# Geometrical properties of resources optimal arrangements for species survival (current work)

Jimmy LAMBOLEY, Antoine LAURAIN, Grégoire NADIN & Yannick PRIVAT

CNRS, LJLL, Univ. Paris 6

nov. 2016





1 Modeling issues : toward a shape optimization problem

- 2 Analysis of optimal resources domains
  - Known results
  - New results
- 3 Conclusion and open problems





Analysis of optimal resources domains • Known results

- Known results
- New results

3 Conclusion and open problems

# Biological model : population dynamic

Logistic diffusive equation (Fisher-Kolmogorov 1937, Fleming 1975, Cantrell-Cosner 1989)

#### Introduce

 $\sim \Omega \subset \mathbb{R}^N$ : bounded domain with Lipschitz boundary (habitat)

 $\rightarrow \omega$ : positive parameter

 $\rightarrow u(t, x)$ : density of a species at location x and time t

 $\rightarrow m(x)$ : intrinsic growth rate of species at location x and

- $\Omega \cap \{m > 0\}$  (resp.  $\Omega \cap \{m < 0\}$ ) is the favorable (resp. unfavorable) part of habitat
- $\int_{\Omega} m$  measures the total resources in the spatially heterogeneous environment  $\Omega$  After renormalization, one is allowed to assume that

 $-1 < m(x) < \kappa$  with  $\kappa > 0$  and *m* changes sign.

#### **Biological model**

$$\begin{cases} u_t = \Delta u + \omega u[m(x) - u] & \text{in } \Omega \times \mathbb{R}_+, \\ u(0, x) \ge 0, \quad u(0, x) \not\equiv 0 & \text{in } \overline{\Omega}, \end{cases}$$

Yannick Privat (LJLL)

# Biological model : population dynamic

Choice of boundary conditions

$$\partial_n u + \beta u = 0$$
 on  $\partial \Omega \times \mathbb{R}^+$ ,

where  $\beta$  is a non-negative parameter standing for inhospitableness of the region surrounding  $\Omega$ .

 $\sim$  Case β = 0 : no-flux boundary condition (the boundary acts as a barrier)  $\sim$  Case β = +∞ : Dirichlet condition (deadly boundary)  $\sim$  Intermediate case β > 0 : Ω is surrounded by a partially inhospitable region

# Biological model : population dynamic

#### The complete model

$$\begin{cases} u_t = \Delta u + \omega u[m(x) - u] & \text{ in } \Omega \times \mathbb{R}_+, \\ \partial_n u + \beta u = 0 & \text{ on } \partial\Omega \times \mathbb{R}^+, \\ u(0, x) \ge 0, \quad u(0, x) \not\equiv 0 & \text{ in } \overline{\Omega}, \end{cases}$$

( $\sim$  takes into account effects of dispersal and partial heterogeneity)

# Analysis of the model : extinction/survival condition

#### The complete model

$$\begin{cases} u_t = \Delta u + \omega u[m(x) - u] & \text{ in } \Omega \times \mathbb{R}_+, \\ \partial_n u + \beta u = 0 & \text{ on } \partial\Omega \times \mathbb{R}^+, \\ u(0, x) \ge 0, \quad u(0, x) \not\equiv 0 & \text{ in } \overline{\Omega}, \end{cases}$$

Introduce the eigenvalue problem

$$\lambda(m) = \inf \left\{ \frac{\int_{\Omega} |\nabla \varphi|^2 + \beta \int_{\partial \Omega} \varphi^2}{\int_{\Omega} m \varphi^2}, \quad \varphi \in H^1(\Omega), \int_{\Omega} m \varphi^2 > 0 \right\}.$$

Theorem (Cantrell-Cosner 1989, Berestycki-Hamel-Roques 2005)

 $t \rightarrow \infty$ 

Let  $u^*$  be the unique positive steady solution of the logistic equation above. One has

• 
$$\omega \leq \lambda(m) \implies u(t,x) \implies 0,$$
  
•  $\omega > \lambda(m) \implies u(t,x) \implies u^*(x).$ 

# Comments on the eigenvalue problem (with a sign changing weight m)

#### Another characterization of $\lambda(m)$

 $\lambda(m)$  is the unique principal ( $\Leftrightarrow \varphi > 0$ ) positive eigenvalue of the problem :

$$\begin{cases} \Delta \varphi + \lambda m \varphi = 0 & \text{ in } \Omega, \\ \partial_n \varphi + \beta \varphi = 0 & \text{ on } \partial \Omega, \end{cases}$$

