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The model

Conducting body Q of conductivity 1.
Insulator . = {0 + tv(c) : 0 €09, 0<t<ceh(c)} of conductivity § << 1
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A problem of insulation (stationary case)

The temperature u of the conducting body Q, with heat sources f € L?(Q) is
given by the solution of the PDE

—Au=f in Q
—-Au=0 in X,

u=2~0 on9(QUX.)
ou~ out

or equivalently by the minimization of the functional

Fe(g(u):%/ﬂ|Vu|2dx+g/2 |Vu|2dx—/ﬂfudx

in the Sobolev space Hl(QU Z.)
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The limitase, 6 — 0

If e = 0(d) then we get heat equation in Q with Dirichlet boundary conditions.

—Au=f inQ
u=2~0 on 00

C. Nitsch (University of Naples) Symmetry Breaking CIRM, November 21-25, 2016 5/15



The limitase, 6 — 0

If e = 0(6) then we get heat equation in Q with Dirichlet boundary conditions.

—Au=f inQ
u=2~0 on 00

If & = o(e) then we get heat equation in Q with Neumann boundary conditions.

{—Au:finQ
ou
5_0 on 00

C. Nitsch (University of Naples) Symmetry Breaking CIRM, November 21-25, 2016 5/15



The limitase, 6 — 0

If e = 0(6) then we get heat equation in Q with Dirichlet boundary conditions.

—Au=f inQ
u=2~0 on 00

If & = o(e) then we get heat equation in Q with Neumann boundary conditions.

—Au=f inQ
ou

5:0 on 00

If ¢ ~ 0 we get something different...
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The limitase =6 — 0
One way to see what happens, is to look at the functional

Fg(u):%/Q|Vu|2dx+%/z |Vu|2dx—/qudx uec H(QUX.)
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The limitase =6 — 0
One way to see what happens, is to look at the functional

Fg(u)zl/ |Vu|2dx+£/ |Vu|2dx—/fudx uec H(QUX.)
2 Jo 2 Jx. Q
and notice that it '-converges to

E(u, h) = /|Vu|2dx+2/ % a1 /fudx ue H'(Q)

Therefore the temperature u solves the minimum problem

E(h) = min {E(u,h) : ue H'(Q)}
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The limitase =6 — 0
One way to see what happens, is to look at the functional

1
F.(u) = f/ |Vul? dx + E/ |Vu|? dx —/ fudx uecHJ(QUX.)
2 Jo 2 Js. Q
and notice that it '-converges to
E(u, h) = /|Vu|2dx+2/ % o1 — /fudx ue H'(Q)
Therefore the temperature u solves the minimum problem

E(h) =min{E(u,h) : ue H'(Q)}
or equivalently the PDE

—-Au=f in
h@—FU—O on 09.

ov

C. Nitsch (University of Naples) Symmetry Breaking CIRM, November 21-25, 2016

5/15



The limitase =6 — 0
One way to see what happens, is to look at the functional

Fg(u):%/Q|Vu|2dx+%L |Vu|2dx—/qudx uec H(QUX.)

and notice that it '-converges to

E(u, h) = /|Vu|2dx+2/ % o1 — /fudx ue H'(Q)
Therefore the temperature u solves the minimum problem
E(h) =min{E(u,h) : ue H'(Q)}
or equivalently the PDE
—Au=f in
h@ +u=0 onos.
v

Therefore this time we have the heat equation with Robin boundary
conditions.
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Optimization of the energy

We fix the total mass of insulator to be m > 0

Hm = {h : 99 — R measurable, h > 0, hdH~" = m} .

oN
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Optimization of the energy

We fix the total mass of insulator to be m > 0

Hm = {h : 02 — R measurable, h > 0,
oQ

and we aim for the minimization of the Energy

min{E(h) : he Hm}.

