Optimal shape of a domain which minimizes the buckling load of a clamped plate

Kathrin Stollenwerk RWTH Aachen University

November 22, 2016

Kathrin Stollenwerk RWTH Aachen University

2 Existence of an optimal domain

3 Uniqueness of the optimal domain

Kathrin Stollenwerk RWTH Aachen University

• $\Omega \subset \mathbb{R}^n$ open, buckling load of Ω

$$\Lambda(\Omega) := \min\left\{\frac{\int_{\Omega} |\Delta v|^2 dx}{\int_{\Omega} |\nabla v|^2 dx} : v \in H^{2,2}_0(\Omega)\right\}$$

• minimizer $u \in H^{2,2}_0(\Omega)$ solves

 $\Delta^2 u + \Lambda(\Omega) \Delta u = 0 \text{ in } \Omega.$

Kathrin Stollenwerk RWTH Aachen University

• $\Omega \subset \mathbb{R}^n$ open, buckling load of Ω

$$\Lambda(\Omega) := \min\left\{\frac{\int_{\Omega} |\Delta v|^2 dx}{\int_{\Omega} |\nabla v|^2 dx} : v \in H^{2,2}_0(\Omega)\right\}$$

• minimizer $u \in H^{2,2}_0(\Omega)$ solves

$$\Delta^2 u + \Lambda(\Omega) \Delta u = 0$$
 in Ω .

Polya-Szegö Conjecture (1951)

Among all clamped plates of the same area subjected to a lateral compression, the disk has minimal buckling load.

Kathrin Stollenwerk RWTH Aachen University

Polya-Szegö conjecture still not completely proven.

Kathrin Stollenwerk RWTH Aachen University

Polya-Szegö conjecture still not completely proven. Partial results:

Szegö (1951) [u does not change sign]

Kathrin Stollenwerk RWTH Aachen University

- Szegö (1951) [*u* does not change sign]
- Weinberg & Willms (1995) [Uniqueness, smooth, simply connected plane optimal domain]

- Szegö (1951) [*u* does not change sign]
- Weinberg & Willms (1995) [Uniqueness, smooth, simply connected plane optimal domain]
- Ashbaugh & Bucur (2003) [Existence, optimal domain among all plane simply connected domains]

- Szegö (1951) [*u* does not change sign]
- Weinberg & Willms (1995) [Uniqueness, smooth, simply connected plane optimal domain]
- Ashbaugh & Bucur (2003) [Existence, optimal domain among all plane simply connected domains]
- Wagner & S. (2015) [Uniqueness, smooth optimal domain with connected boundary]

- Szegö (1951) [*u* does not change sign]
- Weinberg & Willms (1995) [Uniqueness, smooth, simply connected plane optimal domain]
- Ashbaugh & Bucur (2003) [Existence, optimal domain among all plane simply connected domains]
- Wagner & S. (2015) [Uniqueness, smooth optimal domain with connected boundary]
- S. (2016) [Existence, *n* = 2, 3, bounded and connected optimal domain]

Existence of an optimal domain

Let $B \subset \mathbb{R}^n$ a ball with $0 < \omega_0 << |B|$. For $v \in H^{2,2}_0(B)$ define

$$\mathcal{J}(v) := rac{\int_B |\Delta v|^2 \, dx}{\int_B |
abla v|^2 \, dx} \quad ext{ and } \quad \mathcal{O}(v) := \{x \in B : v(x)
eq 0\}.$$

Kathrin Stollenwerk RWTH Aachen University

Existence of an optimal domain

Let $B \subset \mathbb{R}^n$ a ball with $0 < \omega_0 << |B|$. For $v \in H^{2,2}_0(B)$ define

$$\mathcal{J}(v) := rac{\int_B |\Delta v|^2 dx}{\int_B |
abla v|^2 dx} \quad ext{ and } \quad \mathcal{O}(v) := \{x \in B : v(x) \neq 0\}.$$

Minimizing problem (P)

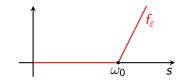
Find a function $u \in H^{2,2}_0(B)$ with $|\mathcal{O}(u)| = \omega_0$ such that

$$\mathcal{J}(u) = \min\{\mathcal{J}(v) : v \in H^{2,2}_0(B), |\mathcal{O}(v)| = \omega_0\}.$$

Kathrin Stollenwerk RWTH Aachen University

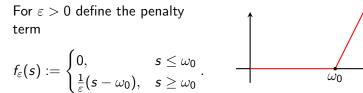
For $\varepsilon > 0$ define the penalty term

$$f_arepsilon(oldsymbol{s}):=egin{cases} 0,&oldsymbol{s}\leq\omega_0\ rac{1}{arepsilon}(oldsymbol{s}-\omega_0),&oldsymbol{s}\geq\omega_0 \end{cases}$$