Moreover,

- in the Robin and Dirichlet case ( $0 < \beta \leq +\infty$ ), 2 principal eigenvalues :  $\lambda^- < 0 < \lambda^+$
- in the critical case  $\beta = 0$ , 2 principal eigenvalues : 0 and  $\lambda$  and one has

$$\lambda > 0 \Longleftrightarrow \int_{\Omega} m < 0.$$

## Optimal arrangements of resources

### Conclusion of this part

The species can be maintained iff  $\omega > \lambda(m)$ .

Hence, the smaller  $\lambda(m)$  is, the more likely the species can survive

 $\rightarrow$  among all weights *m*, which of them yields the smallest principal eigenvalue  $\lambda(m)$ ?

## Optimal arrangements of resources

### Conclusion of this part

The species can be maintained iff  $\omega > \lambda(m)$ .

Hence, the smaller  $\lambda(m)$  is, the more likely the species can survive

 $\sim$  among all weights *m*, which of them yields the smallest principal eigenvalue  $\lambda(m)$ ?

Infinite dimensional shape optimization problem

$$\inf_{\mathcal{EM}_{m_0,\kappa}} \lambda(m), \tag{P}$$

with

$$\mathcal{M}_{m_0,\kappa}=\left\{m\in L^\infty(\Omega,[-1,\kappa]),\;|\{m>0\}|>0,\;\int_\Omega m\leq -m_0|\Omega|
ight\}$$

m

Modeling issues : toward a shape optimization problem

### 2 Analysis of optimal resources domains

- Known results
- New results

3 Conclusion and open problems

Modeling issues : toward a shape optimization problem

# 2 Analysis of optimal resources domains • Known results

• New results

3 Conclusion and open problems

# Bang-bang property of minimizers

Proposition (Lou-Yanagida 2006, Derlet-Gossez-Takac 2010)

Problem (P) has a solution. Moreover, every minimizer m satisfies

$$\int_{\Omega} m = -m_0 |\Omega| \quad \text{and} \quad m = \kappa \mathbb{1}_E - \mathbb{1}_{\Omega \setminus E}.$$

# Bang-bang property of minimizers

Proposition (Lou-Yanagida 2006, Derlet-Gossez-Takac 2010)

Problem (P) has a solution. Moreover, every minimizer m satisfies

$$\int_{\Omega} m = -m_0 |\Omega|$$
 and  $m = \kappa \mathbb{1}_E - \mathbb{1}_{\Omega \setminus E}.$ 

#### Shape optimization version of the problem

Consequence : the two following problems

$$\inf\left\{\lambda(m), \quad m \in L^{\infty}(\Omega, [-1, \kappa]), \ |\{m > 0\}| > 0, \ \int_{\Omega} m \leq -m_0 |\Omega|\right\}$$
(1)

and

$$\inf \left\{ \lambda(E) := \lambda(\kappa \mathbb{1}_E - \mathbb{1}_{\Omega \setminus E}), \quad |E| = c |\Omega| \right\},$$
(2)

where  $c = c(m_0) \in (0, 1)$ , are equivalent. Moreover, each infimum is in fact a minimum.

- Case  $\beta = \infty$ , with no sign changement : symmetrization, regularity in case of symmetry [Krein 1955, Friedland 1977, Cox 1990]
- Periodic case : [Hamel-Roques 2007]
- 1D case,  $\beta = 0$  : solved [Lou-Yanagida 2006]
- 1D case,  $\beta > 0$ : optimization among intervals [Hintermüller-Kao-Laurain 2012]
- 2D case : regularity [Chanillo-Kenig-To 2008]
- Numerics : [Cox, Hamel-Roques, Hintermüller-Kao-Laurain]

Modeling issues : toward a shape optimization problem

# Analysis of optimal resources domains Known results

New results

3 Conclusion and open problems

# New results : complete solution in dim. 1

$$\inf \left\{ \lambda(E) := \lambda(\kappa \mathbb{1}_E - \mathbb{1}_{\Omega \setminus E}), \quad |E| = c |\Omega| \right\}$$
(P)

Theorem (Lamboley, Laurain, Nadin, YP 2016)

If  $\Omega = ]0, 1[$  and  $E^*$  is a solution, then  $E^*$  is an interval.

