Regularity for functionals involving perimeter

Guido DE PHILIPPIS, Jimmy LAMBOLEY, Michel PIERRE, Bozhidar VELICHKOV

Université Paris Dauphine, CEREMADE

22/11/16, CIRM

Shape optimization, Isoperimetric and Functional Inequalities

We consider the optimization problem

$$\min \Big\{ P(\Omega) + \mathcal{G}(\Omega): \ \Omega \ \subset D, \ |\Omega| = m \Big\},$$

We consider the optimization problem

$$\min \Big\{ P(\Omega) + \mathcal{G}(\Omega) : \ \Omega \ \subset D, \ |\Omega| = m \Big\},$$

where

• *D* is a (possibly unbounded) set in \mathbb{R}^d , $m \in]0, |D|[$,

We consider the optimization problem

$$\min \Big\{ P(\Omega) + \mathcal{G}(\Omega) : \ \Omega \ \subset D, \ |\Omega| = m \Big\},$$

- *D* is a (possibly unbounded) set in \mathbb{R}^d , $m \in]0, |D|[$,
- *P* is the perimeter in the sense of De Giorgi,

We consider the optimization problem

$$\min \Big\{ P(\Omega) + \mathcal{G}(\Omega) : \Omega \subset D, |\Omega| = m \Big\},$$

- D is a (possibly unbounded) set in \mathbb{R}^d , $m \in]0, |D|[$,
- *P* is the perimeter in the sense of De Giorgi,

$$P(\Omega):=\sup\left\{\int_{\Omega} {\rm div}\phi \,dx \ : \ \phi\in C^1_c(\mathbb{R}^d;\mathbb{R}^d), \ |\phi|\leq 1 \ {\rm on} \ \mathbb{R}^d\right\}=\|\nabla\mathbb{1}_{\Omega}\|_{TV},$$

We consider the optimization problem

$$\min \Big\{ P(\Omega) + \mathcal{G}(\Omega) : \ \Omega \ \subset D, \ |\Omega| = m \Big\},$$

- D is a (possibly unbounded) set in \mathbb{R}^d , $m \in]0, |D|[$,
- *P* is the perimeter in the sense of De Giorgi,

$$P(\Omega) := \sup\left\{\int_{\Omega} \operatorname{div} \phi \, dx \; : \; \phi \in C^1_c(\mathbb{R}^d; \mathbb{R}^d), \; |\phi| \leq 1 \; \text{on} \; \mathbb{R}^d\right\} = \|\nabla \mathbb{1}_{\Omega}\|_{TV},$$

- *G* is one of the following:
 - the Dirichlet energy E_f , with respect to a (possibly sign-changing) function $f \in L^p(D)$;

We consider the optimization problem

$$\min \Big\{ P(\Omega) + \mathcal{G}(\Omega) : \ \Omega \ \subset D, \ |\Omega| = m \Big\},$$

- D is a (possibly unbounded) set in \mathbb{R}^d , $m \in]0, |D|[$,
- *P* is the perimeter in the sense of De Giorgi,

$$\mathsf{P}(\Omega) := \sup\left\{\int_{\Omega} \operatorname{div} \phi \, dx \; : \; \phi \in C^1_c(\mathbb{R}^d; \mathbb{R}^d), \; |\phi| \leq 1 \; \text{on} \; \mathbb{R}^d\right\} = \|\nabla \mathbb{1}_{\Omega}\|_{\mathcal{T}V},$$

- *G* is one of the following:
 - the Dirichlet energy E_f , with respect to a (possibly sign-changing) function $f \in L^p(D)$;

$$E_f(\Omega) = \min\left\{\frac{1}{2}\int_{\mathbb{R}^d} |\nabla u|^2 \, dx - \int_{\mathbb{R}^d} uf \, dx, u \in H^1_0(\Omega)\right\}$$

We consider the optimization problem

$$\min \Big\{ P(\Omega) + \mathcal{G}(\Omega) : \Omega \subset D, |\Omega| = m \Big\},$$

where

- D is a (possibly unbounded) set in \mathbb{R}^d , $m \in]0, |D|[$,
- *P* is the perimeter in the sense of De Giorgi,

$$\mathsf{P}(\Omega) := \sup\left\{\int_{\Omega} \operatorname{div} \phi \, dx \ : \ \phi \in C^1_c(\mathbb{R}^d; \mathbb{R}^d), \ |\phi| \leq 1 \text{ on } \mathbb{R}^d\right\} = \|\nabla \mathbb{1}_{\Omega}\|_{\mathcal{T}V},$$

