Isoperimetric inequalities for spectrum of Laplacian on surfaces

Nikolai Nadirashvili (CNRS, Marseille, France)

Luminy

2016

Nikolai Nadirashvili (CNRS, Marselsoperimetric inequalities for spectrum of Lapl

Let M be a closed surface and g be a Riemannian metric on M. Let us consider the Laplace-Beltrami operator

$$\Delta f = -\frac{1}{\sqrt{|g|}} \frac{\partial}{\partial x^{i}} \left(\sqrt{|g|} g^{ij} \frac{\partial f}{\partial x^{j}} \right),$$

and its eigenvalues

$$0 = \lambda_0(M,g) < \lambda_1(M,g) \leqslant \lambda_2(M,g) \leqslant \lambda_3(M,g) \leqslant \dots$$
(1)

Let us denote by $m(M, g, \lambda_i)$ the multiplicity of the eigenvalue $\lambda_i(M, g)$, Let us consider a functional

$$\overline{\lambda}_i(M,g) = \lambda_i(M,g) Area(M,g),$$

where Area(M, g) is the area of M with respect to metric g.

Yang and Yau proved (1980) that if ${\it M}$ is an orientable surface of genus γ then

$$ar{\lambda}_1(M,g)\leqslant 8\pi\left[rac{\gamma+3}{2}
ight],$$

イロト イポト イヨト イヨト

Yang and Yau proved (1980) that if ${\it M}$ is an orientable surface of genus γ then

$$ar{\lambda}_1(M,g)\leqslant 8\pi\left[rac{\gamma+3}{2}
ight],$$

Korevaar proved (1993) that there exists a constant C such that for any i > 0 and any compact surface M of genus γ the following upper bound holds,

$$\bar{\lambda}_i(M,g) \leqslant C(\gamma+1)i.$$

- 4 週 ト - 4 三 ト - 4 三 ト

Yang and Yau proved (1980) that if M is an orientable surface of genus γ then

$$ar{\lambda}_1(M,g)\leqslant 8\pi\left[rac{\gamma+3}{2}
ight],$$

Korevaar proved (1993) that there exists a constant C such that for any i > 0 and any compact surface M of genus γ the following upper bound holds,

$$\bar{\lambda}_i(M,g) \leqslant C(\gamma+1)i.$$

It follows that the functionals $\bar{\lambda}_i(M,g)$ are bounded from above and it is a natural question to find for a given compact surface M and number $i \in \mathbb{N}$ the quantity

$$\Lambda_i(M) = \sup_g \bar{\lambda}_i(M,g),$$

where the supremum is taken over the space of all Riemannian metrics g on M.

Hersch proved (1970) that

$$\Lambda_1(\mathbb{S}^2) = 8\pi.$$

3

イロト イポト イヨト イヨト

Hersch proved (1970) that

$$\Lambda_1(\mathbb{S}^2)=8\pi.$$

Li and Yau proved (1982)

 $\Lambda_1(\mathbb{R}P^2) = 12\pi$

- 32

イロト イポト イヨト イヨト

Hersch proved (1970) that

$$\Lambda_1(\mathbb{S}^2)=8\pi.$$

Li and Yau proved (1982)

$$\Lambda_1(\mathbb{R}P^2) = 12\pi$$

N.N. proved (2002) that

$$\Lambda_2(\mathbb{S}^2)=16\pi.$$

A B A A B A

4 A N

Hersch proved (1970) that

$$\Lambda_1(\mathbb{S}^2)=8\pi.$$

Li and Yau proved (1982)

$$\Lambda_1(\mathbb{R}P^2) = 12\pi$$

N.N. proved (2002) that

$$\Lambda_2(\mathbb{S}^2)=16\pi.$$

 $\Lambda_1(M)$ is also known for $\mathbb{T}^2, \mathbb{K}^2, \mathbb{T}^2 \# \mathbb{T}^2$: N.N., Jakobson-N.N.-Polterovich, ElSoufi-Giacomini-Jazar, Jakobson-Levitin-N.N.-Nigam-Polterovich,

