Optimal stretching for lattice points and eigenvalues

Richard Laugesen and Shiya Liu

University of Illinois at Urbana-Champaign

Shape Optimization and Isoperimetric and Functional Inequalities

Conference at CIRM Luminy

November 22, 2016

What shape minimizes *n*-th eigenvalue λ_n ?

How does the spectrum (analysis) constrain the domain (geometry)...?

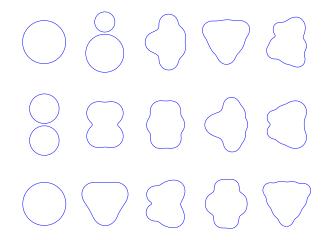


Figure: Minimizers of the first 15 Dirichlet eigenvalues (numerical work by Oudet and later Antunes–Freitas).

Richard Laugesen and Shiya Liu (U. Illinois) Optimal stretching for lattice points

What shape minimizes *n*-th eigenvalue λ_n ?

Conjecture (Antunes and Freitas)

If Ω_n minimizes λ_n among planar domains of area π , then Ω_n converges to a unit disk as $n \to \infty$.

Equivalently, let

$$N(t) =$$
counting function $= \#\{n : \lambda_n \leq t\}.$

Then:

Conjecture

If Ω_t maximizes N(t) among planar domains of area π , then Ω_t converges to a unit disk as $t \to \infty$.

Motivation for disk to maximize high freq. counting fn.

Two-term Weyl Asymptotic

For domain Ω in 2-dimensions,

$${\sf N}(t)={\sf a}|\Omega|t-{\sf b}|\partial\Omega|\sqrt{t}+{\sf o}(\sqrt{t}) \quad {\sf as} \; t o\infty,$$

where a, b > 0 are constants.

Putting isoperimetric ineq. $|\partial\Omega|>|\partial\mathbb{D}|$ into Weyl implies for $\Omega\neq\mathbb{D}$ that

 $N(t) < N_{\mathbb{D}}(t) \quad \forall \text{ large } t.$

Why does this argument not prove the conjecture? Because we fixed Ω and then let $t \to \infty$.

Instead we must minimize w.r.t. Ω before letting $t \to \infty$!

Three step heuristic for attacking the problem (Antunes-Freitas)

- 1. Show optimizing domains $\{\Omega_t\}$ form a compact family.
- 2. Control Weyl remainder uniformly for such families.
- 3. Conclude from quantitative isoperimetric ineq. that Ω_t approaches disk.

4 / 14

Special case — Dirichlet rectangles

For t > 0, let

 $N_s(t) = {
m eigenvalue}$ counting function for rectangle of area 1 with sidelengths s and 1/s

 $s^*(t) = s$ -value maximizing $N_s(t)$

Theorem (Antunes–Freitas 2013)

Optimal rectangles converge to unit square:

 $s^*(t) o 1$ as $t o \infty$.

Proof sketch

Express eigenvalue counting as lattice point counting (see next page). Weyl asymptotic with controlled remainder is known from number theory (like Gauss Circle Problem). Implement the three-step heuristic... Express Dirichlet rectangle eigenvalues using lattice points

$$\frac{\text{eigenvalue}}{\pi^2} \equiv \left(\frac{j}{1/s}\right)^2 + \left(\frac{k}{s}\right)^2 \le r^2 \quad \text{where } j, k > 0$$
$$\iff (j, k) \text{ lies inside ellipse of semiaxes } r/s \text{ and } rs.$$

So eigenvalues are counted by

$$N_s(r) = \#\{$$
lattice points (j, k) inside $r\Gamma(s)\}$

where

$$\Gamma(s) =$$
 ellipse of area 1 with semiaxes $1/s$ and s .

Let

$$s^*(r) = s$$
-value maximizing $N_s(r)$.

Antunes–Freitas theorem says $s^*(r) \to 1$ as $r \to \infty$ (rectangle minimizing *n*-th eigenvalue tends to a square) i.e., ellipse maximizing the first-quadrant lattice count tends to a circle.

Circle (s = 1) is generally not optimal at a finite radius r!!!

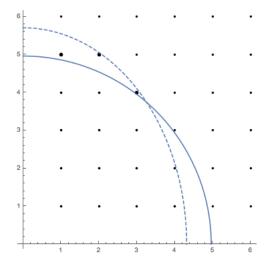


Figure: Compare circle s = 1 (solid) with ellipse s = 1.15 (dashed), for r = 4.96. Ellipse encloses more points than circle: $N_1(4.96) = 13$ and $N_{1.15}(4.96) = 16$.

General case: optimal stretching for lattice point counting

- Γ : strongly concave C^2 -curve decreasing from (0, 1) to (1, 0), with "monotonic 2nd deriv."
- $\Gamma(s)$: "generalized ellipse" obtained from Γ , with semiaxes s and 1/s

Theorem (Laugesen-Liu 2016, on ArXiv)

Optimal shape enclosing most lattice points is "balanced" in the limit:

 $s^*(r) o 1$ as $r o \infty$.

Special case: $\Gamma =$ quarter circle gives Antunes–Freitas Theorem.