Why are we minimizing E?
We want to measure the quality of the insulation. Since

E(h):—%/ﬂfu ax

the case f = 1 means that we are maximizing the total heat.

hdHo ' = m} .
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Optimization of the energy

We want to find

2
min  min 1/|Vu|2dx+1/ Y gpn-1 —/fudx}
herm ueH'(Q) | 2 Jg 2 Jaq h Q
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Optimization of the energy

We want to find

2
min  min 1/ \Vu|2dx+1/ Y gpn-1 —/fudx
heHm ueH'(Q) 2 Q 2 90 h Q
and we interchange the two minimum

1

2
min_ min 1/ |Vul? dx + Y gun-1 —/fudx .
ueH (Q) hetm 2 Q 2 a0 h Q
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Optimization of the energy
We want to find

min  min 1/\Vu\2dx+1 dHN ! /fudx
heHm ueH (Q) | 2 2 Joa h

and we interchange the two minimum

min min{ /|Vu|2dx+ dHN ! /fudx}.
ueH(Q) heHm o h Q

The minimum with respect to his easy to compute

|yl

h=m— 1"t
faﬂ|u\ aHI-1"

In the optimal configuration h is proportional to the trace of u on the boundaryJ
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Optimization of the energy
We want to find

min  min 1/\Vu\zdxqtdl dHN ! /fudx
heHm U€H1(Q) 2 Q 2 a0 h Q

and we interchange the two minimum
min_ min / |Vul? dx + dHN ! / fudx .
ueH(Q) heHm 2 Joq b Q
The minimum with respect to his easy to compute

hem— 14
T Ul dHe—

In the optimal configuration h is proportional to the trace of u on the boundaryJ

Therefore, the optimization problem can be rewritten as

2
mm{ /|Vu|2dx+ ! (/ |u|dH°’*‘) —/fudx : ueH‘(Q)}.
2 2m\ Jaq Q
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Existence and uniqueness

.1 2 1 do1\2 / ;
_ — — : H'(Q
m|n{2/Q|Vu| dx+2m(/m|u|dﬂ ) qudx ue H(Q)
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Existence and uniqueness

.1 2 1 do1\2 / ;
_ — — : H'(Q
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Poincaré inequality enforces coercivity. There exists in fact a constant C such

that )
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Existence and uniqueness

(1 5 1 d1\2 / ;
_ — — : H'(Q
m|n{2/Q|Vu| dx+2m(/m|u|d7-t ) qudx ue H(Q)

Poincaré inequality enforces coercivity. There exists in fact a constant C such

that )
/|Vu|2dx+ (/ |ul d?-ld_1) > C/ |u|? dx
Q 00 Q

Moreover

Proposition
Assume < is connected. Then the functional

1 1 2
Un—>F(u):§L|Vu|2dx+ﬁ</ém|u|d%d’1)

is strictly convex on H'(Q2), hence for every f € L?(Q) the minimization
problem admits a unique solution.
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Example 1 One ball. Q = Bgr

LetQ =Bgand f=1.
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Example 1 One ball. Q = Bgr

Let Q = Bgand f = 1. J

Then

1 1 2
min { — VulPdx + — / ul dH91 —/ udx : ue H'(B }
{2 [ ivuaxs g (f wione) - [ (Br)

is achieved by
R2 _ r2

u(r) = 54

+C

C. Nitsch (University of Naples) Symmetry Breaking CIRM, November 21-25, 2016 8/15



Example 1 One ball. Q = Bgr

Let Q = Bgand f = 1.

Then

2
min{1 |Vul? dx + L(/ |ul d’Hd*1> —/ udx
2 /B 2m\ Jop, Br

is achieved by
H2 _ r2
u(r) = “od +c

Optimizing with respect to ¢ we have copr = Fwﬁmﬁq

uc H‘(B,:,)}
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Example 1 One ball. Q = Bgr

Let Q = Bgand f = 1. |

Then

1 1 2
min { — VulPdx + — / ul dHe1 —/ udx : ue H'(B }
{2 [ ivuaxs g (f wione) - [ (Br)

is achieved by
R? — r?
U(r) = T +C

Optimizing with respect to ¢ we have copr = Fwﬁ’”ﬁq Remember that

|yl

hem— Y
T Ul
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Example 1 One ball. Q = Bgr

