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Isoperimetric Inequality
Among all (plane) sets of given perimeter, the disc maximizes area. It
suffices to consider bounded, simply connected sets.
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Isoperimetric Inequality

Among all (plane) sets of given perimeter, the disc maximizes area. It
suffices to consider bounded, simply connected sets.

In two dimensions it suffices even to consider convex sets only. They
can be parametrized by a function r(#), and then we maximize the area

27 rr(60) 27
AQ) = / / pdpdo = } / r2(0) db
0 0 0

subject to given length

L(69Q) = /0 " Jr(0) + 2(6) db.
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So among periodic functions r(#) we can look at the functional A+ AL
with Euler-Lagrange equation

e Ar B i Mg 0
r2yr2 do\ \/r24r2 '
After integration
regp—2rg—r® 1
NGET R

(k=)
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So among periodic functions r(#) we can look at the functional A+ AL
with Euler-Lagrange equation

e A B i Mg _0
r2yr2 do\ \/r24r2 '
After integration
rrgg—2rg —r> 1

=)z %

Notice that in 3 dimensions convex hull does not reduce perimeter
(and unbounded sets can have finite perimeter).
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1. General

2. The archaic era (Somigliana 1899)
3. Present-day essentials

4. The Paleozoic era (e.g. Hardy, Littlewood)
5. The Mesozoic era, (era of dinosaurs, Polya, Szeg6, Talenti)
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7. The Quatenary period

8. A Summary
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Problem 1: Cheeger sets

The Cheeger set Q¢ of an open bounded connected set Q
minimizes the ratio 22!

o7 of perimeter |0D| over volume |D|
among all D C Q.
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Problem 1: Cheeger sets

The Cheeger set Q¢ of an open bounded connected set Q
minimizes the ratio |fDD|| of perimeter |0D| over volume |D|

among all D C Q.

When Q = (—a, a)? is a square, the corresponding Cheeger
set is a rounded square which can be easily calculated.
The Cheeger constant 'fgcﬁ' is h(Q) = (/7 +2)/(2a)

and the circular arcs have radius 1/h(Q).
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Problem 1: Cheeger sets
Cheeger sets model earth slides

B. Kawohl (Universitat zu Kéln) 2 dimensions are easier



Open Problem 1a: Cheeger sets

When Q is a cube, no analytical description of its Cheeger set has
been given, other than that it is convex and that the free parts of its

boundary have constant mean curvature h(Q2) = 'fgg'. A numerical
approximation and visualization was given by Lachand-Robert and
Oudet in 2005.
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Open Problem 1a: Cheeger sets

When Q is a cube, no analytical description of its Cheeger set has
been given, other than that it is convex and that the free parts of its

boundary have constant mean curvature h(Q2) = 'f&ﬁ'. A numerical
approximation and visualization was given by Lachand-Robert and
Oudet in 2005.

Give an analytical representation of the bright rounded edges.
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Problem 1b: Cheeger sets

When Q is convex, so is its (unique) Cheeger set.

(When Q is not convex, there are examples of nonuniqueness and
nonconvexity of the Cheeger set.)

Convexity and uniqueness for convex 2 is fairly easy to prove in 2d.:
One sweeps the inside of Q with a disc of radius 1/h(2), but the proof
is much trickier in higher dimensions.

There are proofs of Caselles, Chambolle & Novaga (2007) and of Alter
& Caselles (2009).

Simplify the convexity proof for d > 3.
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Open Problem 2: Convex sets of constant width

have been studied for more than a century. A nice exposition can be
found in the book “Geometry and the Imagination” by Hilbert and
Cohn-Vossen.

Among all two-dimensional convex sets of constant width d the disk
with radius d/2 maximizes area and the Reuleaux-triangle minimizes
area. A Reuleaux-triangle is the intersection of three disks with centers
in the corners of an equilateral triangle.
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Open Problem 2: Convex sets of constant width

In three dimensions it has been shown that the ball maximizes volume
among all convex sets of given width d, and is has been conjectured
that the Meissnher-bodies minimize volume. These are obtained from
a small modification of the Meissner-tetrahedron, which is the
intersection of four balls of radius d/2 with centers in the four corners
of a regular tetrahedron.
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Open Problem 3: A Fencing Problem

Imagine a convex piece of land that you want to cut into two subsets of
equal area with a minimal cut. Given the total area (but not the shape)
of the initial set, which shape renders the longest shortest cut?

This problem was posed by Polya in 1958, and his conjecture that the
answer is a disk was not confirmed until 2012 in “The longest shortest
cut”.

The proof is quite technical and the three-dimensional analogue, that a
ball and a bisecting plane will serve the same purpose, seems to be a
difficult open problem.
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Open Problem 4: Ulam floating

When a ball of specific weight 1/2 is dropped into water, in contrast to
a cube or ellipsoid it swims semistable in any direction.

