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The sum functional

We are dealing with the shape optimization problem:

min
{
λ1(Ω) + · · ·+ λk(Ω) : Ω ⊂ Rd , open, |Ω| = 1

}
,

which is equivalent with a scaling argument to

min
{
λ1(Ω) + · · ·+ λk(Ω) + Λ|Ω| : Ω ⊂ Rd , open

}
,

for some Lagrange multiplier Λ > 0.
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The free boundary formulation

For a vector V = (v1, . . . , vk) ∈ H1(Rd ,Rk), we consider the

energy functional:

F0(V ) :=

∫
Rd

|∇V |2 dx + Λ|{|V | > 0}|

=
k∑

i=1

∫
Rd

|∇vi |2 dx + Λ|{v21 + · · ·+ v2k > 0}|.

The vector of normalized eigenfunctions U = (u1, . . . , uk) for the

shape optimization problem for the sum of eigenvalues solves:

min

{
F0(V ) : V ∈ H1(Rd ,Rk),

∫
Rd

vivj dx = δij

}
.

Dario Mazzoleni Regularity for spectral functionals: Part II 4 / 18



Introduction (brief recall of the sum case)
Extension to more general functionals

Regularity of optimal shapes: the sum functional

Theorem (M., Terracini, Velichkov)

Let Ω∗ be an optimal set for the problem:

min
{
λ1(Ω) + · · ·+ λk(Ω) : Ω ⊂ Rd , open, |Ω| = 1

}
,

then Ω∗ is connected and its topological boundary is the disjoint

union of a regular part Reg(∂Ω∗) and of a singular set Sing(∂Ω∗).
Reg(∂Ω∗) is relatively open and C∞ regular, while Sing(∂Ω∗) is

relatively closed and such that

If d < d∗, then Sing(∂Ω∗) = ∅,
If d = d∗, then Sing(∂Ω∗) is made by a �nite number of

isolated points,

If d > d∗, then dimH(Sing(∂Ω∗)) ≤ d − d∗.
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Key steps in the proof

Pass to a free-boundary problem

Nondegeneracy

Monotonicity formula

Blow-up analysis

Optimality condition in a viscosity sense

Boundary Harnack and reduction to the one-phase case
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We wish to extend our results to the more general case:

min
{
F (λ1(Ω), . . . , λk(Ω)) : Ω ⊂ Rd , quasi-open, |Ω| = 1

}
,

for functionals F : Rk → R increasing in each variable and lower

semicontinuous.

The case that we have in mind (and we are currently not able to

treat) is

min
{
λk(Ω) : Ω ⊂ Rd , quasi-open, |Ω| = 1

}
,
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What are the main problems?

Free boundary equivalent?

Lagrange multiplier?

Optimality condition (even formally)?

And when λ1 is missing?
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Symmetric and regular functions

De�nition

We say that ϕ ∈ G if ϕ : Sk(R)→ R is C 1 in Sk(R) \ {0} and

ϕ(M) = ϕ(PTMP), for all M ∈ Sk(R), P ∈ Ok(R).

Moreover we consider the restriction ψ of ϕ to the space of the

diagonal matrices, that is, ψ(a1, . . . , ak) = ϕ(diag(a1, . . . , ak)) and

we require the following conditions:
∂ψ
∂ai

> 0 on (R+)k for all i = 1, . . . , k ,

For each i and a1, . . . ai−1, ai+1, . . . , ak > 0, we have

ψ(a1, . . . ai−1, ai , ai+1, . . . , ak)→∞, as ai →∞.
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Examples of ϕ ∈ G:

ϕ(M) = (trace(Mp))1/p, then ψ(a1, . . . , ak) =
(∑k

i=1 a
p
i

)1/p
ϕ(M) = det(M), then ψ(a1, . . . , ak) =

∏k
i=1 ai

Corresponding eigenvalues functionals:(
k∑

i=1

λi (·)p
)1/p

,

k∏
i=1

λi (·)
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Why the class G is nice?

Given U ∈ H1
0 (Ω,Rk), we de�ne the k × k symmetric matrix

M(U) =

(∫
Ω
∇ui · ∇uj dx

)
i ,j=1,...,k

Our goal is to study the problem

min

{
ϕ(M(U)) : U ∈ H1

0 (Ω,Rk),

∫
Ω
uiuj dx = δij

}
Remark (Ramos, Tavares, Terracini): If ϕ ∈ G, then the

minimum is achieved for a U such that M(U) is a diagonal matrix.
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In other words, for ϕ ∈ G:

min

{
ϕ(M(U)) : U ∈ H1

0 (Ω,Rk),

∫
Ω
uiuj dx = δij

}
= min

{
ϕ(M(U)) : U ∈ H1

0 (Ω,Rk),

∫
Ω
uiuj dx = δij

and

∫
Ω
∇ui · ∇uj dx = 0, for i 6= j

}
Remark (Ramos, Tavares, Terracini): If ϕ(M) = ϕ(PTMP) for

all M ∈ Sk(R) and P ∈ Ok(R), then

∂ϕ

∂ξij
(D) = 0,

for all diagonal matrix D when i < j .
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PDE solved by U

For each U ∈ H1
0 (Ω,Rk) optimal for the minimum problem above

with ϕ ∈ G, we have

−ai∆ui =
k∑

j=1

µijuj , ∀ i = 1, . . . , k,

where

ai :=
∂ϕ

∂ξii
(M(U)) > 0,

and, since M(U) is a diagonal matrix, also (µij)i ,j is diagonal, more

precisely

µij = µji := δijai

∫
Ω
|∇ui |2 = δijaiλi (Ω).

In the end, the equation that we get is

−ai∆ui = µiiui , ∀ i = 1, . . . , k .
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Optimality condition and monotonicity functional

The monotonicity functional becomes:

φ(x0, r) :=
1

rd

(∫
Br (x0)

(
k∑

i=1

ai |∇ui |2) dx + Λ|{|U|2 > 0} ∩ Br (x0)|

)

− 1

rd+1

∫
∂Br (x0)

k∑
i=1

aiu
2
i dHd−1

The optimality condition reads as:

k∑
i=1

ai |∇ui |2 = Λ, on ∂{|U| > 0}.
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A small class of functionals?

Problem: not all smooth functions of eigenvalues are smooth (C 1)
symmetric functions.

Good examples are:

λ1 + · · ·+ λk , (λp1 + · · ·+ λpk)1/p,
k∏

i=1

λi .

But...

λk = max
i=1,...k

λi = lim
p→∞

(λp1 + · · ·+ λpk)1/p,

is only Lipschitz continuous.

So an approximation argument is needed when dealing with the

regularity for the functional λk !
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An intermediate step

An easier problem than λk could be the study of functionals:

F : Rk → R,

(locally) Lipschitz continuous, non-decreasing in each variable and

strictly increasing in the �rst variable.

Examples: λ1 + λk , λ
2
1 + λk .
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Problems also in this case?

We need also an approximation in the measure: no clear

Lagrange multiplier!

Approximation of the functional from the class G.
Lipschitz continuity not of all eigenfunctions.
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Thanks!
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