, b) \setminus N(u)$

$$N(u) = \overline{\{x \in \mathsf{T}(a,b) | u(x) = 0\}}$$

 $\mu(u) =$ number of nodal sets of u

• The partition composed by the nodal sets is called nodal partition

Regularity

N(u) is a C^{∞} curve except on some critical points $\{x\}$ N(u) is locally the union of an **even** number of half-curves ending at x with equal angle

Let u be an eigenfunction of $-\Delta$ on T(a, b)

• The nodal sets of u are the components of $T(a, b) \setminus N(u)$

$$N(u) = \overline{\{x \in \mathsf{T}(a, b) | u(x) = 0\}}$$

 $\mu(u) =$ number of nodal sets of u

• The partition composed by the nodal sets is called nodal partition

Theorem

[Courant]

Any eigenfunction u associated with λ_k has at most k nodal domains

 $\mu(u) \leq k$

Let u be an eigenfunction of $-\Delta$ on T(a, b)

• The nodal sets of u are the components of $T(a, b) \setminus N(u)$

$$N(u) = \overline{\{x \in \mathsf{T}(a, b) | u(x) = 0\}}$$

 $\mu(u) =$ number of nodal sets of u

• The partition composed by the nodal sets is called nodal partition

Theorem

[Courant]

Any eigenfunction u associated with λ_k has at most k nodal domains

 $\mu(u) \leq k$

An eigenfunction u associated with λ , is said to be *Courant-sharp* if $\mu(u) = \min\{\ell; \lambda_{\ell}(\mathsf{T}(a, b)) = \lambda\}$

Introduction	4-partition	Nodal partitions	Vertical strips	Simulations	Hexagonal partitions	Transition			
00	0	000	000	00	00	00			
	N I I I I I I I I I I I I I I I I I I I								
		INC	odal parti	tion					
			Minimal partiti	on					

[Helffer-Hoffman-Ostenhof-Terracini]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$\lambda_k(\mathsf{T}(a,b)) \leq \mathfrak{L}_k(\mathsf{T}(a,b))$

 \Rightarrow the nodal partition of a Courant-sharp eigenfunction is minimal

Introduction 00	4-partition O	Nodal partitions ○●○	Vertical strips 000	Simulations 00	Hexagonal partitions 00	Transition 00			
Nedel sextition									
Nodal partition									
Winimal partition									

[Helffer-Hoffman-Ostenhof-Terracini]

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

$\lambda_k(\mathsf{T}(a, b)) \leq \mathfrak{L}_k(\mathsf{T}(a, b))$

 \Rightarrow the nodal partition of a Courant-sharp eigenfunction is minimal

Conversely, if the nodal partition of some eigenfunction is minimal, this eigenfunction is Courant-sharp

[Helffer-Hoffman-Ostenhof-Terracini]

$\lambda_k(\mathsf{T}(a, b)) \leq \mathfrak{L}_k(\mathsf{T}(a, b))$

 \Rightarrow the nodal partition of a Courant-sharp eigenfunction is minimal

Conversely, if the nodal partition of some eigenfunction is minimal, this eigenfunction is Courant-sharp

Finally, if $\mathfrak{L}_k(\mathsf{T}(a, b)) = \lambda_k(\mathsf{T}(a, b))$, all minimal k-partitions are nodal

[Helffer-Hoffman-Ostenhof-Terracini]

$\lambda_k(\mathsf{T}(a,b)) \leqslant \mathfrak{L}_k(\mathsf{T}(a,b))$

 \Rightarrow the nodal partition of a Courant-sharp eigenfunction is minimal

Conversely, if the nodal partition of some eigenfunction is minimal, this eigenfunction is Courant-sharp

Finally, if $\mathfrak{L}_k(\mathsf{T}(a, b)) = \lambda_k(\mathsf{T}(a, b))$, all minimal k-partitions are nodal

Remarks

- No minimal k-partitions are nodal for large k
- For k=2, $\mathfrak{L}_2(\mathsf{T}(a, b)) = \lambda_2(\mathsf{T}(a, b))$

[Pleijel]

Eigenvalues on the torus

The eigenvalues of the Laplacian on T(a, b) are

$$\lambda_{m,n}(a,b) = 4\pi^2 \left(rac{m^2}{a^2} + rac{n^2}{b^2}
ight) \quad ext{with} \quad m, \ n \in \mathbb{N}_0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Eigenvalues on the torus

The eigenvalues of the Laplacian on T(a, b) are

$$\lambda_{m,n}(a,b) = 4\pi^2 \left(rac{m^2}{a^2} + rac{n^2}{b^2}
ight) \quad ext{with} \quad m, \ n \in \mathbb{N}_0$$

Proposition

The only non-constant Courant-sharp eigenfunctions for the torus T(1,1)are associated with $\lambda_2(T(1,1)) = 4\pi^2$