Theorem (N.N., Y.Sire)

$$\Lambda_3(\mathbb{S}^2)=24\pi.$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Theorem (N.N., Y.Sire)

$$\Lambda_3(\mathbb{S}^2)=24\pi.$$

Conjecture. The following holds

$$\Lambda_k(\mathbb{S}^2)=8\pi k.$$

イロト イヨト イヨト イヨト

Theorem (N.N., Y.Sire)

$$\Lambda_3(\mathbb{S}^2)=24\pi.$$

Conjecture. The following holds

$$\Lambda_k(\mathbb{S}^2)=8\pi k.$$

Theorem (N.N., A. Penskoi)

$$\Lambda_2(\mathbb{R}P^2)=24\pi.$$

Nikolai Nadirashvili (CNRS, Marselsoperimetric inequalities for spectrum of Lapl

(日) (同) (三) (三)

Multiplicity of eigenvalues

For eigenvalue λ_i of Δ on (M, g) denote by m_i its multiplicity

Cheng proved (1976)

$$m_i \leq C(i, \chi(M))$$

on \mathbb{S}^2

$$m_i \leq 2i+1$$

Sharp bounds for m_1 are known for $\chi(M) \ge -3$: Besson, N.N., Sévennec

Theorem (Colin de Verdière)

$$\sup_{g} m_{i} \geq chr(M) - 1 = [\frac{1}{2}(7 + \sqrt{49 - 24\chi(M)})] - 1$$

Conjecture. (Colin de Verdière)

$$\sup_{g} m_i = chr(M) - 1$$

Nikolai Nadirashvili (CNRS, Marselsoperimetric inequalities for spectrum of Lapl

2016 1 / 1

(人間) とうき くうとう う

Theorem (M. and T. Hoffmann-Ostenhof, N.N) On S^2 the inequalities hold

$$m_2 \leq 3, m_3 \leq 5$$

Theorem (N.N., A.Penskoi)	
On $\mathbb{R}P^2$ the inequality holds	
	$m_2 \leq 6$

Conjecture.

 $m_i \leq C(\chi(M))\sqrt{i}$

- ∢ ∃ ▶

.∋...>

Theorem (Courant Nodal Domain Theorem)

An eigenfunction corresponding to the eigenvalue λ_i has at most i + 1 nodal domains.

Proposition Let u be an eigenfunction corresponding to the eigenvalue λ_i . Let x_j , j = 1, ..., n, be zeroes of u of order $m_j > 1$. Then

$$i+1 \ge \chi(M)-n+\sum_{j=1}^n m_j.$$

Theorem (Bers, 1955)

Let (M, g) be a compact 2-dimensional closed Riemannian manifold and x_0 is a point on M. Then there exist its neighbourhood chart U with coordinates $x = (x^1, x^2) \in U \subset \mathbb{R}^2$ centered at x_0 such that for any eigenfunction u of the Laplace-Beltrami operator on M there exists an integer $n \ge 0$ and a non-trivial homogeneous harmonic polynomial $P_n(x)$ of degree n on the Euclidean plane \mathbb{R}^2 such that $u(x) = P_n(x) + O(|x|^{n+1})$

Maximizing metrics and bubbling phenomen

Theorem. (N.N., Y.Sire) Let (M, g) be a Riemannian surface. For any $k \ge 1$ and a sequence of metrics $\{g'_i\}_{i \ge 1} \in [g]$ of the form $g'_i = \mu'_i g$ such that

$$\lim_{i\to\infty}\lambda_k(g_i')=\Lambda_k(M,[g])$$

there exists a subsequence of metrics $\{g_n\}_{n \ge 1} = \{g'_{i_n}\}_{n \ge 1} \in [g]$, where $g_n = \mu_n g$, such that

$$\lim_{n\to\infty}\lambda_k(g_n)=\Lambda_k(M,[g])$$

and a probability measure μ such that

Nikolai Nadirashvili (CNRS, Marsels

$$\mu_n \rightharpoonup^* \mu$$
 weakly in measure as $n \to +\infty$.

