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What shape minimizes n-th eigenvalue λn?
How does the spectrum (analysis) constrain the domain (geometry). . . ?
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Figure: Minimizers of the first 15 Dirichlet eigenvalues (numerical work by Oudet
and later Antunes–Freitas).
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What shape minimizes n-th eigenvalue λn?

Conjecture (Antunes and Freitas)

If Ωn minimizes λn among planar domains of area π,
then Ωn converges to a unit disk as n→∞.

Equivalently, let

N(t) = counting function = #{n : λn ≤ t}.

Then:

Conjecture

If Ωt maximizes N(t) among planar domains of area π,
then Ωt converges to a unit disk as t →∞.
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Motivation for disk to maximize high freq. counting fn.

Two-term Weyl Asymptotic

For domain Ω in 2-dimensions,

N(t) = a|Ω|t − b|∂Ω|
√
t + o(

√
t) as t →∞,

where a, b > 0 are constants.

Putting isoperimetric ineq. |∂Ω| > |∂D| into Weyl implies for Ω 6= D that

N(t) < ND(t) ∀ large t.

Why does this argument not prove the conjecture?
Because we fixed Ω and then let t →∞.
Instead we must minimize w.r.t. Ω before letting t →∞!

Three step heuristic for attacking the problem (Antunes–Freitas)
1. Show optimizing domains {Ωt} form a compact family.
2. Control Weyl remainder uniformly for such families.
3. Conclude from quantitative isoperimetric ineq. that Ωt approaches disk.
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Special case — Dirichlet rectangles

For t > 0, let

Ns(t) = eigenvalue counting function for rectangle of area 1

with sidelengths s and 1/s

s∗(t) = s-value maximizing Ns(t)

Theorem (Antunes–Freitas 2013)

Optimal rectangles converge to unit square:

s∗(t)→ 1 as t →∞.

Proof sketch
Express eigenvalue counting as lattice point counting (see next page).
Weyl asymptotic with controlled remainder is known from number theory
(like Gauss Circle Problem).
Implement the three-step heuristic. . .
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Express Dirichlet rectangle eigenvalues using lattice points

eigenvalue

π2
≡
( j

1/s

)2
+
(k
s

)2
≤ r2 where j , k > 0

⇐⇒ (j , k) lies inside ellipse of semiaxes r/s and rs.

So eigenvalues are counted by

Ns(r) = #
{

lattice points (j , k) inside rΓ(s)
}

where
Γ(s) = ellipse of area 1 with semiaxes 1/s and s.

Let
s∗(r) = s-value maximizing Ns(r).

Antunes–Freitas theorem says s∗(r)→ 1 as r →∞
(rectangle minimizing n-th eigenvalue tends to a square)
i.e., ellipse maximizing the first-quadrant lattice count tends to a circle.
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Circle (s = 1) is generally not optimal at a finite radius r !!!

Figure: Compare circle s = 1 (solid) with ellipse s = 1.15 (dashed), for r = 4.96.
Ellipse encloses more points than circle: N1(4.96) = 13 and N1.15(4.96) = 16.
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General case: optimal stretching for lattice point counting
Γ: strongly concave C 2-curve decreasing from (0, 1) to (1, 0), with
“monotonic 2nd deriv.”
Γ(s): “generalized ellipse” obtained from Γ, with semiaxes s and 1/s

Theorem (Laugesen–Liu 2016, on ArXiv)

Optimal shape enclosing most lattice points is “balanced” in the limit:

s∗(r)→ 1 as r →∞.

Special case: Γ = quarter circle gives Antunes–Freitas Theorem.

Proof Step 1 (compact family) — Obtain two-term inequality

Ns(r) ≤ Area
(
rΓ
)
− c̃rs

by elementary geometry, where constant c̃ = c̃(Γ) > 0 is not sharp. Then

Area
(
rΓ
)
− cr + o(r) = N1(r) by counting fn. asymptotic

≤ Ns∗(r)(r) ≤ Area
(
rΓ
)
− c̃rs∗(r).

