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The model

Conducting body Ω of conductivity 1.
Insulator Σε =

{
σ + tν(σ) : σ ∈ ∂Ω, 0 ≤ t < εh(σ)

}
of conductivity δ << 1

Ω

Σε

εh(σ)
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A problem of insulation (stationary case)
The temperature u of the conducting body Ω, with heat sources f ∈ L2(Ω) is
given by the solution of the PDE

−∆u = f in Ω

−∆u = 0 in Σε

u = 0 on ∂(Ω ∪ Σε)
∂u−

∂ν
= δ

∂u+

∂ν
on ∂Ω.

or equivalently by the minimization of the functional

Fεδ(u) =
1
2

∫
Ω

|∇u|2 dx +
δ

2

∫
Σε

|∇u|2 dx −
∫

Ω

fu dx

in the Sobolev space H1
0 (Ω ∪ Σε)
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The limit as ε, δ → 0

If ε = o(δ) then we get heat equation in Ω with Dirichlet boundary conditions.{
−∆u = f in Ω

u = 0 on ∂Ω

If δ = o(ε) then we get heat equation in Ω with Neumann boundary conditions.−∆u = f in Ω
∂u
∂ν

= 0 on ∂Ω

If ε ≈ δ we get something different...
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The limit as ε = δ → 0

One way to see what happens, is to look at the functional

Fε(u) =
1
2

∫
Ω

|∇u|2 dx +
ε

2

∫
Σε

|∇u|2 dx −
∫

Ω

fu dx u ∈ H1
0 (Ω ∪ Σε)

and notice that it Γ-converges to

E(u,h) =
1
2

∫
Ω

|∇u|2 dx +
1
2

∫
∂Ω

u2

h
dHd−1 −

∫
Ω

fu dx u ∈ H1(Ω)

Therefore the temperature u solves the minimum problem

E(h) = min
{

E(u,h) : u ∈ H1(Ω)
}

or equivalently the PDE −∆u = f in

h
∂u
∂ν

+ u = 0 on ∂Ω.

Therefore this time we have the heat equation with Robin boundary
conditions.
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Optimization of the energy
We fix the total mass of insulator to be m > 0

Hm =

{
h : ∂Ω→ R measurable, h ≥ 0,

∫
∂Ω

h dHd−1 = m
}
.

and we aim for the minimization of the Energy

min
{

E(h) : h ∈ Hm
}
.

Why are we minimizing E?
We want to measure the quality of the insulation. Since

E(h) = −1
2

∫
Ω

fu dx

the case f ≡ 1 means that we are maximizing the total heat.
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Optimization of the energy
We want to find

min
h∈Hm

min
u∈H1(Ω)

{
1
2

∫
Ω

|∇u|2 dx +
1
2

∫
∂Ω

u2

h
dHN−1 −

∫
Ω

fu dx
}

and we interchange the two minimum

min
u∈H1(Ω)

min
h∈Hm

{
1
2

∫
Ω

|∇u|2 dx +
1
2

∫
∂Ω

u2

h
dHN−1 −

∫
Ω

fu dx
}
.

The minimum with respect to h is easy to compute

h = m
|u|∫

∂Ω
|u|dHd−1 .

In the optimal configuration h is proportional to the trace of u on the boundary

Therefore, the optimization problem can be rewritten as

min
{

1
2

∫
Ω

|∇u|2 dx +
1

2m

(∫
∂Ω

|u|dHd−1
)2
−
∫

Ω

fu dx : u ∈ H1(Ω)

}
.
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Existence and uniqueness

min
{

1
2

∫
Ω

|∇u|2 dx +
1

2m

(∫
∂Ω

|u|dHd−1
)2
−
∫

Ω

fu dx : u ∈ H1(Ω)

}

Poincaré inequality enforces coercivity. There exists in fact a constant C such
that ∫

Ω

|∇u|2 dx +
(∫

∂Ω

|u|dHd−1
)2
≥ C

∫
Ω

|u|2 dx

Moreover

Proposition
Assume Ω is connected. Then the functional

u 7→ F (u) =
1
2

∫
Ω

|∇u|2 dx +
1

2m

(∫
∂Ω

|u|dHd−1
)2

is strictly convex on H1(Ω), hence for every f ∈ L2(Ω) the minimization
problem admits a unique solution.
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Example 1 One ball. Ω = BR

Let Ω = BR and f = 1.