- *G* is one of the following:
 - the Dirichlet energy E_f , with respect to a (possibly sign-changing) function $f \in L^p(D)$;

$$E_f(\Omega) = \min\left\{\frac{1}{2}\int_{\mathbb{R}^d} |\nabla u|^2 \, dx - \int_{\mathbb{R}^d} uf \, dx, u \in H^1_0(\Omega)\right\}$$

• a spectral functional of the form $F(\lambda_1(\Omega), \ldots, \lambda_k(\Omega))$, where $(\lambda_1(\Omega), \ldots, \lambda_k(\Omega))$ are the first k eigenvalues of the Dirichlet-Laplacian and $F : \mathbb{R}^k \to \mathbb{R}$ is locally Lipschitz continuous and increasing in each variable.

• If $\mathcal{G} = 0$, $D = \mathbb{R}^d$. Isoperimetric inequality.

• If $\mathcal{G} = 0$, $D = \mathbb{R}^d$. Isoperimetric inequality. The ball is solution.

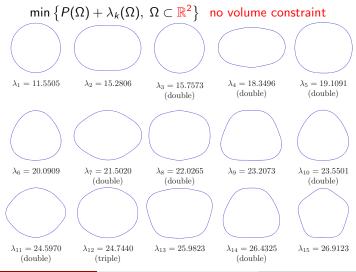
If G = 0, D = ℝ^d. Isoperimetric inequality. The ball is solution.
If G = E₁ or λ₁.

- If $\mathcal{G} = 0$, $D = \mathbb{R}^d$. Isoperimetric inequality. The ball is solution.
- If $\mathcal{G} = E_1$ or λ_1 . Isoperimetric + Saint-Venant/Faber-Krahn inequalities. The ball is solution.

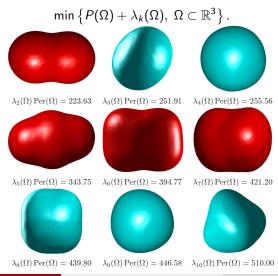
Numerical results by Bogosel-Oudet 2014

$$\min \{P(\Omega) + \lambda_k(\Omega), \ \Omega \subset \mathbb{R}^2\}$$
 no volume constraint

Numerical results by Bogosel-Oudet 2014



Numerical results by Bogosel-Oudet 2014



Jimmy Lamboley (Paris-Dauphine)

• Existence of an optimal set?

• Existence of an optimal set? (among open sets?)

- Existence of an optimal set? (among open sets?)
- Regularity of optimal shapes?

(non exhaustive!)

• $\mathcal{G} = 0$: [Gonzalez-Massari-Tamanini '83],

(non exhaustive!)

- $\mathcal{G} = 0$: [Gonzalez-Massari-Tamanini '83],
- Regularity of quasi-minimizers [Tamanini '88]:

(non exhaustive!)

- $\mathcal{G} = 0$: [Gonzalez-Massari-Tamanini '83],
- Regularity of quasi-minimizers [Tamanini '88]:

 Ω^* is a quasi-minimizer of the perimeter if there exist $C \in \mathbb{R}$, $\alpha \in (d-1, d]$ and $r_0 > 0$ such that for every ball B_r with $r \leq r_0$

 $P(\Omega^*) \leq P(\Omega) + Cr^{\alpha}, \quad \forall \ \Omega \text{ such that } \Omega \Delta \Omega^* \subset B_r \cap D,$

(non exhaustive!)

- $\mathcal{G} = 0$: [Gonzalez-Massari-Tamanini '83],
- Regularity of quasi-minimizers [Tamanini '88]:

 Ω^* is a quasi-minimizer of the perimeter if there exist $C \in \mathbb{R}$, $\alpha \in (d-1, d]$ and $r_0 > 0$ such that for every ball B_r with $r \leq r_0$

 $P(\Omega^*) \leq P(\Omega) + Cr^{\alpha}, \quad \forall \ \Omega \text{ such that } \Omega \Delta \Omega^* \subset B_r \cap D,$

Regularity result:

 $\partial \Omega^* \cap D$ is $C^{1,(\alpha-d+1)/2}$ up to a singular set of dimension less than d-8 (or empty)

(non exhaustive!)