# New results : complete solution in dim. 1

$$\inf \left\{ \lambda(E) := \lambda(\kappa \mathbb{1}_E - \mathbb{1}_{\Omega \setminus E}), \quad |E| = c |\Omega| \right\}$$
(P)

Theorem (Lamboley, Laurain, Nadin, YP 2016)

If  $\Omega = ]0, 1[$  and  $E^*$  is a solution, then  $E^*$  is an interval.

Consequence : there exists  $\beta^* = \beta^*(\kappa, c)$  such that

- if  $\beta > \beta^*$ , same solution as  $\beta = \infty$ ,
- if  $\beta < \beta^*$ , same solution as  $\beta = 0$ ,
- if  $\beta = \beta^*$ , solutions are all the intervals of length *c*.

# Higher dimensions : $\Omega = (0,1)^2$ , $\kappa = 0.5$ , $\beta = 0$



(a) c = 0.2



(b) c = 0.3



(d) c = 0.6



(c) 
$$c = 0.5$$

Yannick Privat (LJLL)

# Higher dimensions : $\Omega = (0, 1)^2$ , $\kappa = 0.5$ , c = 0.2



(a)  $\beta = 1$ 



(b)  $\beta = 5$ 

0.04

0.035

0.03

Principal eigenfunction ( )=101.3327) and optimal domain (-) for c=0.2



(c)  $\beta = 50$ 





(d)  $\beta = 1000$ 

$$\inf \left\{ \lambda(E) := \lambda(\kappa \mathbb{1}_{E} - \mathbb{1}_{\Omega \setminus E}), \quad |E| = c |\Omega| \right\}$$
(P)

Theorem (Lamboley, Laurain, Nadin, YP 2016)

Let assume that  $N \ge 2$  and  $\partial \Omega$  is connected and  $C^1$ . Assume E or  $\Omega \setminus E$  iS a union of concentric rings and has a finite number of connected components.

$$\inf \left\{ \lambda(E) := \lambda(\kappa \mathbb{1}_{E} - \mathbb{1}_{\Omega \setminus E}), \quad |E| = c |\Omega| \right\}$$
(P)

Theorem (Lamboley, Laurain, Nadin, YP 2016)

Let assume that  $N \ge 2$  and  $\partial\Omega$  is connected and  $C^1$ . Assume E or  $\Omega \setminus E$  iS a union of concentric rings and has a finite number of connected components. Then

• *E* is critical  $\Rightarrow \Omega$  is a centered ball

$$\inf \left\{ \lambda(E) := \lambda(\kappa \mathbb{1}_{E} - \mathbb{1}_{\Omega \setminus E}), \quad |E| = c |\Omega| \right\}$$
(P)

Theorem (Lamboley, Laurain, Nadin, YP 2016)

Let assume that  $N \ge 2$  and  $\partial\Omega$  is connected and  $C^1$ . Assume E or  $\Omega \setminus E$  iS a union of concentric rings and has a finite number of connected components. Then

- *E* is critical  $\Rightarrow \Omega$  is a centered ball
- If  $\beta$  is large enough,

*E* is a minimum  $\Rightarrow$  *E* and  $\Omega$  are concentric balls.

$$\inf \left\{ \lambda(E) := \lambda(\kappa \mathbb{1}_{E} - \mathbb{1}_{\Omega \setminus E}), \quad |E| = c |\Omega| \right\}$$
(P)

Theorem (Lamboley, Laurain, Nadin, YP 2016)

Let assume that  $N \ge 2$  and  $\partial\Omega$  is connected and  $C^1$ . Assume E or  $\Omega \setminus E$  iS a union of concentric rings and has a finite number of connected components. Then

- *E* is critical  $\Rightarrow \Omega$  is a centered ball
- If  $\beta$  is large enough,

*E* is a minimum  $\Rightarrow$  *E* and  $\Omega$  are concentric balls.

Steps of the proof :

- $\rightsquigarrow \varphi$  is radial in *E*
- $\rightsquigarrow \varphi$  is radial in  $\Omega$
- $\rightsquigarrow~\Omega$  is a centered ball.

Easy if  $\beta = \infty$ ; study the contact with the inscribed and circumscribed balls otherwise.

