Regularity of the optimal sets for spectral functionals - Part I

Susanna Terracini

Dipartimento di Matematica "Giuseppe Peano" Università di Torino ERC Advanced Grant n. 339958 - COMPAT a joint work with Dario Mazzoleni and Bozhidar Velichkov

Shape Optimization, Isoperimetric and Functional Inequalities Centre International de Rencontres Mathématiques,

C.

Luminy, Marseille, November 21-15, 2016

- Optimal shape problems involving Dirichlet eigenvalues
- One phase free boundary variational problems
- 3 A vectorial Alt-Caffarelli problem
- 4 Non degeneracy
- 6 Monotonicity formulæ
- 6 Blow-up sequences
- 🕖 Regularity of the boundary
- 8 Regular and singular parts of the free boundary
- Intering the second second

< ∃ > < ∃ >

Optimal shape problems involving Dirichlet eigenvalues

- One phase free boundary variational problems
- 3 A vectorial Alt-Caffarelli problem
- 4 Non degeneracy
- 5 Monotonicity formulæ
- 6 Blow-up sequences
- Regularity of the boundary
- 8 Regular and singular parts of the free boundary
- Intering the second second
 - Generalizations

伺 ト イヨト イヨト

The Problem

We consider problem

$$\min\Big\{\lambda_1(\Omega)+\dots+\lambda_k(\Omega)\ :\ \Omega\subset \mathbb{R}^d, ext{ open }, \ |\Omega|=1\Big\},$$
 (1)

which, as a simple scaling argument can show that this is equivalent to

$$\min\Big\{\lambda_1(\Omega)+\dots+\lambda_k(\Omega)+\Lambda|\Omega| \ : \ \Omega\subset \mathbb{R}^d \text{ open}\Big\}, \tag{2}$$

where $\Lambda > 0$ is a Lagrange multiplier.

Theorem (G. Buttazzo and G. Dal Maso, 1993)

There exists an optimal set Ω^* for problem (2) in the class of quasi-open sets.

Optimal Shape Problems

The solvability of

$$\min\Big\{arphi(\lambda_1(\Omega),\ldots,\lambda_k(\Omega))\ :\ \Omega\in\mathcal{A}\ ,\quad \ |\Omega|=1\Big\},$$

for general φ monotone in all variable, strongly depends on the choice of the class $\mathcal A.$

In general, for reasonable classes, such as open sets, such a problem does not admit a solution \implies a relaxation is needed. [Buttazzo and Dal Maso (1993)], [Buttazzo and Timofte (2002)]

Reference: The book *Variational methods in shape optimization problems* [Bucur and Buttazzo (2005)]

Energy

For a vector $W = (w_1, \ldots, w_k) \in H^1_0(\mathbb{R}^d, \mathbb{R}^k)$, we consider the following energy functional

$$\mathcal{F}_{0}(W) = \int_{\mathbb{R}^{d}} |\nabla W|^{2} dx + \Lambda | \overbrace{\{|W| > 0\}}^{=\Omega_{W}} |$$

$$= \sum_{i=1}^{k} \int_{\mathbb{R}^{d}} |\nabla w_{i}|^{2} dx + \Lambda | \{w_{1}^{2} + \dots + w_{k}^{2} > 0\} |.$$
(3)

Then the vector of normalized eigenfunctions $U = (u_1, \ldots, u_k)$ on the optimal set for (2) is a solution to the problem

$$\min\left\{\mathcal{F}_0(W) : W = (w_1, \ldots, w_k) \in H^1_0(\mathbb{R}^d, \mathbb{R}^k), \int_{\mathbb{R}^d} w_i w_j \, dx = \delta_{ij}\right\}.$$

(*) = (*) = (*)

Regularity

$$\min\Big\{\lambda_1(\Omega)+\dots+\lambda_k(\Omega)\ :\ \Omega\subset\mathbb{R}^d \text{ quasi-open},\ |\Omega|=1\Big\}.$$

Goals:

- Regularity of the optimal set.
- Regularity of associated eigenfunctions.