Then

min
{

1
2

∫
BR

|∇u|2 dx +
1

2m

(∫
∂BR

|u|dHd−1
)2
−
∫

BR

u dx : u ∈ H1(BR)

}
is achieved by

u(r) =
R2 − r2

2d
+ c

Optimizing with respect to c we have copt = m
d2ωd Rd−2 Remember that

h = m
|u|∫

∂Ω
|u|dHd−1 .

Therefore the optimal insulation is given by a constant thickness:

h =
m

dωdRd−1
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Example 2 Two balls. Ω = BR1 ∪ BR2

Since Ω is disconnected there is no uniqueness.
Explicit computation gives

u(r) =
R2

j − r2

2d
+ cj j = 1,2

There are two different cases

If R1 = R2 = R then any choice of c1 and c2 is optimal provided

c1 + c2 =
m

d2ωdRd−2 .

We can split the insulator between the two balls as we wish, but on each
one the distribution around the boundary is constant.
If R1 > R2 then c1 = 0 and c2 = m

d2ωd Rd−2
2

. All the insulator must be

uniformly distributed around the smaller ball, while the larger ball remains
not insulated.
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Example 3 The ring. Ω = BR1 \ BR2

There exists a threshold m0

m > m0 m ≤ m0
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A problem of insulation (non-stationary case)
In the non stationary case we consider the parabolic heat eqution

ut = ∆u + f in Ω

ut = δ∆u in Σε

u = 0 on ∂(Ω ∪ Σε)
∂u−

∂ν
= δ

∂u+

∂ν
on ∂Ω.

for which it is interesting to consider the eigenvalue problem
−∆u = λu in Ω

−δ∆u = λu in Σε

u = 0 on ∂(Ω ∪ Σε)
∂u−

∂ν
= δ

∂u+

∂ν
on ∂Ω.

The first eigenvalue λ provides the heat loss rate.

Again we consider the limit ε, δ → 0.
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The limit as ε, δ → 0

If ε = o(δ) then we get Dirichlet Laplacian eigenvalue problem in Ω{
−∆u = λu in Ω

u = 0 on ∂Ω

If δ = o(ε) then we get Neumann Laplacian eigenvalue problem in Ω−∆u = λu in Ω
∂u
∂ν

= 0 on ∂Ω

If ε = δ we get again Robin Laplacian eigenvalue problem−∆u = λu in Ω

h
∂u
∂ν

+ u = 0 on ∂Ω
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Optimization of the eigenvalue
The first Robin eigenvalue λ(h) is also characterized by

λ(h) = inf

{∫
Ω
|∇u|2 dx +

∫
∂Ω

h−1u2 dHd−1∫
Ω

u2 dx
: u ∈ H1(Ω), u 6= 0

}
.

Any u achieving such a minimum is an eigenfunction.

The optimization consists in minimizing the heat loss rate

min
{
λ(h) : h ∈ Hm

}
.

Therefore

min
h∈Hm

inf

{∫
Ω
|∇u|2 dx +

∫
∂Ω

h−1u2 dHd−1∫
Ω

u2 dx
: u ∈ H1(Ω), u 6= 0

}
.

And again interchanging the minimization we get...
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Optimization of the eigenvalue

min
{
λ(h) : h ∈ Hm

}
=

min


∫

Ω
|∇u|2 dx + 1

m

( ∫
∂Ω
|u|dHd−1

)2∫
Ω

u2 dx
: u ∈ H1(Ω)

 .

Let u be a minimizer, again the optimal density hopt is proportional to u

hopt = m
u∫

∂Ω
u dHd−1 .
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Optimization on the ball

Theorem

Let Ω be a ball. Then there exists m0 > 0 such that the solution of the
variational problem is radial if m > m0, while the solution is not radial for
0 < m < m0. As a consequence, the optimal density hopt is not constant if
m < m0.

mm0

λ

λN

λD
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Optimization on the ball
The picture is therefore the following

m > m0 m < m0
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Thank you!
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