Kathrin Stollenwerk RWTH Aachen University

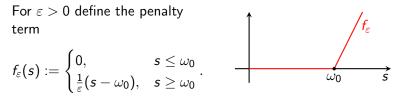
Ś



Penalized functional $\mathcal{J}_{\varepsilon}$ on $H_0^{2,2}(B)$

$$\mathcal{J}_arepsilon(oldsymbol{v}) \coloneqq \mathcal{J}(oldsymbol{v}) + f_arepsilon(|\mathcal{O}(oldsymbol{v})|).$$

Kathrin Stollenwerk RWTH Aachen University



Penalized functional $\mathcal{J}_{\varepsilon}$ on $H_0^{2,2}(B)$

$$\mathcal{J}_{\varepsilon}(v) := \mathcal{J}(v) + f_{\varepsilon}(|\mathcal{O}(v)|).$$

Penalized minimizing problem (P_{ε})

Find a function $u_{\varepsilon} \in H^{2,2}_0(B)$ such that

$$\mathcal{J}_{\varepsilon}(u_{\varepsilon}) = \min\{\mathcal{J}_{\varepsilon}(v) : v \in H^{2,2}_0(B)\}.$$

Kathrin Stollenwerk RWTH Aachen University

Existence of solutions

For every $\varepsilon > 0$ there exists a minimizer $u_{\varepsilon} \in H_0^{2,2}(B)$ of $\mathcal{J}_{\varepsilon}$.

Kathrin Stollenwerk RWTH Aachen University

Existence of solutions

For every $\varepsilon > 0$ there exists a minimizer $u_{\varepsilon} \in H_0^{2,2}(B)$ of $\mathcal{J}_{\varepsilon}$.

Regularity I

Let u_{ε} be a solution of the penalized problem. Then $u_{\varepsilon} \in C^{1,\alpha}(\overline{B})$ for each $\alpha \in [0, 1)$.

Kathrin Stollenwerk RWTH Aachen University

Existence of solutions

For every $\varepsilon > 0$ there exists a minimizer $u_{\varepsilon} \in H_0^{2,2}(B)$ of $\mathcal{J}_{\varepsilon}$.

Regularity I

Let u_{ε} be a solution of the penalized problem. Then $u_{\varepsilon} \in C^{1,\alpha}(\overline{B})$ for each $\alpha \in [0, 1)$.

Set
$$\Omega(u_{\varepsilon}) := \mathcal{O}(u_{\varepsilon}) \cup \{x \in \partial \mathcal{O}(u_{\varepsilon}) : |\nabla u_{\varepsilon}| > 0\}$$
. Then

$$\left\{egin{aligned} \Delta^2 u_arepsilon + \Lambda_arepsilon \Delta u_arepsilon = 0, & ext{ in } \Omega(u_arepsilon) \ u_arepsilon = |
abla u_arepsilon| = 0, & ext{ in } \partial\Omega(u_arepsilon). \end{aligned}
ight.$$

Note: $\Omega(u_{\varepsilon})$ open and $|\mathcal{O}(u_{\varepsilon})| = |\Omega(u_{\varepsilon})|$.

Kathrin Stollenwerk RWTH Aachen University

Regularity II

Let u_{ε} be a solution of the penalized problem. Then $u_{\varepsilon} \in C^{1,1}(\overline{B})$.

Kathrin Stollenwerk RWTH Aachen University

Regularity II

Let u_{ε} be a solution of the penalized problem. Then $u_{\varepsilon} \in C^{1,1}(\overline{B})$.

Equivalence of (P_{ε}) and (P)

There exists an $\varepsilon_0 > 0$ such that for every $\varepsilon < \varepsilon_0$ there holds $|\Omega(u_{\varepsilon})| = \omega_0$.

Kathrin Stollenwerk RWTH Aachen University

Regularity II

Let u_{ε} be a solution of the penalized problem. Then $u_{\varepsilon} \in C^{1,1}(\overline{B})$.

Equivalence of (P_{ε}) and (P)

There exists an $\varepsilon_0 > 0$ such that for every $\varepsilon < \varepsilon_0$ there holds $|\Omega(u_{\varepsilon})| = \omega_0$.