# Other numerical computations : $\Omega = B(0, 1), \beta = 0, \kappa = 0.5$



(e) c = 0.2



(f) c = 0.3



Principal eigenfunction (  $\lambda$  =6.944) and optimal domain (-) for c =0.5 0.6 -



(g) c = 0.4

(h) c = 0.5

New results : Neumann case in dimension N = 2, 3, 4 : non-optimality of the centered ball in a ball

$$\inf \left\{ \lambda(E) := \lambda(\kappa \mathbb{1}_{E} - \mathbb{1}_{\Omega \setminus E}), \quad |E| = c |\Omega| \right\}$$
(P)

Theorem (Lamboley, Laurain, Nadin, YP 2016)

Let  $N \in \{2, 3, 4\}$ ,  $\beta = 0$  and  $\Omega = B(0, 1) \subset \mathbb{R}^N$ . Then the centered ball of volume  $c|\Omega|$  is not a minimizer for Problem (P).

Proof : Disymmetrization procedure

Modeling issues : toward a shape optimization problem

Analysis of optimal resources domains • Known results

• New results



## Conclusion and open questions

On the problem inf  $\{\lambda(E) := \lambda(\kappa \mathbb{1}_E - \mathbb{1}_{\Omega \setminus E}), |E| = c|\Omega|\}$  (P)

• If  $\Omega$  is a ball, is *E* a concentric ball?

 $\sim$ → Solved if *N* = 1 : yes if *β* is large enough, no else.  $\sim$ → Yes if *β* = ∞, No if *β* = 0 and *N* ∈ {2,3,4}

• Can  $\partial E \cap \Omega$  be a piece of sphere?

 $\rightsquigarrow$  No if  $\beta = 0$  and  $\Omega$  is a square/cube

• Optimality of strips?

 $\rightarrow$  Expected to hold for some values of  $m_0$  if  $\beta = 0$  and  $\Omega$  is a square/cube

• Find sufficient conditions so that  $\partial E \cap \partial \Omega \neq \emptyset$ ,

 $\rightarrow$  Expected to be always true if  $\beta = 0$ 

# Conclusion and open questions

### Ongoing work (1) Same problem with an improved model

 $\rightsquigarrow$  We enrich the model by adding an advection term along the gradient of the habitat quality (Belgacem and Cosner)

$$\begin{aligned} \partial_t u &= \operatorname{div}(\nabla u - \alpha u \nabla m) + \lambda u(m - u) \quad \text{in} \quad \Omega \times (0, \infty), \\ e^{\alpha m} (\partial_n u - \alpha u \partial_n m) + \beta u &= 0 \quad \text{on} \quad \partial\Omega \times (0, \infty), \end{aligned}$$

This models the tendency of the population to move up along the gradient of m.

New shape optimization problem

$$\inf_{m\in\mathcal{M}_{m_0,\kappa}}\lambda(m),$$

with

$$\lambda(\textit{\textit{m}}) = \inf_{\varphi \in \mathcal{S}_0} \frac{\int_{\Omega} e^{\alpha \textit{m}} |\nabla \varphi|^2}{\int_{\Omega} \textit{m} e^{\alpha \textit{m}} \varphi^2} \quad \text{and} \quad \mathcal{S}_0 = \{\varphi \in \textit{H}^1(\Omega), \ \int_{\Omega} \textit{m} e^{\alpha \textit{m}} \varphi^2 > 0\}$$

# Conclusion and open questions

Ongoing work (2)

Effects of dispersal and spatial heterogeneity of the environment on the total population size

 $\rightsquigarrow$  Consider the steady-state

 $\begin{cases} \mu \Delta \bar{u} + \bar{u}(m - \bar{u}) = 0 & \text{in } \Omega, \\ \partial_n \bar{u} + \beta \bar{u} = 0 & \text{on } \partial \Omega, \end{cases} \quad (\mu = \text{migration rate})$ 

This problem has a unique positive solution in  $W^{2,p}(\Omega)$ , for every  $p \ge 1$ .

New optimization problem

 $\sup_{m\in\mathcal{M}_{m_0,\kappa}}\int_{\Omega}\bar{u}(x)\,dx,\quad (\text{total population size of the species})$ 

or

$$\sup_{m \in \mathcal{M}_{m_0,\kappa}} \int_{\Omega} \bar{u}(x)^3 \, dx, \quad \text{(natural energy of the population)}$$

 $\sim$  Ph.D. thesis of I. Mazari (univ. Paris 6)

# Thank you for your attention