Theorem

- (i) Bucur (2012); Mazzoleni-Pratelli (2013): every solution Ω^* is bounded.
- (ii) Bucur (2012): Every solution Ω^* has finite perimeter.
- (iii) Bucur-Mazzoleni-Pratelli-Velichkov (2015): Let Ω^* be a solution. Then the first k normalized eigenfunctions u_1, \ldots, u_k on Ω^* , extended by zero over $\mathbb{R}^d \setminus \Omega^*$, are Lipschitz continuous on \mathbb{R}^d and $\|\nabla u_i\|_{L^{\infty}} \leq C_{d,k}$, for every $i = 1, \ldots, k$, where $C_{d,k}$ is a constant depending only on k and d. In particular, every solution is an open set.

d*-regularity

Definition (d^* -regularity)

Let d^* be any integer. A set $\Omega \subset \mathbb{R}^d$ d^* -regular if $\partial \Omega$ is the disjoint union of a regular part $Reg(\partial \Omega)$ and a (possibly empty), singular part $Sing(\partial \Omega)$ such that:

- $Reg(\partial \Omega)$ is an open subset of $\partial \Omega$ and locally a C^{∞} hypersurface of codimension one ;
- $Sing(\partial \Omega)$ is a closed subset of $\partial \Omega$ and has the following properties:
 - If $d < d^*$, then $Sing(\partial \Omega)$ is empty,
 - If d = d*, then the singular set Sing(∂Ω) contains at most a finite number of isolated points,
 - If $d > d^*$, then the Hausdorff dimension of $Sing(\partial \Omega)$ is at most $d d^*$.

伺 ト イヨト イヨト

Main result

Our main result is the following.

Theorem (D. Mazzoleni, S. Terracini and B. Velichkov, 2016)

Let the open set $\Omega_k^* \subset \mathbb{R}^d$ be an optimal set for problem (4). Then Ω_k^* is connected and d^* -regular. Moreover the vector $U = (u_1, \ldots, u_k)$ of the normalized eigenfunctions on Ω_k^* satisfies the optimality condition

$$ig|
abla|ig|=\sqrt{\Lambda}$$
 on ${\sf Reg}(\Omega_k^*),$

where the constant Λ is given by $\Lambda = \frac{2}{d} \sum_{i=1}^{k} \lambda_i(\Omega_k^*)$.

The natural number $d^* \ge 5$ comes from the classical theory of one phase free boundary problems and it is the smallest dimension admitting a nontrivial minimal cone.

Optimal shape problems involving Dirichlet eigenvalues

- One phase free boundary variational problems
- 3 A vectorial Alt-Caffarelli problem
- 4 Non degeneracy
- 5 Monotonicity formulæ
- 6 Blow-up sequences
- Regularity of the boundary
- 8 Regular and singular parts of the free boundary
- Intering the second second
 - Generalizations

伺 ト イヨト イヨト

Alt-Caffarelli problem

Define, for a real valued function u,

$$\mathcal{E}_{\Lambda}(u) = \int |
abla u|^2 dx + \Lambda |\{u > 0\}|$$

Let D be a given open and regular set, together with $\phi \in C^0(\partial D) \cap H^{1/2}(\partial D)$, $\phi \ge 0$. Consider the minimization problem

The Alt-Caffarelli one phase minimization problem

min
$$\Big\{\mathcal{E}_{\Lambda}(u) : u \in H^1(D), u = \phi \text{ on } \partial D\Big\}.$$

Regularity of solutions to the one-phase problem

Theorem (Alt-Caffarelli, 1981, Weiss, 1999)

Let u^* be a minimizer of the Alt-Caffarelli one phase minimization problem and let $\Omega^* = \{x \in D : u^*(x) > 0\}$. There exists $d^* \ge 4$ such that Ω^* is (relatively) d^* -regular. Moreover the function u^* satisfy the optimality condition

Definition (of d^*)

The natural number d^* it is the smallest dimension admitting a nontrivial minimal 1-homogeneous non negative function which is locally minimal for \mathcal{E} with respect to variations having compact support (non containing the origin).

