Introduction 4-partition Nodal partitions Vertical strips Simulations Hexagonal partitions Transition
(e} [e] [e]o]e} [e]o]e} (e]e] (o] oo}

Spectral minimal partitions for a family of tori

V. Bonnaillie-Noél
DMA, CNRS, ENS Paris

with C. Léna

Shape Optimization and Isoperimetric and Functional Inequalities

CIRM Marseille .
@ November, 23rd 2016
ENS



Introduction 4-partition Nodal partitions Vertical strips Simulations Hexagonal partitions Transition
[ 1o} [e] [e]o]e} [e]o]e} (e]e] (o] oo}

Minimal partitions

Notation

» T(a,b) : two-dimensional flat torus (R/aZ) x (R/bZ) with0 < b< a

> Py set of all k-partitions D = (D;)i=1,.. « of T(a, b)

D; open, connected, and mutually disjoint subsets of T(a, b)
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Minimal partitions

Notation

T(a, b) : two-dimensional flat torus (R/aZ) x (R/bZ) with 0 < b < a

v

Py: set of all k-partitions D = (D;)j=1,... «x of T(a, b)

v

D; open, connected, and mutually disjoint subsets of T(a, b)

» A\ (D) < \o(D) < --- eigenvalues of the Dirichlet-Laplacian on D

/\k(D) = iin;a-)-(k /\1(D,)

£i(T(a,b)) = inf{Ax(D); Dis a k-partition}
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Minimal partitions

Notation
» T(a,b) : two-dimensional flat torus (R/aZ) x (R/bZ) with0 < b< a
> Py set of all k-partitions D = (D;)i=1,.. « of T(a, b)

D; open, connected, and mutually disjoint subsets of T(a, b)

» A\ (D) < \o(D) < --- eigenvalues of the Dirichlet-Laplacian on D
/\k(D) = ;nlwaxk/\l(D,-)

£i(T(a,b)) = inf{Ax(D); Dis a k-partition}

If A(D*) = £4(T(a, b)), then D* is called a minimal k-partition

v
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Minimal partitions

Some theoretical results

Theorem
For any k, there exists a minimal k-partition D

Hexagonal partitions
[e]e]

Transition
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[Conti—Terracini-Verzini, Helffer—H O. hof-Terracini, Bucur-Buttazzo—Henrot, Caffarelli-Lin]
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Minimal partitions
Some theoretical results
Theorem

For any k, there exists a minimal k-partition D
Up to zero capacity sets, D is strong

» Int D; = D; and Ulgjgkﬁi = T(a, b)

[Conti~Terracini-Verzini, Helffer—~Hoffmann-Ostenhof-Terracini, Bucur-Buttazzo—Henrot, Caffarelli-Lin]

Hexagonal partitions
oo

Transition
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Minimal partitions

Some theoretical results

Theorem
For any k, there exists a minimal k-partition D

Up to zero capacity sets, D is strong, regular

» Int 5, = D,‘ and Ulgjgkﬁi = T(a, b)

Hexagonal partitions
oo

> N(D) = Ui<j<xOD; is smooth curve except at finitely many points

and N(D) satisfies the Equal Angle Property

[Conti~Terracini-Verzini, Helffer—~Hoffmann-Ostenhof-Terracini, Bucur-Buttazzo—Henrot, Caffarelli-Lin)
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Minimal partitions

Some theoretical results

Theorem
For any k, there exists a minimal k-partition D

Up to zero capacity sets, D is strong, regular and equispectral

» Int 5, = D; and U]_SJ‘S;(E/ = T(a, b)

» N(D) = Ui<j<xOD; is smooth curve except at finitely many points
and N(D) satisfies the Equal Angle Property

» The D; are connected and Ax(D) = A\1(Dj), forany 1 <j < k

[Conti—Terracini-Verzini, Helffer—Hoffmann-Ostenhof-Terracini, Bucur-Buttazzo—Henrot, Caffarelli-Lin]
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Minimal partitions

Some theoretical results

Theorem
For any k, there exists a minimal k-partition D

Up to zero capacity sets, D is strong, regular and equispectral

» Int 5, = D; and Ulgjgkﬁ,' = T(a, b)

» N(D) = Ui<j<xOD; is smooth curve except at finitely many points
and N(D) satisfies the Equal Angle Property

» The D; are connected and Ax(D) = A1(Dj), forany 1 < j < k

Aim:
determine £4(T(1, b)) and minimal k-partitions according to b (a = 1)

[Conti=Terracini-Verzini, Helffer—Hoffmann-Ostenhof-Terracini, Bucur-Buttazzo-Henrot, Caffarelli-Lin]
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Numerical simulations for the 4-partitions of T(1, b)

b=10.48 b=0.49 b=10.50

& & &

b=0.51 b=0.52 b=0.53 b=

[Bourdin-Bucur-Oudet, Bonnaillie-Noél-Léna]
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Numerical simulations for the 4-partitions of T(1, b)
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Upper bounds of £4(T(1, b)) for b € {j/100; j =48, ..., 100}