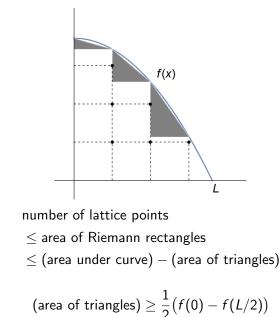
Proof Step 1 (compact family) — Obtain two-term inequality $N_s(r) \le \operatorname{Area}(r\Gamma) - \widetilde{c}rs$

by elementary geometry, where constant $\widetilde{c} = \widetilde{c}(\Gamma) > 0$ is not sharp. Then

Area
$$(r\Gamma) - cr + o(r) = N_1(r)$$
 by counting fn. **asymptotic**
 $\leq N_{s^*(r)}(r) \leq \text{Area}(r\Gamma) - \tilde{c}rs^*(r).$

Hence $\limsup_{r \to \infty} s^*(r) \leq c/\widetilde{c} < \infty$, so stretch factor is bounded.

Idea for proving the two-term inequality:



and

General curves, cont.

Proof Step 2 (uniform counting fn. remainder) — Sharp two-term counting fn. asymptotic with controlled remainder:

$$N_s(r) = \operatorname{Area}(r\Gamma) - cr(s+1/s) + o(r)(s^2+1/s^2).$$

Remainder is uniformly controlled since s and 1/s are bounded by Step 1. Method for Step 2:

Euler-Maclaurin summation, exponential sums, and van der Corput lemma from number theory (following Krätzel 2004). Or use Huxley's estimates.

Proof Step 3 (like a quantitative isoperimetric inequality) — replace non-sharp inequality in Step 1 with sharp asymptotic from Step 2, deduce

$$\limsup_{r\to\infty}\left(s^*(r)+\frac{1}{s^*(r)}\right)\leq 2.$$

Conclude $s^*(r) \to 1$, so optimal stretch factor for general concave region tends to 1.

Optimal *p*-ellipses for lattice point counting

 Γ : *p*-circle, $|x|^p + |y|^p = 1$ $\Gamma(s)$: *p*-ellipse with semiaxes s, 1/s

Theorem (Laugesen–Liu 2016) Optimal p-ellipse approaches p-circle:

$$s^*(r) o 1$$
 as $r o \infty$,

for each 1 .

Previous theorem does not apply, since p-ellipse behaves badly at axes:

$$f''(0) = egin{cases} -\infty & 1$$

So *p*-ellipse ($p \neq 2$) is either not C^2 -smooth or else not strongly concave. We avoid these bad points by counting lattice points (j, k) directly when $0 < j, k < r^{1-1/p}$.

Optimal 1-ellipses for lattice point counting

F: 1-circle, |x| + |y| = 1 F(s): 1-ellipse with semiaxes s, 1/s

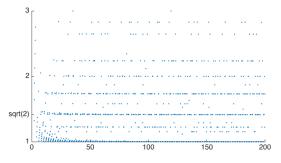


Figure: Graph of $s = s^*(r)$ for 1-ellipses

Optimal 1-ellipse does **not** approach 1-circle, numerically, as $r \to \infty$. i.e. optimal right triangle does **not** approach 45–45-90° triangle.

Odd integer lattice points exhibit same phenomenon.

Spectral interpretation: minimize λ_n w.r.t. family of harmonic oscillator potentials $(sx)^2 + (y/s)^2$? Optimal *s* does **not** converge to 1 as $n \to \infty$.

Richard Laugesen and Shiya Liu (U. Illinois)

Optimal stretching for lattice points

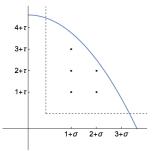
Current work (PhD thesis for Shiya Liu)

Maxmize counting fn. for *shifted* and *deformed* lattices, hence minimize λ_n for separated Schrödinger potentials.

1. Shifted lattice $(j + \sigma, k + \tau)$ with j, k > 0

Positive shift: if $\sigma, \tau \ge 0$ then $s^*(r) \to \sqrt{(\tau + 1/2)/(\sigma + 1/2)}$

Negative shift: if $\sigma < 0$ or $\tau < 0$ then \exists curve Γ such that $s^*(r) \to \infty$



2. Deformed lattice (in progress)

Related work

Higher dimensions

van den Berg and Gittins (2016) extend Antunes-Freitas to rectangular boxes in 3 dimensions.

Optimal box for minimizing λ_n approaches a cube as $n \to \infty$.

Open in dimension > 4.

Riesz means of eigenvalues

Larson (last week on ArXiv) treats convex domains (some restrictions). He maximizes the Riesz mean $\sum_{n=1}^{\infty} (\Lambda - \lambda_n)^{\gamma}_+$ where $\Lambda > 0$ and $\gamma \ge 3/2$.

Neumann eigenvalue counting

van den Berg, Buçur and Gittins (2016) prove Neumann analogue of Antunes–Freitas: the optimal rectangle for maximizing μ_n approaches square as $n \to \infty$. That is, they minimize the count of nonnegative integer lattice points $(j, k \ge 0)$ inside ellipses.

Laugesen and Liu (2016) extend from ellipses to general concave curves.

Conclusion

Evidence is mounting for symmetry of eigenvalue optimizers as $n \to \infty$.