- $\mathcal{G} = 0$: [Gonzalez-Massari-Tamanini '83],
- Regularity of quasi-minimizers [Tamanini '88]:

 Ω^* is a quasi-minimizer of the perimeter if there exist $C \in \mathbb{R}$, $\alpha \in (d-1, d]$ and $r_0 > 0$ such that for every ball B_r with $r \leq r_0$

 $P(\Omega^*) \leq P(\Omega) + Cr^{\alpha}, \quad \forall \ \Omega \text{ such that } \Omega \Delta \Omega^* \subset B_r \cap D,$

Regularity result:

 $\partial \Omega^* \cap D$ is $C^{1,(\alpha-d+1)/2}$ up to a singular set of dimension less than d-8 (or empty)

• $\mathcal{G} = E_f$ with $f \in L^{\infty}$ and non-negative, or $\mathcal{G} = \lambda_1$, *D* bounded: [Landais 2007].

(non exhaustive!)

- $\mathcal{G} = 0$: [Gonzalez-Massari-Tamanini '83],
- Regularity of quasi-minimizers [Tamanini '88]:

 Ω^* is a quasi-minimizer of the perimeter if there exist $C \in \mathbb{R}$, $\alpha \in (d-1, d]$ and $r_0 > 0$ such that for every ball B_r with $r \leq r_0$

$$P(\Omega^*) \leq P(\Omega) + Cr^{\alpha}, \quad \forall \ \Omega \text{ such that } \Omega \Delta \Omega^* \subset B_r \cap D,$$

Regularity result:

 $\partial \Omega^* \cap D$ is $C^{1,(\alpha-d+1)/2}$ up to a singular set of dimension less than d-8 (or empty)

• $\mathcal{G} = E_f$ with $f \in L^{\infty}$ and non-negative, or $\mathcal{G} = \lambda_1$, D bounded: [Landais 2007]. Partial results if $f \in L^p$ with $p \in (d, \infty)$ or if $f \in L^{\infty}$ with no sign assumption [Landais 2008].

(non exhaustive!)

- $\mathcal{G} = 0$: [Gonzalez-Massari-Tamanini '83],
- Regularity of quasi-minimizers [Tamanini '88]:

 Ω^* is a quasi-minimizer of the perimeter if there exist $C \in \mathbb{R}$, $\alpha \in (d-1, d]$ and $r_0 > 0$ such that for every ball B_r with $r \leq r_0$

$$P(\Omega^*) \leq P(\Omega) + Cr^{\alpha}, \quad \forall \ \Omega \text{ such that } \Omega \Delta \Omega^* \subset B_r \cap D,$$

Regularity result:

 $\partial \Omega^* \cap D$ is $C^{1,(\alpha-d+1)/2}$ up to a singular set of dimension less than d-8 (or empty)

• $\mathcal{G} = E_f$ with $f \in L^{\infty}$ and non-negative, or $\mathcal{G} = \lambda_1$, D bounded: [Landais 2007]. Partial results if $f \in L^p$ with $p \in (d, \infty)$ or if $f \in L^{\infty}$ with no sign assumption [Landais

2008].

G = λ_k but no volume constraint: [De Philippis-Velichkov 2014]. Use of sub/sup-solutions [Bucur].

Theorem (De Philippis, L, Pierre, Velichkov 2016)

Suppose that $D \subset \mathbb{R}^d$ is a bounded open set of class C^2 or the entire space $D = \mathbb{R}^d$,

Theorem (De Philippis, L, Pierre, Velichkov 2016)

Suppose that $D \subset \mathbb{R}^d$ is a bounded open set of class C^2 or the entire space $D = \mathbb{R}^d$, and

• $\mathcal{G} = E_f$ with $f \in L^p(D)$, $p \in (d, \infty]$ if D is bounded, and $p \in (d, \infty)$ if $D = \mathbb{R}^d$;

Theorem (De Philippis, L, Pierre, Velichkov 2016)

Suppose that $D \subset \mathbb{R}^d$ is a bounded open set of class C^2 or the entire space $D = \mathbb{R}^d$, and

- $\mathcal{G} = E_f$ with $f \in L^p(D)$, $p \in (d, \infty]$ if D is bounded, and $p \in (d, \infty)$ if $D = \mathbb{R}^d$;
- G = F(λ₁, · · · , λ_k), where F : ℝ^k → ℝ is increasing in each variable and locally Lipschitz continuous.