Let Q = Bgand f = 1. J
Then
min{% |Vul? dx + %(/ |u|d7—td*1>2—/ udx : ueH‘(BR)}
Br mX\ JoBg Br
is achieved by I
u(r) = “od +c
Optimizing with respect to ¢ we have copr = W;"REQ Remember that
u
h= mm.
Therefore the optimal insulation is given by a constant thickness:
h= G
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Example 2 Two balls. 2 = Bg, U Bg,

=} F = = DA
C. Nitsch (University of Naples) Symmetry Breaking



Example 2 Two balls. 2 = Bg, U Bg,

Since Q is disconnected there is no uniqueness.

C. Nitsch (University of Naples)

=} F
Symmetry Breaking



Example 2 Two balls. 2 = Bg, U Bg,
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Explicit computation gives

R2 —r2
u(r):’2—d+cj j=1,2
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Example 2 Two balls. 2 = Bg, U Bg,
Since Q is disconnected there is no uniqueness.
Explicit computation gives

R2 —r2

u(r):’2—d+c,- j=1,2

There are two different cases

@ If Ry = R, = R then any choice of ¢; and ¢, is optimal provided

. m
CH+ C = —dzwde_z.
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Since Q is disconnected there is no uniqueness.
Explicit computation gives

R2 —r2

u(r):’27d+c,- j=1,2

There are two different cases

@ If Ry = R> = R then any choice of ¢; and ¢, is optimal provided

. m
Ci+C = 7d2wdl-?d—2'

We can split the insulator between the two balls as we wish, but on each
one the distribution around the boundary is constant.
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Example 2 Two balls. Q = Bg, U Bg,

Since Q is disconnected there is no uniqueness.
Explicit computation gives

R2 _r2
_ , i —
u(r) 5 + ¢ j=12

There are two different cases

@ If Ry = R> = R then any choice of ¢; and ¢, is optimal provided

. m
Ci+C = 7d2wdl-?d—2'

We can split the insulator between the two balls as we wish, but on each
one the distribution around the boundary is constant.

("] IfR1>Fi’2thenc1:0and02:#-
wd
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Example 2 Two balls. Q = Bg, U Bg,

Since Q is disconnected there is no uniqueness.
Explicit computation gives

R2 —r2
_ . i
u(r) = 5d +¢ j=1,2
There are two different cases

@ If Ry = R> = R then any choice of ¢; and ¢, is optimal provided

C1 + CQ = W
We can split the insulator between the two balls as we wish, but on each
one the distribution around the boundary is constant.

@ If Ry > Rothency =0and ¢ = #. All the insulator must be
Wa My

uniformly distributed around the smaller ball, while the larger ball remains
not insulated.
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Example 3 The ring. Q2 = Bg, \ Bg,

There exists a threshold my

m>mg m< mg
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A problem of insulation (non-stationary case)

In the non stationary case we consider the parabolic heat eqution

u=Au+f inQ

ur = 6AuU inXx,
u=20 on9(QUX.)
ou~ out
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u=Au+f inQ
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u=20 on9(QUX,)
ou~ out

for which it is interesting to consider the eigenvalue problem

—Au=\u in Q
—0Au=Au inX,

u=20 on9(QUX.)
ou~ out
B = 55 on 09Q.
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—Au=\u in Q
—0Au=Au inX,

u=20 on9(QUX.)
ou~ out
5, =05, on o9.
The first eigenvalue \ provides the heat loss rate. J

C. Nitsch (University of Naples) Symmetry Breaking CIRM, November 21-25, 2016 9/15



A problem of insulation (non-stationary case)

In the non stationary case we consider the parabolic heat eqution

u=Au+f inQ

ur = 6AuU inXx,
u=20 on9(QUX,)
ou~ out

for which it is interesting to consider the eigenvalue problem

—Au=\u in Q
—0Au=Au inX,

u=20 on9(QUX.)
ou~ ou™

The first eigenvalue \ provides the heat loss rate.