 \Rightarrow as soon as $k \ge 3$, a minimal k-partition of T(1,1) is not nodal

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Strip partitions

Let $\mathcal{D}_k(a, b)$ be the *k*-partition of T(a, b) with domains

$$D_i = \left(rac{i-1}{k}a, rac{i}{k}a
ight) imes (0, b) , \qquad ext{for } i = 1, \dots, k$$

We have

$$\Lambda_k(\mathcal{D}_k(a,b)) = \frac{k^2 \pi^2}{a^2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Strip partitions

Let $\mathcal{D}_k(a, b)$ be the *k*-partition of T(a, b) with domains

$$D_i = \left(rac{i-1}{k}a, rac{i}{k}a
ight) imes (0, b) , \qquad ext{for } i = 1, \dots, k$$

We have

$$\Lambda_k(\mathcal{D}_k(a,b)) = \frac{k^2 \pi^2}{a^2}$$

Remark. If k is even, $\Lambda_k(\mathcal{D}_k(a, b)) = \lambda_{k/2,0}(a, b)$ and $\mathcal{D}_k(a, b)$ is a nodal partition

Strip partitions

Let $\mathcal{D}_k(a, b)$ be the k-partition of T(a, b) with domains

$$D_i = \left(rac{i-1}{k}a, rac{i}{k}a
ight) imes (0, b) , \qquad ext{for } i = 1, \dots, k$$

We have

$$\Lambda_k(\mathcal{D}_k(a,b)) = \frac{k^2 \pi^2}{a^2}$$

Remark. If k is even, $\Lambda_k(\mathcal{D}_k(a, b)) = \lambda_{k/2,0}(a, b)$ and $\mathcal{D}_k(a, b)$ is a nodal partition

Let

 $b_k = \sup\{b > 0; \mathcal{D}_k(1, b) \text{ is a minimal } k \text{-partition of } \mathsf{T}(1, b)\}$

Introduction	4-partition	Nodal partitions	Vertical strips	Simulations	Hexagonal partitions	Transition
00	O		O●O	00	OO	00
			k even			

If k is even, then $b_k = \frac{2}{k}$

• $\mathfrak{L}_k(\mathsf{T}(1,b)) = k^2 \pi^2$ if $b \leq \frac{1}{k}$

and $\mathcal{D}_k(1, b)$ is a minimal k-partition of T(1, b)

(unique, up to a translation, if b < 1/k)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• $\mathfrak{L}_k(\mathsf{T}(1,b)) < k^2 \pi^2$ if $b > \frac{1}{k}$

Introduction	4-partition	Nodal partitions	Vertical strips	Simulations	Hexagonal partitions	Transition
00	O		00●	00	00	00
			k odd			

• $S_b = \mathbb{R} \times (0, b)$: infinite strip

• $j(b) = \inf_{\Omega \subset S_b, |\Omega| \leq b} \lambda_1(\Omega)$

 $b_k^{\mathsf{S}} = \sup\left\{b\in(0,1]\,;\,j(b)>k^2\pi^2
ight\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	4-partition	Nodal partitions	Vertical strips	Simulations	Hexagonal partitions	Transition
00	O	000		00	OO	00
			k odd			

• $S_b = \mathbb{R} \times (0, b)$: infinite strip

•
$$j(b) = \inf_{\Omega \subset \mathsf{S}_b, |\Omega| \leqslant b} \lambda_1(\Omega)$$

$$b_k^{\mathsf{S}} = \sup\left\{b\in(0,1]\,;\,j(b)>k^2\pi^2
ight\}$$

Theorem If k is odd, then $b_k \ge b_k^{S} > \frac{1}{k}$

[Bonnaillie-Noël-Léna 16]

Helffer–Hoffmann-Ostenhof proved $b_k \geq 1/k$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction	4-partition	Nodal partitions	Vertical strips	Simulations	Hexagonal partitions	Transition
00	O	000	00●	00	OO	00
			k odd			

• $S_b = \mathbb{R} \times (0, b)$: infinite strip

•
$$j(b) = \inf_{\Omega \subset \mathsf{S}_b, |\Omega| \leqslant b} \lambda_1(\Omega)$$

$$b_k^{\mathsf{S}} = \mathsf{sup}\left\{b \in (0,1]\,;\, j(b) > k^2 \pi^2
ight\}$$

Theorem If k is odd, then $b_k \ge b_k^{S} > \frac{1}{k}$

[Bonnaillie-Noël-Léna 16]

Helffer–Hoffmann-Ostenhof proved $b_k \geq 1/k$

We have

$$rac{1}{k} < b_k^{\mathsf{S}} < rac{1}{\sqrt{k^2-1}}$$

[Bonnaillie-Noël-Léna 16]

Introduction	4-partition	Nodal partitions	Vertical strips	Simulations	Hexagonal partitions	Transition
00	O	000	00●	00	OO	00
			k odd			