Theorem (De Philippis, L, Pierre, Velichkov 2016)

Suppose that $D \subset \mathbb{R}^d$ is a bounded open set of class C^2 or the entire space $D = \mathbb{R}^d$, and

- $\mathcal{G} = E_f$ with $f \in L^p(D)$, $p \in (d, \infty]$ if D is bounded, and $p \in (d, \infty)$ if $D = \mathbb{R}^d$;
- G = F(λ₁, · · · , λ_k), where F : ℝ^k → ℝ is increasing in each variable and locally Lipschitz continuous.

Then there exists a solution of the problem

$$\min \Big\{ P(\Omega) + \mathcal{G}(\Omega), \quad \Omega \text{ open}, \ \Omega \subset D, \ |\Omega| = m \Big\},$$

Theorem (De Philippis, L, Pierre, Velichkov 2016)

Suppose that $D \subset \mathbb{R}^d$ is a bounded open set of class C^2 or the entire space $D = \mathbb{R}^d$, and

- $\mathcal{G} = E_f$ with $f \in L^p(D)$, $p \in (d, \infty]$ if D is bounded, and $p \in (d, \infty)$ if $D = \mathbb{R}^d$;
- G = F(λ₁, · · · , λ_k), where F : ℝ^k → ℝ is increasing in each variable and locally Lipschitz continuous.

Then there exists a solution of the problem

$$\min \Big\{ P(\Omega) + \mathcal{G}(\Omega), \quad \Omega \text{ open}, \ \Omega \subset D, \ |\Omega| = m \Big\},$$

and every solution Ω^* is bounded and is a quasi-minimizer of the perimeter with exponent d - d/p or d respectively.

Theorem (De Philippis, L, Pierre, Velichkov 2016)

Suppose that $D \subset \mathbb{R}^d$ is a bounded open set of class C^2 or the entire space $D = \mathbb{R}^d$, and

- $\mathcal{G} = E_f$ with $f \in L^p(D)$, $p \in (d, \infty]$ if D is bounded, and $p \in (d, \infty)$ if $D = \mathbb{R}^d$;
- G = F(λ₁, · · · , λ_k), where F : ℝ^k → ℝ is increasing in each variable and locally Lipschitz continuous.

Then there exists a solution of the problem

$$\min \Big\{ P(\Omega) + \mathcal{G}(\Omega), \quad \Omega \text{ open}, \ \Omega \subset D, \ |\Omega| = m \Big\},$$

and every solution Ω^* is bounded and is a quasi-minimizer of the perimeter with exponent d - d/p or d respectively.

Consequence: $C^{1,\beta}$ -regularity up to a singular set of dimension less than d-8.

Non-existence situations

•
$$f \in L^\infty(\mathbb{R}^d)$$
 such that $0 \le f < 1$ and $f(x) \to_{|x| \to \infty} 1$, $D = \mathbb{R}^d$.

Non-existence situations

• $f \in L^{\infty}(\mathbb{R}^d)$ such that $0 \le f < 1$ and $f(x) \to_{|x|\to\infty} 1$, $D = \mathbb{R}^d$. Then $P(\Omega) + E_f(\Omega) > P(\Omega) + E_1(\Omega) \ge P(B) + E_1(B)$,

Non-existence situations

•
$$f \in L^{\infty}(\mathbb{R}^d)$$
 such that $0 \leq f < 1$ and $f(x) \rightarrow_{|x|\to\infty} 1$, $D = \mathbb{R}^d$. Then
 $P(\Omega) + E_f(\Omega) > P(\Omega) + E_1(\Omega) \geq P(B) + E_1(B)$,

while a sequence of balls of volume m that goes to ∞ achieves equality in the limit.