The critical dimension

The 1-homogeneous non negative function satisfies

$$\begin{cases} -\Delta u = 0 & \text{in } \Omega = \{x \in \mathbb{R}^d : u(x) > 0\} \\ |\nabla u| = \text{const} & \text{on } \partial \Omega. \end{cases}$$

As soon as $d \ge 3$ there do exist nontrivial solutions. But are these solutions minimal?

Theorem

- (i) Alt-Caffarelli (1981): in two dimensions there are no minimal cones which are no hyperplanes;
- (ii) Weiss (1999): $d^* \ge 3$;
- (iii) Caffarelli-Jerison-Kenig (2004): $d^* \ge 4$;
- (iv) De Silva-Jerison (2009): $d^* \leq 7$;
- (v) Jerison-Savin (2015): $d^* \ge 5$. Local convexity with respect to domain variations.

- Optimal shape problems involving Dirichlet eigenvalues
- One phase free boundary variational problems
- 3 A vectorial Alt-Caffarelli problem
- 4 Non degeneracy
- 6 Monotonicity formulæ
- 6 Blow-up sequences
- Regularity of the boundary
- Regular and singular parts of the free boundary
- Intering the second second
 - Generalizations

伺き くまき くまき

Weiss Theorem for vector valued functions

Our main theorem follows from the following statement, which better highlights the analogy with the one phase Alt-Caffarelli problem solved by Weiss.

Theorem (D. Mazzoleni, S. Terracini and B. Velichkov)

Let $D \subset \mathbb{R}^d$ be an open smooth set, $k \in \mathbb{N}$ and consider the problem

$$\min\Big\{\sum_{i=1}^{k}\int_{\mathbb{R}^{d}}|\nabla u_{i}|^{2}\,dx+\Lambda|\underbrace{\bigcup_{i=1}^{k}\left\{u_{i}\neq0\right\}}_{u_{i}\neq0}|,\ u_{i}\in H^{1}(D),$$

$$u_{i}=\phi_{i}\ on\ \partial D,\ \phi_{i}\in C^{0}(\partial D),\ \phi_{1}>0\Big\}.$$
(5)

Then every solution $U = (u_1, ..., u_k)$ has all the components which are locally Lipschitz continuous in D and moreover the free-boundary $\Omega = \partial \bigcup_{i=1}^k \{u_i \neq 0\}$ is (relatively) d^* -regular.

Some papers

- A minimization problem with free boundary related to a cooperative system,
 Luis A. Caffarelli, Henrik Shahgholian, Karen Yeressian posted on 27 Aug 2016 arXiv:1608.07689
- Regularity of the optimal sets for some spectral functionals, Dario Mazzoleni, Susanna Terracini, Bozhidar Velichkov posted on 5 Sep 2016 arXiv:1609.01231
- Regularity for Shape Optimizers: The Nondegenerate Case, Dennis Kriventsov, Fanghua Lin posted on 9 Sep 2016 arXiv:1609.02624

Quasi-minimality of the eigenfunctions

Proposition (Minimality of U)

Indeed, suppose that the set $\Omega \subset \mathbb{R}^d$ is a solution to the shape optimization problem (2). Then the vector $U = (u_1, \ldots, u_k) \in H_0^1(\Omega; \mathbb{R}^k)$ of normalized eigenfunctions on Ω satisfies the following quasi-minimality condition. There are constants C > 0 and $\varepsilon > 0$ such that:

$$\begin{split} \int_{\mathbb{R}^d} |\nabla U|^2 \, dx + \Lambda \big| \{ |U| > 0 \} \big| &\leq \\ &\leq \left(1 + C \|U - \widetilde{U}\|_{L^1} \right) \int_{\mathbb{R}^d} |\nabla \widetilde{U}|^2 \, dx + \Lambda \big| \{ |\widetilde{U}| > 0 \} \big|, \end{split}$$
for every $\widetilde{U} \in H^1(\mathbb{R}^d; \mathbb{R}^k)$ such that
 $\|\widetilde{U}\|_{L^\infty} \leq \varepsilon^{-1}$ and $\|U - \widetilde{U}\|_{L^1} \leq \varepsilon.$
(6)