Moreover, the following decomposition holds,

$$\mu = \mu_r + \mu_s \qquad (\Box > \langle \Box > \langle \Xi > \langle \Xi > \langle \Xi > \langle \Xi > \langle Z \rangle \rangle)$$
operimetric inequalities for spectrum of Lapl
$$2016 \qquad 1/1$$

where μ_r is a nonnegative C^{∞} function and μ_s is the singular part given, if not trivial, by the formula

$$\mu_{s} = \sum_{i=1}^{K} c_{i} \delta_{x_{i}}$$

for some $K \ge 1$, $c_i \ge 0$ and some "bubbling points" $x_i \in M$. Furthermore, the number K satisfies the bound

$$K \leq k-1.$$

If we denote by U the eigenspace of the Laplace-Beltrami operator on $(M, \mu_r g)$ associated to the eigenvalue $\Lambda_k(M, [g])$, then there exists a family of eigenvectors $\{u_1, \ldots, u_l\} \subset U$ such that the map

$$\varphi = (u_1, \ldots, u_l) : M \to \mathbb{R}^l$$

is a harmonic immersion into the sphere \mathbb{S}^{l-1} .

Harmonic maps from \mathbb{S}^2 to \mathbb{S}^4 and their singularities

Definition

Let (M, g) and (N, h) be Riemannian manifolds. A smooth map $f: M \longrightarrow N$ is called harmonic if f is an extremal for the energy functional $E[f] = \int_M |df(x)|^2 dVol_g$.

Proposition Let M, N be Riemannian manifolds. If $f : M \hookrightarrow N$ is an isometric immersion, then f is harmonic if and only if f is minimal. **Proposition** A harmonic map $\mathbb{S}^2 \hookrightarrow \mathbb{S}^n$ is automatically conformal and hence minimal in the induced metric.

Theorem (Takahashi1966)

An isometric immersion

$$f: M \hookrightarrow \mathbb{S}_R^n \subset \mathbb{R}^{n+1}, \quad f = (f^1, \dots, f^{n+1}),$$

is a minimal isometric immersion of a manifold M into the sphere \mathbb{S}_R^n of radius R, if and only if f^i are eigenfunctions of the Laplace-Beltrami operator Δ ,

$$\Delta f^i = \lambda f^i,$$

with the same eigenvalue λ given by formula

$$\lambda = \frac{\dim M}{R^2},$$

Theorem (Calabi1967, Barbosa1975)

Let $F : \mathbb{S}^2 \longrightarrow \mathbb{S}^n$ be a harmonic immersion with branch points such that the image is not contained in a hyperplane. Then

- (i) the area of S² with respect to the induced metric (S², F*g) is an integer multiple of 4π;
- (ii) *n* is even, n = 2m, and

$$Area(\mathbb{S}^2, F^*g) \geq 2\pi m(m+1).$$

Definition

If $Area(\mathbb{S}^2, F^*g) = 4\pi d$, then we say that F is of harmonic degree d.

We obtain immediately a lower bound for the harmonic degree. **Proposition** Let $F : \mathbb{S}^2 \longrightarrow \mathbb{S}^{2m}$ be a harmonic immersion with branch points such that the image is not contained in a hyperplane. Then $d \ge \frac{m(m+1)}{2}$.

・ロン ・聞と ・ヨン ・ヨン … ヨ

Proposition It is sufficient for our goals to consider harmonic immersions with branch points $F : \mathbb{S}^2 \longrightarrow \mathbb{S}^4$ (such that the image is not contained in a hyperplane) of harmonic degree $d \ge 3$ and $F : \mathbb{S}^2 \longrightarrow \mathbb{S}^2$.

< 回 ト < 三 ト < 三 ト

Proposition It is sufficient for our goals to consider harmonic immersions with branch points $F : \mathbb{S}^2 \longrightarrow \mathbb{S}^4$ (such that the image is not contained in a hyperplane) of harmonic degree $d \ge 3$ and $F : \mathbb{S}^2 \longrightarrow \mathbb{S}^2$.