Non-existence situations

•
$$f \in L^{\infty}(\mathbb{R}^d)$$
 such that $0 \le f < 1$ and $f(x) \rightarrow_{|x|\to\infty} 1$, $D = \mathbb{R}^d$. Then
 $P(\Omega) + E_f(\Omega) > P(\Omega) + E_1(\Omega) \ge P(B) + E_1(B)$,

while a sequence of balls of volume m that goes to ∞ achieves equality in the limit.

•
$$\mathcal{G} = \lambda_1$$
 and

$$D = \left\{ (x,y) \in (0,\infty) \times \mathbb{R}, \ y^2 < \frac{x}{x+1} \right\} \subset \mathbb{R}^2, \quad and \quad m = |B(0,1)|.$$

Sharpness of the hypotheses

Non-existence situations

•
$$f \in L^{\infty}(\mathbb{R}^d)$$
 such that $0 \le f < 1$ and $f(x) \rightarrow_{|x|\to\infty} 1$, $D = \mathbb{R}^d$. Then
 $P(\Omega) + E_f(\Omega) > P(\Omega) + E_1(\Omega) \ge P(B) + E_1(B)$,

while a sequence of balls of volume m that goes to ∞ achieves equality in the limit.

•
$$\mathcal{G} = \lambda_1$$
 and

$$D = \left\{ (x, y) \in (0, \infty) \times \mathbb{R}, \ y^2 < \frac{x}{x+1} \right\} \subset \mathbb{R}^2, \quad \text{and} \quad m = |B(0, 1)|.$$

$$P(\Omega) + \lambda_1(\Omega) > P(B_1) + \lambda_1(B_1),$$

Sharpness of the hypotheses

Non-existence situations

•
$$f \in L^{\infty}(\mathbb{R}^d)$$
 such that $0 \le f < 1$ and $f(x) \rightarrow_{|x|\to\infty} 1$, $D = \mathbb{R}^d$. Then
 $P(\Omega) + E_f(\Omega) > P(\Omega) + E_1(\Omega) \ge P(B) + E_1(B)$,

while a sequence of balls of volume m that goes to ∞ achieves equality in the limit.

•
$$\mathcal{G} = \lambda_1$$
 and

$$D = \left\{ (x,y) \in (0,\infty) imes \mathbb{R}, \ y^2 < rac{x}{x+1}
ight\} \subset \mathbb{R}^2, \quad \textit{and} \quad m = |B(0,1)|.$$

$$P(\Omega) + \lambda_1(\Omega) > P(B_1) + \lambda_1(B_1),$$

while equality is achieved for a sequence of sets converging to the ball at infinity.

Representatives of sets

• Classes of domains:

Representatives of sets

- Classes of domains:
 - \mathcal{G} adapted to open/quasi-open sets $\Omega \leftrightarrow w_{\Omega}$: $\Omega = \{w_{\Omega} > 0\}$,
 - *P* adapter to measurable sets $\Omega \leftrightarrow \mathbb{1}_{\Omega}$.

Representatives of sets

- Classes of domains:
 - \mathcal{G} adapted to open/quasi-open sets $\Omega \leftrightarrow w_{\Omega}$: $\Omega = \{w_{\Omega} > 0\}$,
 - *P* adapter to measurable sets $\Omega \leftrightarrow \mathbb{1}_{\Omega}$.

• Idea: change ${\mathcal G}$ to $\widetilde{{\mathcal G}}$ by replacing the classical space $H^1_0(\Omega)$ by

$$\widetilde{H}^1_0(\Omega) = \Big\{ u \in H^1(\mathbb{R}^d) \ : \ u = 0 \quad \text{ a.e. on } \quad \mathbb{R}^d \setminus \Omega \Big\}.$$

Then one has $\widetilde{\mathcal{G}} \leq \mathcal{G}$ for open sets (strict in general).

Representatives of sets

- Classes of domains:
 - \mathcal{G} adapted to open/quasi-open sets $\Omega \leftrightarrow w_{\Omega}$: $\Omega = \{w_{\Omega} > 0\}$,
 - *P* adapter to measurable sets $\Omega \leftrightarrow \mathbb{1}_{\Omega}$.

• Idea: change ${\mathcal G}$ to $\widetilde{{\mathcal G}}$ by replacing the classical space $H^1_0(\Omega)$ by

$$\widetilde{H}^1_0(\Omega) = \Big\{ u \in H^1(\mathbb{R}^d) \ : \ u = 0 \quad \text{ a.e. on } \quad \mathbb{R}^d \setminus \Omega \Big\}.$$

Then one has $\widetilde{\mathcal{G}} \leq \mathcal{G}$ for open sets (strict in general).