- Optimal shape problems involving Dirichlet eigenvalues
- One phase free boundary variational problems
- 3 A vectorial Alt-Caffarelli problem
- 4 Non degeneracy
- 6 Monotonicity formulæ
- 6 Blow-up sequences
- Regularity of the boundary
- 8 Regular and singular parts of the free boundary
- Intering the second second
 - Generalizations

伺 ト イヨト イヨト

Optimal shape problems involving Dirichlet eigenvalues One phase free bound

Boundary behaviour of the eigenfunctions

Let us consider the normalized eigenfunctions u_1, \ldots, u_k on an optimal set Ω for problem (2).

Proposition (Boundary behavior of the eigenfunctions)

Let Ω be optimal for (2) and let $U = (u_1, \ldots, u_k) \in H_0^1(\Omega; \mathbb{R}^k)$ be the vector of the first k normalized eigenfunctions on Ω .

• $|U| = (u_1^2 + \dots + u_k^2)^{1/2}$ is non-degenerate, i.e. there are constants $c_0 > 0$ and $r_0 > 0$ such that for every $x_0 \in \mathbb{R}^d$ and $r \in (0, r_0]$ the following implication holds

$$\Big(\int_{B_r(x_0)} |U| \, dx < c_0 r \Big) \Rightarrow \Big(U \equiv 0 \quad in \quad B_{r/2}(x_0) \Big).$$

② u_1 is non-degenerate, i.e. there are constants $c_0 > 0$ and $r_0 > 0$ such that for every $x_0 ∈ ℝ^d$ and $r ∈ (0, r_0]$ the following implication holds

$$\Big(\int_{B_r(x_0)} u_1 \, dx < c_0 r \Big) \Rightarrow \Big(u_1 \equiv 0 \quad in \quad B_{r/2}(x_0) \Big).$$

Density Estimates

Corollary (Density estimate)

Let Ω be optimal for (2). Then $\Omega = \{|U| > 0\}$ and there are constants ε_0 , r_0 and δ such that:

We have the density estimate

$$|\varepsilon_0|B_r| \leq |\Omega \cap B_r(x_0)| \leq (1-\varepsilon_0)|B_r|,$$

for every $x_0 \in \partial \Omega$ and $r \leq r_0$.

② For every $x_0 ∈ ∂Ω$ and $r ≤ r_0$ there is a point $x_1 ∈ ∂B_{r/2}(x_0)$ such that $B_{\delta r}(x_1) ⊂ Ω$.

- Optimal shape problems involving Dirichlet eigenvalues
- One phase free boundary variational problems
- 3 A vectorial Alt-Caffarelli problem
- 4 Non degeneracy
- 5 Monotonicity formulæ
- 6 Blow-up sequences
- Regularity of the boundary
- 8 Regular and singular parts of the free boundary
- Intering the second second
 - Generalizations

伺き くまき くまき

Weiss inequality

The following Theorem and the idea of the radial extension, which is a key point in our proof of a monotonicity formula for the functional ϕ was brought to us by Dorin Bucur.

Theorem (Weiss inequality)

Suppose that the function U is a local minimizer of \mathcal{F}_0 in B_{r_0} . Then, for every $r \in (0, r_0)$, we have the estimate

$$\begin{split} \int_{B_r} (|\nabla U|^2 - \lambda \cdot U^2) \, dx + \left| B_r \cap \{ |U|^2 > 0 \} \right| \leq \\ \leq \frac{r}{d} \int_{\partial B_r} \left(|\nabla_\tau U|^2 + \frac{|U|^2}{r^2} \right) d\mathcal{H}^{d-1} - \frac{r}{d+2} \int_{\partial B_r} \lambda \cdot U^2 \, d\mathcal{H}^{d-1} \\ &+ \frac{r}{d} \mathcal{H}^{d-1} \Big(\partial B_r \cap \{ |U|^2 > 0 \} \Big). \end{split}$$