Definition (Penrose twistor map)

$$\mathcal{T}:\mathbb{CP}^3\longrightarrow\mathbb{HP}^1\cong\mathbb{S}^4,\quad \mathcal{T}([z_0:z_1:z_2:z_3])=[z_0+z_1j:z_2+z_3j].$$

Let z be a conformal parameter on \mathbb{S}^2 .

Definition

Let us call a curve

$$f: \mathbb{S}^2 \longrightarrow \mathbb{CP}^3, \quad f(z) = [f_0(z): f_1(z): f_2(z): f_3(z)],$$

horizontal if

$$f_1'f_2 - f_1f_2' + f_3'f_4 - f_3f_4' = 0.$$

Nikolai Nadirashvili (CNRS, Marselsoperimetric inequalities for spectrum of Lapl

2016 1 / 1

▲ □□ ▶ ▲ 三 ▶

For each harmonic immersion with branch points $F : \mathbb{S}^2 \longrightarrow \mathbb{S}^4$ there exist either holomorphic or antiholomorphic horizontal curve $f : \mathbb{S}^2 \longrightarrow \mathbb{CP}^3$, such that $T \circ f = F$, For each (anti)holomorphic horizontal curve $f : \mathbb{S}^2 \longrightarrow \mathbb{CP}^3$ the map $F = T \circ f : \mathbb{S}^2 \longrightarrow \mathbb{S}^4$ is a harmonic immersion with branched points. If a harmonic immersion $F : \mathbb{S}^2 \longrightarrow \mathbb{S}^4$ has a holomorphic (antiholomorphic) horizontal curve $f : \mathbb{S}^2 \longrightarrow \mathbb{CP}^3$, then $A \circ F : \mathbb{S}^2 \longrightarrow \mathbb{S}^4$ has an antiholomorphic (holomorphic) horizontal curve.

Definition

An (anti)holomorphic horizontal curve f appearing in Bryant Theorem is called the lift of an harmonic immersion F.

く得た くほた くほん しほ

Let $F : \mathbb{S}^2 \longrightarrow \mathbb{S}^4$ be a harmonic immersion with branched points of harmonic degree d with holomorphic lift $f : \mathbb{S}^2 \longrightarrow \mathbb{CP}^3$. Then $f : \mathbb{S}^2 \longrightarrow \mathbb{CP}^3$ is an algebraic curve of degree d.

Let $F : \mathbb{S}^2 \longrightarrow \mathbb{S}^4$ be a harmonic immersion with branched points of harmonic degree d with holomorphic lift $f : \mathbb{S}^2 \longrightarrow \mathbb{CP}^3$. Then $f : \mathbb{S}^2 \longrightarrow \mathbb{CP}^3$ is an algebraic curve of degree d.

Theorem (Bolton-Woodward 2001)

For a linearly full holomorphic horisontal curve in \mathbb{CP}^3 of degree d if d = 3 then F does not have neither branch points nor umbilics, if d > 3 then F has at least one branch point or umbilic.

Let $F : \mathbb{S}^2 \longrightarrow \mathbb{S}^4$ be a harmonic immersion with branched points of harmonic degree d with holomorphic lift $f : \mathbb{S}^2 \longrightarrow \mathbb{CP}^3$. Then $f : \mathbb{S}^2 \longrightarrow \mathbb{CP}^3$ is an algebraic curve of degree d.

Theorem (Bolton-Woodward 2001)

For a linearly full holomorphic horisontal curve in \mathbb{CP}^3 of degree d if d = 3 then F does not have neither branch points nor umbilics, if d > 3 then F has at least one branch point or umbilic.

Theorem (Loo 1989 Kotani 1994)

The set \mathcal{M} of all minimal immersions from \mathbb{S}^2 into \mathbb{S}^4 is connected for fixed area.

・ 同 ト ・ ヨ ト ・ ヨ ト