[Bourdin-Bucur-Oudet, Bonnaillie-Noél-Léna]



Introduction 4-partition Nodal partitions Vertical strips Simulations Hexagonal partitions Transition
(e} [e] @00 [e]o]e} (e]e] (o] oo}

Nodal partitions

Definition

Let u be an eigenfunction of —A on T(a, b)
e The nodal sets of u are the components of T(a, b) \ N(u)

N(u) = {x € T(a, b)| u(x) = 0}
wu(u) = number of nodal sets of u
e The partition composed by the nodal sets is called nodal partition

Regularity
N(u) is a C* curve except on some critical points {x}
N(u) is locally the union of an even number of half-curves ending at x with equal angle
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Nodal partitions

Definition

Let u be an eigenfunction of —A on T(a, b)
e The nodal sets of u are the components of T(a, b) \ N(u)

N(u) = {x € T(a, b)| u(x) = 0}
wu(u) = number of nodal sets of u
e The partition composed by the nodal sets is called nodal partition

Theorem
Any eigenfunction u associated with )\, has at most k nodal domains

[Courant]

m(u) < k
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Nodal partitions

Definition

Let u be an eigenfunction of —A on T(a, b)
e The nodal sets of u are the components of T(a, b) \ N(u)

N(u) = {x € T(a, b)| u(x) = 0}
wu(u) = number of nodal sets of u
e The partition composed by the nodal sets is called nodal partition

Theorem (Couran]
Any eigenfunction u associated with )\, has at most k nodal domains

m(u) < k

An eigenfunction u associated with A, is said to be Courant-sharp if
p(u) = min{l; A(T(a, b)) = A}
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Nodal partition

Minimal partition

T h eorem [Helffer-Hoffman-Ostenhof—Terracini]

Ak(T(a, b)) < £«(T(a, b))

= the nodal partition of a Courant-sharp eigenfunction is minimal



Introduction 4-partition Nodal partitions Vertical strips Simulations Hexagonal partitions Transition
(e} [e] oeo [e]o]e} (e]e] (o] oo}

Nodal partition

Minimal partition

T h eorem [Helffer-Hoffman-Ostenhof-Terracini]
M(T(a, b)) < £«(T(a, b))
= the nodal partition of a Courant-sharp eigenfunction is minimal

Conversely, if the nodal partition of some eigenfunction is minimal,
this eigenfunction is Courant-sharp
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Nodal partition

Minimal partition

Theorem

[Helffer-Hoffman-Ostenhof-Terracini]
M(T(a, b)) < £«(T(a, b))
= the nodal partition of a Courant-sharp eigenfunction is minimal

Conversely, if the nodal partition of some eigenfunction is minimal,
this eigenfunction is Courant-sharp

Finally, if £,(T(a, b)) = M\(T(a, b)), all minimal k-partitions are nodal
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Nodal partition

Minimal partition

Theorem

[Helffer-Hoffman-Ostenhof-Terracini]
M(T(a, b)) < £«(T(a, b))
= the nodal partition of a Courant-sharp eigenfunction is minimal

Conversely, if the nodal partition of some eigenfunction is minimal,
this eigenfunction is Courant-sharp

Finally, if £,(T(a, b)) = M\(T(a, b)), all minimal k-partitions are nodal

Remarks

» No minimal k-partitions are nodal for large k [Pieije]
» For k=2, £5(T(a, b)) = X2(T(a, b))
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Eigenvalues on the torus

The eigenvalues of the Laplacian on T(a, b) are

2 2
Amn(a, b) = 472 (’:’2 + Z?) with m, ne Ny

Transition
oo}
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Eigenvalues on the torus

The eigenvalues of the Laplacian on T(a, b) are
2

2
m
Am.n(a, b) = 47r2< +

) with m, n € Ny

Proposition

The only non-constant Courant-sharp eigenfunctions for the torus T(1,1)
are associated with \>(T(1,1)) = 4n?

[Léna 15]

= as soon as k > 3, a minimal k-partition of T(1,1) is not nodal

Transition

oo}
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Strip partitions

Let Dk(a, b) be the k-partition of T(a, b) with domains
b= (=1, 1, x (0, b) fori=1,....k
i — k "k 5 , =1,...,

We have

Transition
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Strip partitions
Let Dk(a, b) be the k-partition of T(a, b) with domains

i—1 i )
D,-_(ka,ka)x(o,b), fori=1,...,k

We have
/(2”2

Ax(Di(a, b)) = 7
Remark. If k is even, Ay (Dy(a, b)) = Ac/2,0(a, b)
and Di(a, b) is a nodal partition
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Strip partitions

Let Dk(a, b) be the k-partition of T(a, b) with domains

1
Di:(’ka,;(a)x(o,b), fori=1,....k
We have
k272
/\k(Dk(a. b)) = 7

Remark. If k is even, Ay (Dy(a, b)) = Ac/2,0(a, b)
and Di(a, b) is a nodal partition
Let

by = sup{b > 0; Dk(1,b) is a minimal k-partition of T(1, b)}
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If k is even, then by = 2

> £(T(1,b)) = k2n2 if b<1k

and Di(1, b) is a minimal k-partition of T(1, b)

(unique, up to a translation, if b < 1/k)

> Ci(T(L, b)) < k272 if b>1
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k odd
For b € (0,1], we denote
» S, =R x (0, b): infinite strip

> j(b) = __inf  A(Q)

= n
QCS,,|Q[<b

by =sup {b € (0,1]; j(b) > k*x?}
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k odd

For b € (0,1], we denote
» S, =R x (0, b): infinite strip

> j(b) = __inf  A(Q)

= n
QCS,, [Q|<b
by =sup {b € (0,1]; j(b) > k*x?}

Theorem
Ifk iS Odd, then bk Z bE > % [Bonnaillie-Noél-Léna 16]

Helffer—Hoffmann-Ostenhof proved b, > 1/k
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k odd

For b € (0,1], we denote
» S, =R x (0, b): infinite strip

> j(b) = __inf  A(Q)

= n
QCS,,|Q[<b

by =sup {b € (0,1]; j(b) > k*x?}

Theorem
Ifk iS Odd, then bk Z bE > % [Bonnaillie-Noél-Léna 16]
Helffer—Hoffmann-Ostenhof proved b, > 1/k
We have i
S
—< b < —
kK~ T k1

[Bonnaillie-Noé&l-Léna 16]
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(e}

k odd

For b € (0,1], we denote
» S, =R x (0, b): infinite strip

> j(b) = __inf  A(Q)

= n
QCS,,|Q[<b

by =sup {b € (0,1]; j(b) > k*x?}

Theorem
Ifk iS Odd, then bk Z bE > % [Bonnaillie-Noél-Léna 16]
Helffer—Hoffmann-Ostenhof proved b, > 1/k
We have i 1 1
- < —— Sbi < —F/—
k k2 — 1 k2 —1
8

[Bonnaillie-Noél-Léna 16, Léna 16]
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Numerical simulations

3-partitions

b=0.64 b=0.71 b=10.72

b=0.73
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Numerical simulations
3-partitions
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Upper bounds of £3(T(1, b)) for b € {j/100; j =30, ..., 100}
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Numerical simulations

5-partitions

b=10.40 b=0.41 b=0.42 b=0.43

b=0.44 b=0.45 =

b=0.98 b=10.99
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Numerical simulations

5-partitions
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Upper bounds of £5(T(1, b)) for b € {j/100; j =18, ..., 100}
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Hexagonal partitions

Construction

Theorem

For k € {3,4,5}, there exists b{! € (0,1) such that, for any b € (b1, 1],
there exists a tiling Hx(b) of T(1, b) by k hexagons, that satisfies the
equal angle meeting property

We have

L (T(1, b)) < min (K72, M (Hk(b))), Vb€ (b}, 1]
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Hexagonal partitions

Construction

Theorem

For k € {3,4,5}, there exists bl! € (0,1) such that, for any b € (b}, 1],
there exists a tiling Hy(b) of T(1,b) by k hexagons, that satisfies the
equal angle meeting property

We have
£(T(L, b)) < min (K72, A1 (Hk(b))), Vb€ (b},1]

More explicitly, we can choose
@ B = 1o~ 0.080 < by = 1

2V3

‘*%’ by = YIV3 ~ 0306, pH = Y253 v 0,233

Hexagonal partitions Transition
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Vertical strips
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Hexagonal partitions

Numerical simulations

Hexagonal partitions
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Transition

k even

1
£4(T(L, b)) =167°, NYO<b< b= 5

» the minimal 4-partitions of T(1,1/2) are nodal
» M\(T(1, b)) has multiplicity 4

A nodal 4-partition of T(1,1/2) (associated with sin(47x) + sin (47y) )
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Transition

k even

1
£4(T(L, b)) =167°, NYO<b< b= 5

» the minimal 4-partitions of T(1,1/2) are nodal
» M(T(1, b)) has multiplicity 4

A nodal 4-partition of T(1,1/2) (associated with sin(4mx) + sin (47y) )

Conjecture.

» starting point for the apparition of non-nodal 4-partitions of T(1, b)

when b=1/24¢,0<e k1
» each singular point of order four splits into two singular points of
order three

Transition
@0
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Conjecture

Transition
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k odd
. . 2
If kK > 3 is odd, we conjecture that by = ﬁ
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Conjecture
k odd

If kK > 3 is odd, we conjecture that by = ﬁ

(a) A nodal 6-partition of T(2,1/+/2) (b) The 3-partition of
T(1,1/+/2) after projection

Construction of a 3-partition of T(1,1/v/2)
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Conjecture
k odd
. ) 2
If kK > 3 is odd, we conjecture that by = e

Hexagonal partitions

(o]

Transition
oe

(c) A nodal 10-partition of T(2,1/v/6) (d) The
T(1,1/+/6) after projection

Construction of a 5-partition of T(1,1/1/6)

5-partition

of
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