Weiss type monotonicity formula

Theorem (Weiss type monotonicity formula)

Suppose that the vector U is a local minimizer of \mathcal{F}_0 in $B_{r_0}.$ Then the function

$$\begin{split} \phi(r) &:= \frac{1}{r^d} \int_{B_r} (|\nabla U|^2 - \lambda \cdot U^2) \, dx + \frac{1}{r^d} \|\{|U|^2 > 0\} \cap B_r | + \\ &- \frac{1}{r^{d+1}} \int_{\partial B_r} |U|^2 \, d\mathcal{H}^{d-1}, \end{split}$$

is non-decreasing on the interval $(0, r_0)$ up to an integrable term. More precisely, there exists a constant $C_{\phi} > 0$ such that

$$\psi(r):=e^{C_{\phi}r^2}\phi(r),$$

is non-decreasing in $(0, r_0)$. Moreover, if $\phi'(r) = 0$ for some r > 0, then U is 1-homogeneous in B_r .

- Optimal shape problems involving Dirichlet eigenvalues
- One phase free boundary variational problems
- 3 A vectorial Alt-Caffarelli problem
- 4 Non degeneracy
- 5 Monotonicity formulæ
- 6 Blow-up sequences
- Regularity of the boundary
- 8 Regular and singular parts of the free boundary
- Intering the second second
 - Generalizations

伺き くまき くまき

Blow-up sequences

Let U be a quasi-minimizer of \mathcal{F}_C in the open set $D \subset \mathbb{R}^d$, let $r_n \to 0$ be a sequence of positive real numbers and $x_n \in \partial\{|U| > 0\}$ a sequence converging to some $x_0 \in \partial\{|U| > 0\}$.

Proposition

Then, there is a function $U_0 \in H^1_{loc}(\mathbb{R}^d; \mathbb{R}^k) \cap W^{1,\infty}_{loc}(\mathbb{R}^d; \mathbb{R}^k)$ and subsequences of $(r_n)_n$ and $(x_n)_n$ such that, for every ball $B_R \subset \mathbb{R}^d$, the following properties hold.

- (a) The sequence $U_{r_n}(x) = \frac{1}{r_n}U(x_n + r_nx)$ converges to U_0 uniformly in B_R and strongly in $H^1(B_R; \mathbb{R}^k)$.
- (b) The characteristic functions $\mathbf{1}_{\Omega_n}$ converge in $L^1(B_R)$ to $\mathbf{1}_{\Omega_0}$,
- (c) The sequences of closed sets $\overline{\Omega}_n$ and Ω_n^c converge Hausdorff in B_R respectively to $\overline{\Omega}_0$ and Ω_0^c , where we have set

$$\Omega_n := \{ |U_{r_n}| > 0 \} \quad \text{and} \quad \Omega_0 := \{ |U_0| > 0 \}.$$

< 同 > < 三 > < 三 >

Blow-up limits

Moreover, the limit function U_0 is non-degenerate in zero, i.e. there is a dimensional constant $c_d > 0$ such that

$$\|U_0\|_{L^{\infty}(B_r)} \ge c_d r$$
 for every $r > 0$.

Definition (Tangent functions)

Let U be a local minimizer in the open set $D \subset \mathbb{R}^d$ and let $x_0 \in \Delta \cap \partial\{|U| > 0\}$. We denote by $\mathcal{BU}_U(x_0)$ the space of all blow-up limits of U, i.e. the set of all functions $U \in H^1_{loc}(\mathbb{R}^d; \mathbb{R}^k) \cap W^{1,\infty}_{loc}(\mathbb{R}^d; \mathbb{R}^k)$ such that $U = \lim_{n \to \infty} U_{r_n}$, where $(r_n)_n$ is an infinitesimal sequence.

Properties of the blow-ups

Proposition

Suppose that $U = (u_1, \ldots, u_k) : \mathbb{R}^d \to \mathbb{R}^k$ is a solution of (4) and $x_0 \in \partial \Omega_U$. Suppose that $U_0 \in \mathcal{BU}_U(x_0)$. Then U_0 is a 1-homogeneous function which is a local minimizer of the functional \mathcal{F}_0 . In particular, all the components of U_0 are proportional to $|U_0|$.