• $S_b = \mathbb{R} \times (0, b)$: infinite strip

•
$$j(b) = \inf_{\Omega \subset \mathsf{S}_b, |\Omega| \leqslant b} \lambda_1(\Omega)$$

$$b_k^{\mathsf{S}} = \mathsf{sup}\left\{b \in (0,1]\,;\, j(b) > k^2 \pi^2
ight\}$$

Theorem If k is odd, then $b_k \ge b_k^{\mathsf{S}} > \frac{1}{k}$

[Bonnaillie-Noël-Léna 16]

Helffer–Hoffmann-Ostenhof proved $b_k \geq 1/k$

We have

$$\frac{1}{k} < \frac{1}{\sqrt{k^2 - \frac{1}{8}}} \le b_k^{\mathsf{S}} < \frac{1}{\sqrt{k^2 - 1}}$$

[Bonnaillie-Noël-Léna 16, Léna 16]

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Introduction 00	4-partition O	Nodal partitions 000	Vertical strips 000	Simulations •O	Hexagonal partitions OO	Transition 00	
Numerical simulations							
3-partitions							

b = 0.64

b = 0.71

b = 0.8

b = 0.9

b = 1

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Upper bounds of $\mathfrak{L}_3(\mathsf{T}(1,b))$ for $b\in\{j/100\,;\,j=30\,,\,\ldots\,,\,100\}$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Introduction 00	4-partition O	Nodal partitions 000	Vertical strips 000	Simulations O•	Hexagonal partitions 00	Transition 00		
Numerical simulations 5-partitions								
b =	0.40	<i>b</i> = 0.41	<i>b</i> =	= 0.42	<i>b</i> = 0.43			
b =	0.44	<i>b</i> = 0.45	b =	= 0.5	<i>b</i> = 0.7			
b =	0.9	b = 0.98	<i>b</i> =	= 0.99	b=1			

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Upper bounds of $\mathfrak{L}_5(\mathsf{T}(1,b))$ for $b\in\{j/100\,;\,j=18\,,\,\ldots\,,\,100\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

For $k \in \{3, 4, 5\}$, there exists $b_k^H \in (0, 1)$ such that, for any $b \in (b_k^H, 1]$, there exists a tiling $H_k(b)$ of T(1, b) by k hexagons, that satisfies the equal angle meeting property

We have

 $\mathfrak{L}_k(\mathsf{T}(1,b)) \leqslant \min\left(k^2\pi^2, \lambda_1(\mathsf{H}_k(b))\right), \quad \forall b \in (b_k^\mathsf{H},1]$

For $k \in \{3, 4, 5\}$, there exists $b_k^{\mathsf{H}} \in (0, 1)$ such that, for any $b \in (b_k^{\mathsf{H}}, 1]$, there exists a tiling $\mathsf{H}_k(b)$ of $\mathsf{T}(1, b)$ by k hexagons, that satisfies the equal angle meeting property

We have

 $\mathfrak{L}_k(\mathsf{T}(1,b)) \leqslant \min\left(k^2\pi^2, \lambda_1(\mathsf{H}_k(b))\right), \quad \forall b \in (b_k^\mathsf{H},1]$

More explicitly, we can choose

$$b_4^{\mathsf{H}} = rac{1}{2\sqrt{3}} \simeq 0.289 < b_4 = rac{1}{2}$$

 $b_3^{\mathsf{H}} = \frac{\sqrt{11} - \sqrt{3}}{4} \simeq 0.396, \quad b_5^{\mathsf{H}} = \frac{\sqrt{291} - 5\sqrt{3}}{36} \simeq 0.233$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Numerical simulations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\mathfrak{L}_4(\mathsf{T}(1,b)) = 16\pi^2, \qquad orall 0 < b \leq b_4 = rac{1}{2}$$

• the minimal 4-partitions of T(1, 1/2) are nodal

• $\lambda_4(T(1, b))$ has multiplicity 4

A nodal 4-partition of T(1,1/2) (associated with $sin(4\pi x) + sin(4\pi y)$)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

$$\mathfrak{L}_4(\mathsf{T}(1,b)) = 16\pi^2, \qquad orall 0 < b \leq b_4 = rac{1}{2}$$

• the minimal 4-partitions of T(1, 1/2) are nodal

• $\lambda_4(T(1, b))$ has multiplicity 4

A nodal 4-partition of T(1,1/2) (associated with $sin(4\pi x) + sin(4\pi y)$)

Conjecture.

▶ starting point for the apparition of non-nodal 4-partitions of T(1, b) when $b = 1/2 + \varepsilon$, $0 < \varepsilon \ll 1$

► each singular point of order four splits into two singular points of order three

If $k \geq 3$ is odd, we conjecture that $b_k = rac{2}{\sqrt{k^2-1}}$

Construction of a 3-partition of $T(1, 1/\sqrt{2})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Construction of a 5-partition of $T(1, 1/\sqrt{6})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <