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Minimal partitions
Notation

I T(a, b) : two-dimensional flat torus (R/aZ)× (R/bZ) with 0 < b ≤ a

I Pk : set of all k-partitions D = (Di )i=1,...,k of T(a, b)

Di open, connected, and mutually disjoint subsets of T(a, b)
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Minimal partitions
Notation

I T(a, b) : two-dimensional flat torus (R/aZ)× (R/bZ) with 0 < b ≤ a

I Pk : set of all k-partitions D = (Di )i=1,...,k of T(a, b)

Di open, connected, and mutually disjoint subsets of T(a, b)

I λ1(D) < λ2(D) 6 · · · eigenvalues of the Dirichlet-Laplacian on D

Λk(D) = max
i=1,...,k

λ1(Di )

Lk(T(a, b)) = inf
{

Λk(D) ; D is a k-partition
}
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Minimal partitions
Notation

I T(a, b) : two-dimensional flat torus (R/aZ)× (R/bZ) with 0 < b ≤ a

I Pk : set of all k-partitions D = (Di )i=1,...,k of T(a, b)

Di open, connected, and mutually disjoint subsets of T(a, b)

I λ1(D) < λ2(D) 6 · · · eigenvalues of the Dirichlet-Laplacian on D

Λk(D) = max
i=1,...,k

λ1(Di )

Lk(T(a, b)) = inf
{

Λk(D) ; D is a k-partition
}

I If Λk(D∗) = Lk(T(a, b)), then D∗ is called a minimal k-partition
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Minimal partitions
Some theoretical results

Theorem
For any k, there exists a minimal k-partition D

[Conti–Terracini–Verzini, Helffer–Hoffmann-Ostenhof–Terracini, Bucur–Buttazzo–Henrot, Caffarelli–Lin]
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Minimal partitions
Some theoretical results

Theorem
For any k, there exists a minimal k-partition D
Up to zero capacity sets, D is strong

I Int Di = Di and ∪1≤j≤kDi = T(a, b)

[Conti–Terracini–Verzini, Helffer–Hoffmann-Ostenhof–Terracini, Bucur–Buttazzo–Henrot, Caffarelli–Lin]
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Minimal partitions
Some theoretical results

Theorem
For any k, there exists a minimal k-partition D
Up to zero capacity sets, D is strong, regular

I Int Di = Di and ∪1≤j≤kDi = T(a, b)

I N(D) = ∪1≤j≤k∂Di is smooth curve except at finitely many points

and N(D) satisfies the Equal Angle Property

[Conti–Terracini–Verzini, Helffer–Hoffmann-Ostenhof–Terracini, Bucur–Buttazzo–Henrot, Caffarelli–Lin]
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Minimal partitions
Some theoretical results

Theorem
For any k, there exists a minimal k-partition D
Up to zero capacity sets, D is strong, regular and equispectral

I Int Di = Di and ∪1≤j≤kDi = T(a, b)

I N(D) = ∪1≤j≤k∂Di is smooth curve except at finitely many points

and N(D) satisfies the Equal Angle Property

I The Di are connected and Λk(D) = λ1(Dj), for any 1 ≤ j ≤ k

[Conti–Terracini–Verzini, Helffer–Hoffmann-Ostenhof–Terracini, Bucur–Buttazzo–Henrot, Caffarelli–Lin]
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Minimal partitions
Some theoretical results

Theorem
For any k, there exists a minimal k-partition D
Up to zero capacity sets, D is strong, regular and equispectral

I Int Di = Di and ∪1≤j≤kDi = T(a, b)

I N(D) = ∪1≤j≤k∂Di is smooth curve except at finitely many points

and N(D) satisfies the Equal Angle Property

I The Di are connected and Λk(D) = λ1(Dj), for any 1 ≤ j ≤ k

Aim:
determine Lk(T(1, b)) and minimal k-partitions according to b (a = 1)

[Conti–Terracini–Verzini, Helffer–Hoffmann-Ostenhof–Terracini, Bucur–Buttazzo–Henrot, Caffarelli–Lin]
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Numerical simulations for the 4-partitions of T(1, b)

b = 0.48 b = 0.49 b = 0.50

b = 0.51 b = 0.52 b = 0.53 b = 1

[Bourdin–Bucur–Oudet, Bonnaillie-Noël-Léna]



Introduction 4-partition Nodal partitions Vertical strips Simulations Hexagonal partitions Transition

Numerical simulations for the 4-partitions of T(1, b)
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Numerical estimates

Upper bounds of L4(T(1, b)) for b ∈ {j/100 ; j = 48 , . . . , 100}

[Bourdin–Bucur–Oudet, Bonnaillie-Noël-Léna]
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Nodal partitions
Definition

Let u be an eigenfunction of −∆ on T(a, b)

• The nodal sets of u are the components of T(a, b) \ N(u)

N(u) = {x ∈ T(a, b)| u(x) = 0}

µ(u) = number of nodal sets of u

• The partition composed by the nodal sets is called nodal partition

Regularity
N(u) is a C∞ curve except on some critical points {x}
N(u) is locally the union of an even number of half-curves ending at x with equal angle
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Nodal partitions
Definition

Let u be an eigenfunction of −∆ on T(a, b)

• The nodal sets of u are the components of T(a, b) \ N(u)

N(u) = {x ∈ T(a, b)| u(x) = 0}

µ(u) = number of nodal sets of u

• The partition composed by the nodal sets is called nodal partition

Theorem [Courant]

Any eigenfunction u associated with λk has at most k nodal domains

µ(u) ≤ k
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Nodal partitions
Definition

Let u be an eigenfunction of −∆ on T(a, b)

• The nodal sets of u are the components of T(a, b) \ N(u)

N(u) = {x ∈ T(a, b)| u(x) = 0}

µ(u) = number of nodal sets of u

• The partition composed by the nodal sets is called nodal partition

Theorem [Courant]

Any eigenfunction u associated with λk has at most k nodal domains

µ(u) ≤ k

An eigenfunction u associated with λ, is said to be Courant-sharp if
µ(u) = min{` ; λ`(T(a, b)) = λ}
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Nodal partition
Minimal partition

Theorem [Helffer–Hoffman-Ostenhof–Terracini]

λk(T(a, b)) 6 Lk(T(a, b))

⇒ the nodal partition of a Courant-sharp eigenfunction is minimal
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Nodal partition
Minimal partition

Theorem [Helffer–Hoffman-Ostenhof–Terracini]

λk(T(a, b)) 6 Lk(T(a, b))

⇒ the nodal partition of a Courant-sharp eigenfunction is minimal

Conversely, if the nodal partition of some eigenfunction is minimal,
this eigenfunction is Courant-sharp
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Nodal partition
Minimal partition

Theorem [Helffer–Hoffman-Ostenhof–Terracini]

λk(T(a, b)) 6 Lk(T(a, b))

⇒ the nodal partition of a Courant-sharp eigenfunction is minimal

Conversely, if the nodal partition of some eigenfunction is minimal,
this eigenfunction is Courant-sharp

Finally, if Lk(T(a, b)) = λk(T(a, b)), all minimal k-partitions are nodal
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Nodal partition
Minimal partition

Theorem [Helffer–Hoffman-Ostenhof–Terracini]

λk(T(a, b)) 6 Lk(T(a, b))

⇒ the nodal partition of a Courant-sharp eigenfunction is minimal

Conversely, if the nodal partition of some eigenfunction is minimal,
this eigenfunction is Courant-sharp

Finally, if Lk(T(a, b)) = λk(T(a, b)), all minimal k-partitions are nodal

Remarks
I No minimal k-partitions are nodal for large k [Pleijel]