Definition (Critical dimension)

The critical dimension d^* is the minimal dimension carrying a positive 1-homogeneous function which is a local minimizer of the functional \mathcal{F}_0 and is not a hyperplane.

- Optimal shape problems involving Dirichlet eigenvalues
- One phase free boundary variational problems
- 3 A vectorial Alt-Caffarelli problem
- 4 Non degeneracy
- 5 Monotonicity formulæ
- 6 Blow-up sequences
- Regularity of the boundary
- 8 Regular and singular parts of the free boundary
- Intering the second second
 - Generalizations

伺 ト イヨト イヨト

The optimality condition on the free boundary

We first prove an optimality condition on the free boundary for the local minimizers of \mathcal{F}_0 in the case when the free boundary $\partial \Omega_U$ is smooth.

Lemma

Suppose that U is a local minimizer for \mathcal{F}_0 . Suppose that the set $\Omega_U = \{|U| > 0\}$ has C^1 regular boundary and that $U \in C^2(\overline{\Omega}_U; \mathbb{R}^k)$. Then $|\nabla U| = \sqrt{\Lambda}$ on $\partial \Omega_U$.

Lemma

Let U be a solution of (4). Then U is a viscosity solution to the problem

$$\begin{aligned} -\Delta U &= \lambda U \quad \text{in} \quad \Omega_U, \\ U &= 0 \quad \text{on} \quad \partial \Omega_U, \\ |\nabla |U|| &= \sqrt{\Lambda} \quad \text{on} \quad \partial \Omega_U \end{aligned}$$

Viscosity solutions

Definition (Vector viscosity solution)

Let $\Omega \subset \mathbb{R}^d$ be an open set and $\lambda = (\lambda_1, \dots, \lambda_k) \in \mathbb{R}^k$ a vector with positive coordinates. We say that the continuous function $U = (u_1, \dots, u_k) : \overline{\Omega} \to \mathbb{R}^k$ is a viscosity solution of the problem

$$-\Delta U = \lambda \cdot U$$
 in Ω , $U = 0$ $|\nabla |U|| = \sqrt{\Lambda}$ on $\partial \Omega$

if for every $i = 1, \ldots, k$ the component u_i is a solution of the PDE

$$-\Delta u_i = \lambda_i u_i$$
 in Ω , $u_i = 0$ on $\partial \Omega$,

and

$$|
abla |U|| = \sqrt{\Lambda}$$
 on $\partial \Omega$

holds in viscosity sense,

Viscosity solutions

Definition (Continued)

i.e.

- for every function φ ∈ C[∞]_c(ℝ^d) such that "φ touches |U| from below in x₀" (which means that |U| φ has a local minimum equal to zero in x₀), we have |∇φ|(x₀) ≤ √Λ.
- for every function φ ∈ C[∞]_c(ℝ^d) such that "φ₊ touches |U| from above in x₀" (which means that |U| − φ₊ has a local maximum equal to zero in x₀), we have |∇φ|(x₀) ≥ √Λ.

- Optimal shape problems involving Dirichlet eigenvalues
- One phase free boundary variational problems
- 3 A vectorial Alt-Caffarelli problem
- 4 Non degeneracy
- 5 Monotonicity formulæ
- 6 Blow-up sequences
- Regularity of the boundary
- 8 Regular and singular parts of the free boundary
- Intering the second second second and the second second
 - Generalizations

伺 ト イヨト イヨト

Classification of boundary points

The regular part of the free boundary will be simply given by the points of density 1/2 of the set Ω_U , i.e. we define

$$\mathsf{Reg}(\partial\Omega_U):=\Omega_U^{(1/2)},$$

where for every $\gamma \in [0,1]$ and every measurable set $E \subset \mathbb{R}^d$ we recall the classical notation

$$E^{(\gamma)} := \Big\{ x_0 \in \mathbb{R}^d : \lim_{r \to 0} \frac{|E \cap B_r(x_0)|}{|B_r|} = \gamma \Big\},$$

while the singular part is given by

$$Sing(\partial \Omega_U) = \partial \Omega_U \setminus Reg(\partial \Omega_U).$$

The Gap

We will prove that $Reg(\partial \Omega_U)$ is relatively open in $\partial \Omega_U$, while the estimate on the Hausdorff dimension of the singular part will follow simply from the Federer's Reduction Theorem.