From now on: choose $\varepsilon < \varepsilon_0$ and omit the index ε

- u is a minimizer for the problem (P)
- $\Omega(u)$ is an optimal domain for minimizing Λ

•
$$|\Omega(u)| = \omega_0$$
, $\Omega(u)$ is connected

Kathrin Stollenwerk RWTH Aachen University

Nondegeneracy

There exists a constant $c_0 > 0$ such that for each $B_r(x_0)$ with $x_0 \in \partial \Omega(u)$ there holds

$$c_0 r \leq \sup_{B_r(x_0)} |\nabla u|.$$

Kathrin Stollenwerk RWTH Aachen University

Nondegeneracy

There exists a constant $c_0 > 0$ such that for each $B_r(x_0)$ with $x_0 \in \partial \Omega(u)$ there holds

$$c_0 r \leq \sup_{B_r(x_0)} |\nabla u|.$$

Consequences:

$$\mathcal{L}^n(\partial\Omega(u))=0$$

• $\partial \Omega(u)$ does not touch ∂B

Kathrin Stollenwerk RWTH Aachen University

Nondegeneracy

There exists a constant $c_0 > 0$ such that for each $B_r(x_0)$ with $x_0 \in \partial \Omega(u)$ there holds

$$c_0 r \leq \sup_{B_r(x_0)} |\nabla u|.$$

Consequences:

$$\mathcal{L}^n(\partial\Omega(u))=0$$

• $\partial \Omega(u)$ does not touch ∂B

Missing: any information about the regularity of $\partial \Omega(u)$!

Kathrin Stollenwerk RWTH Aachen University

Uniqueness of the optimal domain

Joint work with A. Wagner.

Assumption

There exists a smooth optimal domain $\Omega \subset \mathbb{R}^n$ and $\partial \Omega$ is connected.

Kathrin Stollenwerk RWTH Aachen University

Uniqueness of the optimal domain

Joint work with A. Wagner.

Assumption

There exists a smooth optimal domain $\Omega \subset \mathbb{R}^n$ and $\partial \Omega$ is connected.

Volume preserving perturbations of Ω :

$$\begin{aligned} & \Omega_t := \left\{ x + t \, v(x) + \frac{t^2}{2} \, w(x) + o(t^2) : x \in \Omega \right\} \\ & |\Omega_t| = |\Omega| + o(t^2) \quad (\Rightarrow \int_{\Omega} \operatorname{div} v \, dx = 0) \\ & \Lambda(t) := \Lambda(\Omega_t) = \min \left\{ \frac{\int_{B} |\Delta v|^2 dx}{\int_{B} |\nabla v|^2 dx} : v \in H_0^{2,2}(\Omega_t) \right\} \end{aligned}$$

Kathrin Stollenwerk RWTH Aachen University

First domain variation

Let $u\in H^{2,2}_0(\Omega)$ be a minimizer. Then

$$\dot{\Lambda}(0) = -\int_{\partial\Omega} |\Delta u|^2 v(x) \cdot \nu(x) dS(x) = 0.$$

Kathrin Stollenwerk RWTH Aachen University

First domain variation

Let $u \in H^{2,2}_0(\Omega)$ be a minimizer. Then

$$\dot{\Lambda}(0) = -\int_{\partial\Omega} |\Delta u|^2 v(x) \cdot \nu(x) dS(x) = 0.$$

Consequently, u solves the overdetermined boundary value problem

$$\begin{cases} \Delta^2 u + \Lambda \Delta u = 0, & \text{ in } \Omega \\ u = |\nabla u| = 0, & \text{ in } \partial \Omega \\ \Delta u = const., & \text{ in } \partial \Omega \end{cases}$$

Thus, $\Delta u + \Lambda u$ is constant in $\overline{\Omega}$. For n = 2: Ω is a ball (Weinberger/Willms).

Kathrin Stollenwerk RWTH Aachen University

Second domain variation

Let u' be a shape derivative of u resulting from a volume preserving perturbation of Ω . Then

$$\ddot{\Lambda}(0) = 2 \int_{\Omega} \left| \Delta u' \right|^2 - \Lambda \left|
abla u' \right|^2 dx \geq 0.$$

Kathrin Stollenwerk RWTH Aachen University

Second domain variation

Let u' be a shape derivative of u resulting from a volume preserving perturbation of Ω . Then

$$\ddot{\Lambda}(0) = 2 \underbrace{\int_{\Omega} \left| \Delta u' \right|^2 - \Lambda \left| \nabla u' \right|^2 dx}_{=:\mathcal{F}(u')} \geq 0.$$

Define

$$\mathcal{Z} := \left\{ \varphi \in H_0^{1,2} \cap H^{2,2}(\Omega) : \partial_{\nu} \varphi \neq 0, \int_{\partial \Omega} \partial_{\nu} \varphi dS = 0, \int_{\Omega} \nabla u \cdot \nabla \varphi dx = 0 \right\}.$$

Kathrin Stollenwerk RWTH Aachen University

For each domain $G \subset \mathbb{R}^n$ there holds

 $\lambda_2(G) \leq \Lambda(G).$

Equality holds if and only if G is a ball.