Hence lim supr→∞ s∗(r) ≤ c/c̃ <∞, so stretch factor is bounded.
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Idea for proving the two-term inequality:

number of lattice points

≤ area of Riemann rectangles

≤ (area under curve)− (area of triangles)

and

(area of triangles) ≥ 1

2

(
f (0)− f (L/2)

)
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General curves, cont.

Proof Step 2 (uniform counting fn. remainder) — Sharp two-term
counting fn. asymptotic with controlled remainder:

Ns(r) = Area
(
rΓ
)
− cr(s + 1/s) + o(r) (s2 + 1/s2).

Remainder is uniformly controlled since s and 1/s are bounded by Step 1.
Method for Step 2:
Euler–Maclaurin summation, exponential sums, and van der Corput lemma
from number theory (following Krätzel 2004). Or use Huxley’s estimates.

Proof Step 3 (like a quantitative isoperimetric inequality) — replace
non-sharp inequality in Step 1 with sharp asymptotic from Step 2, deduce

lim sup
r→∞

(
s∗(r) +

1

s∗(r)

)
≤ 2.

Conclude s∗(r)→ 1, so optimal stretch factor for general concave region
tends to 1.
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Optimal p-ellipses for lattice point counting

Γ: p-circle, |x |p + |y |p = 1 Γ(s): p-ellipse with semiaxes s, 1/s

Theorem (Laugesen–Liu 2016)

Optimal p-ellipse approaches p-circle:

s∗(r)→ 1 as r →∞,

for each 1 < p <∞.

Previous theorem does not apply, since p-ellipse behaves badly at axes:

f ′′(0) =

{
−∞ 1 < p < 2,

0 2 < p <∞.

So p-ellipse (p 6= 2) is either not C 2-smooth or else not strongly concave.
We avoid these bad points by counting lattice points (j , k) directly when
0 < j , k < r1−1/p.
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Optimal 1-ellipses for lattice point counting

Γ: 1-circle, |x |+ |y | = 1 Γ(s): 1-ellipse with semiaxes s, 1/s

Figure: Graph of s = s∗(r) for 1-ellipses

Optimal 1-ellipse does not approach 1-circle, numerically, as r →∞.
i.e. optimal right triangle does not approach 45–45-90◦ triangle.

Odd integer lattice points exhibit same phenomenon.
Spectral interpretation: minimize λn w.r.t. family of harmonic oscillator
potentials (sx)2 + (y/s)2? Optimal s does not converge to 1 as n→∞.
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Current work (PhD thesis for Shiya Liu)
Maxmize counting fn. for shifted and deformed lattices, hence minimize λn
for separated Schrödinger potentials.

1. Shifted lattice (j + σ, k + τ) with j , k > 0

Positive shift: if σ, τ ≥ 0 then s∗(r)→
√

(τ + 1/2)/(σ + 1/2)

Negative shift: if σ < 0 or τ < 0 then ∃ curve Γ such that s∗(r)→∞

2. Deformed lattice (in progress)
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Related work

Higher dimensions
van den Berg and Gittins (2016) extend Antunes–Freitas to rectangular
boxes in 3 dimensions.
Optimal box for minimizing λn approaches a cube as n→∞.
Open in dimension ≥ 4.

Riesz means of eigenvalues
Larson (last week on ArXiv) treats convex domains (some restrictions). He
maximizes the Riesz mean

∑∞
n=1(Λ− λn)γ+ where Λ > 0 and γ ≥ 3/2.

Neumann eigenvalue counting
van den Berg, Buçur and Gittins (2016) prove Neumann analogue of
Antunes–Freitas: the optimal rectangle for maximizing µn approaches
square as n→∞. That is, they minimize the count of nonnegative integer
lattice points (j , k ≥ 0) inside ellipses.

Laugesen and Liu (2016) extend from ellipses to general concave curves.

Conclusion
Evidence is mounting for symmetry of eigenvalue optimizers as n→∞.
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