Lemma (The Gap)

There exists a constant $\delta > 0$ such that for every 1-homogeneous local minimizer U of \mathcal{F}_0 we have that

$$0 \notin \Omega_U^{(\gamma)}, \quad \textit{for} \quad \gamma \in (1/2, 1/2 + \delta).$$

Lemma

Let U be a solution of (4). Then, (i) for every $x_0 \in \partial \Omega_U$ we have

$$\liminf_{r\to 0} \frac{|B_r(x_0)\cap \Omega_U|}{|B_r|} \geq \frac{1}{2} ;$$

(ii) for every $\gamma \geq 1/2$ we have

$$\Omega_U^{(\gamma)} = \Big\{ x_0 \in \partial \Omega_U : \lim_{r \to 0} \psi(x_0, r) = \omega_d \gamma \Big\},$$

where $\omega_d = |B_1|$ and $\psi(r)$ is the monotone function defined in (13) ; (iii) $\partial \Omega_U = \bigcup_{\gamma \in \{1/2\} \cup [1/2+\delta,1)} \Omega_U^{(\gamma)}$.

3

ヨッ イヨッ イヨッ

- Optimal shape problems involving Dirichlet eigenvalues
- One phase free boundary variational problems
- 3 A vectorial Alt-Caffarelli problem
- 4 Non degeneracy
- 5 Monotonicity formulæ
- 6 Blow-up sequences
- Regularity of the boundary
- 8 Regular and singular parts of the free boundary
- Intering the second second
 - Generalizations

伺 ト イヨト イヨト

Reifenberg flatness

Definition (Reifenberg flatness)

Let $\Omega \subset \mathbb{R}^d$ be an open set and let $0 < \delta < 1/2$, R > 0. We say that Ω is a (δ, R) -Reifenberg flat domain if:

 For every x ∈ ∂Ω and every 0 < r ≤ R there is a hyperplane H = H_{x,r} containing x such that

 $\operatorname{dist}_{\mathcal{H}}(B_r(x) \cap H, B_r(x) \cap \partial \Omega) < r\delta.$

Θ For every x ∈ ∂Ω, one of the connected components of the open set B_R(x) ∩ {x : dist(x, H_{x,R}) > 2δR} is contained in Ω, while the other one is contained in ℝ^d \ Ω.

Reifenberg flat domains have a special property: they are NTA (non tangentially accessible): harmonic functions vanshing on the same portion of the boundary are nicely comparable.

< 同 > < 三 > < 三 >

Optimal shape problems involving Dirichlet eigenvalues One phase free bound

Reifenberg flatness

Boundary Harnack Principle in NTA domains

Theorem (C. Kenig and T. Toro, 1999)

There exists a $\delta_0 > 0$ such that if $\Omega \subset \mathbb{R}^d$ is a (δ, R) -Reifenberg flat domain for $\delta < \delta_0$, then is NTA.

Theorem (D. Jerison and C. Keing, 1982)

Let Ω be an NTA domain, $x_0 = 0 \in \partial \Omega$. Then there exist R_0, C , depending only on the NTA constants, such that for every $r \in (0, R_0/2)$ and every u, v positive harmonic functions in $B_{2r} \cap \Omega$ vanishing on $\partial \Omega \cap B_{2r}$, Moreover, there exists $\alpha > 0$, depending only on the NTA constants, such that

$$\frac{v(x)}{u(x)} - \frac{v(y)}{u(y)} \bigg| \le C \frac{v(z)}{u(z)} \frac{|x - y|^{\alpha}}{r^{\alpha}}, \qquad \forall x, y \in \overline{\Omega \cap B_r}, \ z \in \Omega \cap B_r.$$

In particular, for every $x_0 \in \partial \Omega \cap B_r$, the limit of v(x)/u(x) as $x \to x_0$ exists.