Again we consider the limit £,6 — 0.
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The limitase, 6 — 0
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The limitase, 6 — 0

If e = 0(4) then we get Dirichlet Laplacian eigenvalue problem in Q

—Au=X\u inQ
u=2~0 on 00
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The limitase, 6 — 0

If e = 0(¢) then we get Dirichlet Laplacian eigenvalue problem in Q

—Au=X\u inQ
u=2~0 on 00

If § = o(¢) then we get Neumann Laplacian eigenvalue problem in Q

@:O on 900

{—Au =\Uu inQ
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The limitase, 6 — 0

If e = 0(¢) then we get Dirichlet Laplacian eigenvalue problem in Q

—Au=X\u inQ
u=2~0 on 00

If § = o(¢) then we get Neumann Laplacian eigenvalue problem in Q

@:O on 900

{—Au =\Uu inQ
ov

If e = 6 we get again Robin Laplacian eigenvalue problem

h@-‘rU:O on 00

{—Au = \U in Q
ov
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Optimization of the eigenvalue

The first Robin eigenvalue A\(h) is also characterized by

ACh) = inf { JoIVulax + [, h~u? dno-!

INTE : ueH1(Q),u7éO}.

Any u achieving such a minimum is an eigenfunction.
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Optimization of the eigenvalue

The first Robin eigenvalue A\(h) is also characterized by

Vul? dx h="u2 dHo!
)\(h):inf{fﬂl | j‘—jz;é)?ﬂdx : ueH‘(Q),u;éO}.
Q

Any u achieving such a minimum is an eigenfunction.

The optimization consists in minimizing the heat loss rate
min{\(h) : he Hm}. J
Therefore
\v4 2d h—1 2d d—1
min inf Ja |Vl X+f629 waHT ue H'(Q), u#03.
heHm Jq u? dx
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Optimization of the eigenvalue

The first Robin eigenvalue A\(h) is also characterized by

Vul? dx h="u2 dHo!
)\(h):inf{fﬂl | j‘_jjzﬂdx : ueH‘(Q),u;éO}.
Q

Any u achieving such a minimum is an eigenfunction.

The optimization consists in minimizing the heat loss rate

min{\(h) : he Hm}.

Therefore
Vul?d h=1u? d#H9T
min inf{fQI ul X}—szﬂdx 4 cueH(Q), u#0;.
EHm Q

And again interchanging the minimization we get...
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Optimization of the eigenvalue

min{\(h) : heHp} =

=} F = = DA
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Optimization of the eigenvalue
min{\(h) : heHp} =

2
Ja IVuP ox + L ( foq luldre=")

min I

cue H'(Q)
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Optimization of the eigenvalue
min{\(h) : heHp} =

2
Ja IVuP ax + L ( foq uldHe")

P ax cue H'(Q)

min

Let u be a minimizer,
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Optimization of the eigenvalue
min{A(h) : he Hp} =

2
Ja IV ax+ L ( foq luldHe")

T 7 0x cue H'(Q)

min

Let u be a minimizer, again the optimal density hp; is proportional to u

h —m;
opt = JoqudHI—T "

C. Nitsch (University of Naples) Symmetry Breaking CIRM, November 21-25, 2016 12/15



Optimization on the ball

Theorem

Let Q2 be a ball. Then there exists mg > 0 such that the solution of the
variational problem is radial if m > mqg, while the solution is not radial for
0 < m < mg. As a consequence, the optimal density hop is not constant if
m < my.
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Optimization on the ball

Theorem

Let Q2 be a ball. Then there exists mg > 0 such that the solution of the
variational problem is radial if m > mq, while the solution is not radial for
0 < m < mg. As a consequence, the optimal density hop is not constant if
m < my.

AD

AN

/

Mo m=
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Optimization on the ball

The picture is therefore the following
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Optimization on the ball

The picture is therefore the following

m > Mo m < Mo
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Thank you!

Symmetry Breaki