Kathrin Stollenwerk RWTH Aachen University

For each domain $G \subset \mathbb{R}^n$ there holds

 $\lambda_2(G) \leq \Lambda(G).$

Equality holds if and only if G is a ball.

•
$$\psi(x) := (1 - t) u_1(x) + t u_2(x) + c u(x), x \in \overline{\Omega}$$

• $\psi \in \mathcal{Z}$ for suitable c and suitable $t \in (0, 1]$

Kathrin Stollenwerk RWTH Aachen University

For each domain $G \subset \mathbb{R}^n$ there holds

 $\lambda_2(G) \leq \Lambda(G).$

Equality holds if and only if G is a ball.

•
$$\psi(x) := (1 - t) u_1(x) + t u_2(x) + c u(x), x \in \overline{\Omega}$$

• $\psi \in \mathcal{Z}$ for suitable c and suitable $t \in (0, 1]$
 $\Rightarrow \mathcal{F}(\psi) = (1 - t)^2 \lambda_1 (\lambda_1 - \Lambda) + t^2 \lambda_2 (\lambda_2 - \Lambda) \ge 0$

Kathrin Stollenwerk RWTH Aachen University

For each domain $G \subset \mathbb{R}^n$ there holds

 $\lambda_2(G) \leq \Lambda(G).$

Equality holds if and only if G is a ball.

•
$$\psi(x) := (1-t) u_1(x) + t u_2(x) + c u(x), x \in \overline{\Omega}$$

• $\psi \in \mathcal{Z}$ for suitable c and suitable $t \in (0,1]$
 $\Rightarrow \mathcal{F}(\psi) = (1-t)^2 \lambda_1 \underbrace{(\lambda_1 - \Lambda)}_{<0} + t^2 \lambda_2 \underbrace{(\lambda_2 - \Lambda)}_{<0} \ge 0$

Kathrin Stollenwerk RWTH Aachen University

For each domain $G \subset \mathbb{R}^n$ there holds

 $\lambda_2(G) \leq \Lambda(G).$

Equality holds if and only if G is a ball.

•
$$\psi(x) := (1 - t) u_1(x) + t u_2(x) + c u(x), x \in \overline{\Omega}$$

• $\psi \in \mathcal{Z}$ for suitable c and suitable $t \in (0, 1]$
 $\Rightarrow \mathcal{F}(\psi) = (1 - t)^2 \lambda_1 \underbrace{(\lambda_1 - \Lambda)}_{<0} + t^2 \lambda_2 \underbrace{(\lambda_2 - \Lambda)}_{\leq 0} \ge 0$
 $\Rightarrow t = 1 \text{ and } \lambda_2(\Omega) = \Lambda(\Omega)$

Kathrin Stollenwerk RWTH Aachen University

For each domain $G \subset \mathbb{R}^n$ there holds

 $\lambda_2(G) \leq \Lambda(G).$

Equality holds if and only if G is a ball.

•
$$\psi(x) := (1 - t) u_1(x) + t u_2(x) + c u(x), x \in \overline{\Omega}$$

• $\psi \in \mathcal{Z}$ for suitable c and suitable $t \in (0, 1]$
 $\Rightarrow \mathcal{F}(\psi) = (1 - t)^2 \lambda_1 \underbrace{(\lambda_1 - \Lambda)}_{<0} + t^2 \lambda_2 \underbrace{(\lambda_2 - \Lambda)}_{\leq 0} \ge 0$
 $\Rightarrow t = 1 \text{ and } \lambda_2(\Omega) = \Lambda(\Omega)$
 $\Rightarrow \Omega \text{ is a ball!}$

Kathrin Stollenwerk RWTH Aachen University

Thank you!

Kathrin Stollenwerk RWTH Aachen University

Constructing ψ : fix $t \in (0, 1]$ such that

$$\int_{\Omega} (1-t) \lambda_1 u_1(x) + t \lambda_2 u_2(x) dx = 0.$$

and set

$$c := -rac{1}{\Lambda} \int_{\Omega} (1-t) \, \lambda_1 \,
abla u_1 .
abla u + t \, \lambda_2 \,
abla u_2 .
abla u \, dx$$

Kathrin Stollenwerk RWTH Aachen University