• Regularity of $\partial \Omega$ is meant for

$$\partial \Omega := \{ x \in \mathbb{R}^d, \forall r > 0, \ 0 < |\Omega \cap B_r(x)| < |B_r| \}.$$

Existence

Solutions of

$$\min\left\{P(\Omega)+\widetilde{\mathcal{G}}(\Omega), \ \Omega \text{ measurable } \subset D \ |\Omega|=m\right\}$$

Elements of proof II Existence

Solutions of

$$\min\left\{P(\Omega)+\widetilde{\mathcal{G}}(\Omega), \ \Omega \text{ measurable } \subset D \ |\Omega|=m\right\}$$

• If *D* bounded, classical method with sets of finite perimeter.

Solutions of

$$\min\left\{P(\Omega)+\widetilde{\mathcal{G}}(\Omega), \ \Omega \text{ measurable } \subset D \ |\Omega|=m\right\}$$

- If *D* bounded, classical method with sets of finite perimeter.
- If *D* unbounded, concentration compactness (Lions, Bucur)

Solutions of

$$\min\left\{P(\Omega)+\widetilde{\mathcal{G}}(\Omega), \ \Omega \text{ measurable } \subset D \ |\Omega|=m\right\}$$

- If *D* bounded, classical method with sets of finite perimeter.
- If D unbounded, concentration compactness (Lions, Bucur)
 - Compactness (good situation)
 - Compactness at infinity (only if $\mathcal{G} = E_f$: hypotheses on f)
 - Vanishing (easy to exclude)
 - Dichotomy: difficult to exclude. We use boundedness of solutions, which relies on weak regularity theory.

Penalization of the volume constraint

If Ω^* is solution of

$$\min\left\{P(\Omega)+\widetilde{\mathcal{G}}(\Omega), \ \Omega\subset D, \ |\Omega|=m\right\}.$$

Penalization of the volume constraint

If Ω^* is solution of

$$\min\left\{P(\Omega)+\widetilde{\mathcal{G}}(\Omega), \ \Omega\subset D, \ |\Omega|=m\right\}.$$

then Ω^* is also solution of ${}_{\text{(a localized version of)}}$

$$\min\left\{P(\Omega)+\widetilde{\mathcal{G}}(\Omega)+\mu\big||\Omega|-|\Omega^*|\big|, \ \Omega\subset D\right\}.$$

for some $\mu \in \mathbb{R}_+$.

Penalization of the volume constraint

If Ω^* is solution of

$$\min\left\{P(\Omega)+\widetilde{\mathcal{G}}(\Omega), \ \Omega\subset D, \ |\Omega|=m\right\}.$$

then Ω^* is also solution of ${}_{\text{(a localized version of)}}$

$$\min\left\{P(\Omega)+\widetilde{\mathcal{G}}(\Omega)+\mu\big||\Omega|-|\Omega^*|\big|, \ \Omega\subset D\right\}.$$

for some $\mu \in \mathbb{R}_+$.

 General approach based on first order shape derivatives and lipschitz estimates: for Φ ∈ W^{1,∞}(ℝ^d, ℝ^d),

$$\left|\widetilde{\mathcal{G}}(\Phi(\Omega)) - \widetilde{\mathcal{G}}(\Omega) \right| \leq C_{d,|\Omega|,\mathcal{G}} \|\Phi - \mathit{Id}\|_{W^{1,\infty}}.$$

Regularity I: Supersolutions for $P + \mu |\cdot|$

Assume (thanks to monotonicity of $\widetilde{\mathcal{G}}$)

Regularity I: Supersolutions for $P + \mu |\cdot|$

Assume (thanks to monotonicity of $\widetilde{\mathcal{G}}$)

 $P(\Omega^*) + \mu |\Omega^*| \le P(\Omega) + \mu |\Omega|, \quad ext{for every } \Omega ext{ with } \Omega^* \subset \Omega.$

Regularity I: Supersolutions for $P + \mu |\cdot|$

Assume (thanks to monotonicity of $\widetilde{\mathcal{G}}$)

 $P(\Omega^*) + \mu |\Omega^*| \le P(\Omega) + \mu |\Omega|, \quad ext{for every } \Omega ext{ with } \Omega^* \subset \Omega.$

Then

- $H^1_0(\Omega^*) = \widetilde{H}^1_0(\Omega^*)$,
- w_{Ω^*} is locally Lipschitz continuous on \mathbb{R}^d .