I For k=2, L2(T(a, b)) = λ2(T(a, b))
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Eigenvalues on the torus

The eigenvalues of the Laplacian on T(a, b) are

λm,n(a, b) = 4π2

(
m2

a2
+

n2

b2

)
with m, n ∈ N0
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Eigenvalues on the torus

The eigenvalues of the Laplacian on T(a, b) are

λm,n(a, b) = 4π2

(
m2

a2
+

n2

b2

)
with m, n ∈ N0

Proposition
The only non-constant Courant-sharp eigenfunctions for the torus T(1, 1)
are associated with λ2(T(1, 1)) = 4π2

[Léna 15]

⇒ as soon as k ≥ 3 , a minimal k-partition of T(1, 1) is not nodal
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Strip partitions

Let Dk(a, b) be the k-partition of T(a, b) with domains

Di =

(
i − 1

k
a,

i

k
a

)
× (0, b) , for i = 1, . . . , k

We have

Λk(Dk(a, b)) =
k2π2

a2
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Strip partitions

Let Dk(a, b) be the k-partition of T(a, b) with domains

Di =

(
i − 1

k
a,

i

k
a

)
× (0, b) , for i = 1, . . . , k

We have

Λk(Dk(a, b)) =
k2π2

a2

Remark. If k is even, Λk(Dk(a, b)) = λk/2,0(a, b)

and Dk(a, b) is a nodal partition
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Strip partitions

Let Dk(a, b) be the k-partition of T(a, b) with domains

Di =

(
i − 1

k
a,

i

k
a

)
× (0, b) , for i = 1, . . . , k

We have

Λk(Dk(a, b)) =
k2π2

a2

Remark. If k is even, Λk(Dk(a, b)) = λk/2,0(a, b)

and Dk(a, b) is a nodal partition

Let

bk = sup{b > 0 ; Dk(1, b) is a minimal k-partition of T(1, b)}
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k even

Theorem
If k is even, then bk = 2

k

I Lk(T(1, b)) = k2π2 if b ≤ 1
k

and Dk(1, b) is a minimal k-partition of T(1, b)

(unique, up to a translation, if b < 1/k)

I Lk(T(1, b)) < k2π2 if b > 1
k
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k odd

For b ∈ (0, 1] , we denote

I Sb = R× (0, b): infinite strip

I j(b) = inf
Ω⊂Sb,|Ω|6b

λ1(Ω)

bS
k = sup

{
b ∈ (0, 1] ; j(b) > k2π2

}
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k odd

For b ∈ (0, 1] , we denote

I Sb = R× (0, b): infinite strip

I j(b) = inf
Ω⊂Sb,|Ω|6b

λ1(Ω)

bS
k = sup

{
b ∈ (0, 1] ; j(b) > k2π2

}
Theorem
If k is odd, then bk ≥ bS

k >
1
k [Bonnaillie-Noël–Léna 16]

Helffer–Hoffmann-Ostenhof proved bk ≥ 1/k
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k odd

For b ∈ (0, 1] , we denote

I Sb = R× (0, b): infinite strip

I j(b) = inf
Ω⊂Sb,|Ω|6b

λ1(Ω)

bS
k = sup

{
b ∈ (0, 1] ; j(b) > k2π2

}
Theorem
If k is odd, then bk ≥ bS

k >
1
k [Bonnaillie-Noël–Léna 16]

Helffer–Hoffmann-Ostenhof proved bk ≥ 1/k

We have
1

k
< bS

k <
1√

k2 − 1
[Bonnaillie-Noël-Léna 16]
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k odd

For b ∈ (0, 1] , we denote

I Sb = R× (0, b): infinite strip

I j(b) = inf
Ω⊂Sb,|Ω|6b

λ1(Ω)

bS
k = sup

{
b ∈ (0, 1] ; j(b) > k2π2

}
Theorem
If k is odd, then bk ≥ bS

k >
1
k [Bonnaillie-Noël–Léna 16]