Consequences

The Hölder regularity of the ratios u_i/u_1 and the existence of the limit till the boundary give the same Hölder regularity also to the normal derivatives of the u_i on the boundary of Ω_U , defined as the limit of the difference quotient.

Corollary

Let U be a solution of (4) and $x_0 = 0 \in \Omega_U^{(1/2)}$. Then there exist $R_0, \alpha > 0$ such that for all $r \in (0, R_0/2)$ there are $\gamma_i \in C^{0,\alpha}(\Omega_U^{(1/2)} \cap B_r)$ for i = 1, ..., k such that

$$rac{\partial u_i}{\partial
u} = \gamma_i rac{\partial u_1}{\partial
u}, \quad \textit{on } \Omega_U^{(1/2)} \cap B_r,$$

for all i = 2, ..., k and where ν is the usual external unit normal.

It is now sufficient to join this with the optimality condition for $\left| U \right|$ already proved .

End of the proof for the regular part of the boundary

So far we have proved:

Lemma

Let U be a solution of (4). Then u_1 is a viscosity solution to the problem

 $-\Delta u_1 = \lambda_1 u_1 \quad \text{in } \Omega_U, \quad u_1 = 0 \quad \text{on } \partial \Omega_U, \quad |\nabla u_1| = g \quad \text{on } \Omega_U^{(1/2)},$

where $g \in C^{0,\alpha}(\Omega^{(1/2)})$, for some positive α .

Now we can apply the a general Theorem by D. De Silva:

flatness implies $\mathcal{C}^{1, \alpha}$

and we obtain local regularity of the regular part of the free boundary.

Flatness implies $\mathcal{C}^{1,\alpha}$

Let u be a viscosity solution of

$$\begin{cases} -\Delta u = f & \text{in } \Omega := \{u(x) > 0\} \\ |\nabla u| = g(x) & \text{in } \partial \Omega. \end{cases}$$

Theorem (De Silva 2011)

There exists a universal constant $\bar{\varepsilon} > 0$ such that, if the graph of u is $\bar{\varepsilon}$ -flat in B_1 , i.e.

$$(x_n - \overline{\varepsilon})^+ \leq u(x) \leq (x_n + \overline{\varepsilon})^+$$

and $||f||_{L^{\infty}} \leq \overline{\varepsilon}$, $||g||_{\mathcal{C}^{0,\alpha}} \leq \overline{\varepsilon}$. Then, $\partial \Omega$ is $\mathcal{C}^{1,\alpha}$ in $B_{1/2}$.

Applying De Silva-Savin (2015), the theorem can be boot-strapped to increase further the regularity up to \mathcal{C}^∞

- Optimal shape problems involving Dirichlet eigenvalues
- One phase free boundary variational problems
- 3 A vectorial Alt-Caffarelli problem
- 4 Non degeneracy
- 5 Monotonicity formulæ
- 6 Blow-up sequences
- Regularity of the boundary
- Regular and singular parts of the free boundary
- Intering the second second

伺き くまき くまき

Functions of eigenvalues and extremality conditions

We wish to extend our result to the general case:

$$\min\Big\{arphi(\lambda_1(\Omega),\ldots,\lambda_k(\Omega))\ :\ \Omega\subset \mathbb{R}^d, ext{ open }, \ |\Omega|=1\Big\},$$

where φ is increasing in each variable, as well as to the case of functions which depend only on one or few eigenvalues:

$$\min\Big\{\lambda_k(\Omega) \; : \; \Omega \subset \mathbb{R}^d, \; ext{open} \; , \; |\Omega| = 1\Big\}.$$

A main problem, in this case id to derive proper extremality conditions (even formally), in particular in the case of multiple eigenvalues. The following picture is contained in *Numerical Optimization of Low Eigenvalues of the Dirichlet and Neumann Laplacians* by Pedro R.S. Antunes and Pedro Freitas.

E ► < E ►</p>