Regularity I: Supersolutions for $P + \mu |\cdot|$

Assume (thanks to monotonicity of $\widetilde{\mathcal{G}}$)

 $P(\Omega^*) + \mu |\Omega^*| \le P(\Omega) + \mu |\Omega|, \quad ext{for every } \Omega ext{ with } \Omega^* \subset \Omega.$

Then

- $H^1_0(\Omega^*) = \widetilde{H}^1_0(\Omega^*)$,
- w_{Ω^*} is locally Lipschitz continuous on \mathbb{R}^d .

Based on

• Exterior estimates:

$$\forall x \in \partial \Omega, \ \ \frac{|B_r(x) \cap \Omega^c|}{|B_r|} \leq c < 1,$$

Regularity I: Supersolutions for $P + \mu |\cdot|$

Assume (thanks to monotonicity of $\widetilde{\mathcal{G}}$)

 $P(\Omega^*) + \mu |\Omega^*| \le P(\Omega) + \mu |\Omega|, \quad ext{for every } \Omega ext{ with } \Omega^* \subset \Omega.$

Then

- $H^1_0(\Omega^*) = \widetilde{H}^1_0(\Omega^*)$,
- w_{Ω^*} is locally Lipschitz continuous on \mathbb{R}^d .

Based on

• Exterior estimates:

$$orall x \in \partial \Omega, \;\; rac{|B_r(x) \cap \Omega^c|}{|B_r|} \leq c < 1,$$

• Mean curvature bounds in the viscosity sense:

 $\left[\mathcal{H}_{\Omega} \geq -\mu
ight] \Rightarrow \text{ regularity for elliptic PDE.}$

Regularity II: Subsolutions

Assume

$$P(\Omega^*) + \widetilde{\mathcal{G}}(\Omega^*) + \mu |\Omega^*| \le P(\Omega) + \widetilde{\mathcal{G}}(\Omega) + \mu |\Omega|, \ \forall \Omega \subset \Omega^*,$$

and w_{Ω^*} is lipschitz continuous on \mathbb{R}^d .

Regularity II: Subsolutions

Assume

$$P(\Omega^*) + \widetilde{\mathcal{G}}(\Omega^*) + \mu |\Omega^*| \leq P(\Omega) + \widetilde{\mathcal{G}}(\Omega) + \mu |\Omega|, \ \forall \Omega \subset \Omega^*,$$

and w_{Ω^*} is lipschitz continuous on \mathbb{R}^d .

Then Ω^{\ast} is a quasi-minimizer for interior perturbations.

Regularity II: Subsolutions

Assume

$$P(\Omega^*) + \widetilde{\mathcal{G}}(\Omega^*) + \mu |\Omega^*| \leq P(\Omega) + \widetilde{\mathcal{G}}(\Omega) + \mu |\Omega|, \ \forall \Omega \subset \Omega^*,$$

and w_{Ω^*} is lipschitz continuous on \mathbb{R}^d .

Then Ω^* is a quasi-minimizer for interior perturbations.

Based on

- control variations of $\widetilde{\mathcal{G}}$ by variations of $\widetilde{E_1}$.
- Lipschitz continuity of w_{Ω^*} .

• Further regularity: classical if $\mathcal{G} = E_f$. More involved if $\mathcal{G} = \lambda_k$: see [Bogosel,Oudet 2014] and [Bogosel 2016].

- Further regularity: classical if $\mathcal{G} = E_f$. More involved if $\mathcal{G} = \lambda_k$: see [Bogosel,Oudet 2014] and [Bogosel 2016].
- Similar problem [van den Berg]:

$$\min\left\{\lambda_k(\Omega), \ \Omega \subset \mathbb{R}^d, \ |\Omega| = m, \ P(\Omega) = p\right\}.$$

Existence if \leq instead of = [Bucur, Mazzoleni 2015]. Regularity?