Helffer–Hoffmann-Ostenhof proved bk ≥ 1/k

We have
1

k
<

1√
k2 − 1

8

≤bS
k <

1√
k2 − 1

[Bonnaillie-Noël-Léna 16, Léna 16]
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Numerical simulations
3-partitions

b = 0.64 b = 0.7 b = 0.71 b = 0.72

b = 0.73 b = 0.8 b = 0.9 b = 1
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Numerical simulations
3-partitions
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Numerical estimates

Upper bounds of L3(T(1, b)) for b ∈ {j/100 ; j = 30 , . . . , 100}
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Numerical simulations
5-partitions

b = 0.40 b = 0.41 b = 0.42 b = 0.43

b = 0.44 b = 0.45 b = 0.5 b = 0.7

b = 0.9 b = 0.98 b = 0.99 b = 1
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Numerical simulations
5-partitions
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Numerical estimates

Upper bounds of L5(T(1, b)) for b ∈ {j/100 ; j = 18 , . . . , 100}
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Hexagonal partitions
Construction

Theorem
For k ∈ {3, 4, 5}, there exists bH

k ∈ (0, 1) such that, for any b ∈ (bH
k , 1] ,

there exists a tiling Hk(b) of T(1, b) by k hexagons, that satisfies the
equal angle meeting property

We have

Lk(T(1, b)) 6 min
(
k2π2, λ1(Hk(b))

)
, ∀b ∈ (bH

k , 1]

u1

u2
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Hexagonal partitions
Construction

Theorem
For k ∈ {3, 4, 5}, there exists bH

k ∈ (0, 1) such that, for any b ∈ (bH
k , 1] ,

there exists a tiling Hk(b) of T(1, b) by k hexagons, that satisfies the
equal angle meeting property

We have

Lk(T(1, b)) 6 min
(
k2π2, λ1(Hk(b))

)
, ∀b ∈ (bH

k , 1]

u1

u2

More explicitly, we can choose

bH
4 = 1

2
√

3
' 0.289 < b4 = 1

2

bH
3 =

√
11−
√

3
4 ' 0.396, bH

5 =
√

291−5
√

3
36 ' 0.233
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Hexagonal partitions
Numerical simulations
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Numerical estimates
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Numerical estimates
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Numerical estimates

k = 3 k = 4 k = 5
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Transition
k even

L4(T(1, b)) = 16π2, ∀0 < b ≤ b4 =
1

2

I the minimal 4-partitions of T(1, 1/2) are nodal
I λ4(T(1, b)) has multiplicity 4

A nodal 4-partition of T(1, 1/2) (associated with sin(4πx) + sin (4πy) )
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Transition
k even

L4(T(1, b)) = 16π2, ∀0 < b ≤ b4 =
1

2
I the minimal 4-partitions of T(1, 1/2) are nodal
I λ4(T(1, b)) has multiplicity 4

A nodal 4-partition of T(1, 1/2) (associated with sin(4πx) + sin (4πy) )

Conjecture.
I starting point for the apparition of non-nodal 4-partitions of T(1, b)
when b = 1/2 + ε , 0 < ε� 1
I each singular point of order four splits into two singular points of
order three
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Conjecture
k odd

If k ≥ 3 is odd, we conjecture that bk =
2√

k2 − 1
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Conjecture
k odd

If k ≥ 3 is odd, we conjecture that bk =
2√

k2 − 1

(a) A nodal 6-partition of T(2, 1/
√

2) (b) The 3-partition of
T(1, 1/

√
2) after projection

Construction of a 3-partition of T(1, 1/
√

2)
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Conjecture
k odd

If k ≥ 3 is odd, we conjecture that bk =
2√

k2 − 1

(c) A nodal 10-partition of T(2, 1/
√

6) (d) The 5-partition of
T(1, 1/

√
6) after projection

Construction of a 5-partition of T(1, 1/
√

6)
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