Is the ball the only shape that has this property,
known as Ulam floating?

Although the problem was widely circulated in the 1930’s, there are still
opposing convictions as to how to answer this question.
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Open Problem 4: Ulam floating
When a ball of specific weight 1/2 is dropped into water, in contrast to
a cube or ellipsoid it swims semistable in any direction.

Is the ball the only shape that has this property,

known as Ulam floating?

Although the problem was widely circulated in the 1930’s, there are still
opposing convictions as to how to answer this question.

There is also a two-dimensional analogue. Some trees with convex
cross-section have a preferred orientation in water.

Fig. 1. An equilibrium position (left) and a non-equilibrium position (right).
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Ulam: Are there any cross sections different from the disc that don’t
have a preferred direction?

H. AUERBACH 1934. Sur un probleme de M. Ulam concernant
I'équilibre des corps flottants. Studia Math. 7 (1938), 121-142.

Yes, any convex plane Zindler set has Ulam’s floating property.

By definition a Zindler set has the property that any area bisecting
chord has the same length.

There are many Zindler sets ...
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nonconvex ones, like the heart from Auerbach’s paper, . ..
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nonconvex ones, like the heart from Auerbach’s paper, . ..

and many many convex ones, e.g. the Auerbach triangle.
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Problem 4: Ulam floating for cylinders

Among convex Zindler sets of given area one can look for the one with
the longest water-line dividing it into two sets of equal area.

B. Kawohl (Universitat zu Kéln) 2 dimensions are easier Luminy, Nov 25, 2016 15/30



Problem 4: Ulam floating for cylinders

Among convex Zindler sets of given area one can look for the one with
the longest water-line dividing it into two sets of equal area.

In view of Open Problem 3 of the longest shortest fence one should
suspect the disk as optimal, but this is wrong.

In fact, the Auerbach triangle is optimal. This is surprising even to
experts in shape optimization. The result was conjectured by Auerbach
in 1934, and N.Fusco and A.Pratelli were able to prove it not until 2011.

Finally, in 2012 in the paper on longest shortest fences, the
assumption of being a Zindler set was removed.
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Auerbach triangle

4t
e* —1
MW =grq !

621‘
Y=2g

t € [—(log3)/4, (log3)/4]
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Auerbach triangle

et —1
M =iy -
2t

e
H=2—4——
y(t) et 4+ 1

t € [—(log3)/4, (log3)/4]

All bisecting chords of the Auerbach triangle have the same constant

length which is bigger than the diameter 2 of the circle with the same
area .

Moreover the chords bisect also the perimeter.
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Auerbach triangle
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e
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t € [—(log3)/4, (log3)/4]

All bisecting chords of the Auerbach triangle have the same constant
length which is bigger than the diameter 2 of the circle with the same
area 7.

Moreover the chords bisect also the perimeter.

Note that the shortest arc bisecting the area has length less than 2.
Therefore the Auerbach triangle does not contradict the result on the
longest shortest cut.
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Ulam floating is semistable, but there are better floats.
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Problem 5: Euler elastica
are curves ~, whose bending energy is measured in terms of their
curvature  as

E(y) = [/ 142(s) ds.

Remark: Among all simple regular closed curves of given length L,
only the circle minimizes elastic energy. This follows from a reduction
to curves which bound convex sets. Infact L [, K2 ds is scale-invariant,
so convexifying a curve decreases the product and this remains so
under rescaling.

Then one can apply Hélder’s inequality

/WKstz([/KCB‘)Z L >(27Z)

and use the observation that equality holds only if x is constant.
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Problem 5: Euler elastica
are curves ~, whose bending energy is measured in terms of their
curvature « as

E(y) = L 142(s) ds.

Remark: Among all simple regular closed curves of given length L,
only the circle minimizes elastic energy. This follows from a reduction
to curves which bound convex sets. Infact L [, K2 ds is scale-invariant,
so convexifying a curve decreases the product and this remains so
under rescaling.

Then one can apply Hélder’s inequality

Amzdsz(Lnds>2 L >(27Z)

and use the observation that equality holds only if x is constant.

Question: Does this remain true if the length constraint on ~ is
replaced by constraint on the enclosed area?
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Problem 5: Euler elastica
are curves ~, whose bending energy is measured in terms of their
curvature « as

E(y) = L 142(s) ds.

Remark: Among all simple regular closed curves of given length L,
only the circle minimizes elastic energy. This follows from a reduction
to curves which bound convex sets. Infact L [, K2 ds is scale-invariant,
so convexifying a curve decreases the product and this remains so
under rescaling.

Then one can apply Hélder’s inequality

Amzdsz(Lnds>2 L >(27Z)

and use the observation that equality holds only if x is constant.

Question: Does this remain true if the length constraint on ~ is
replaced by constraint on the enclosed area?
Answer: Yes, but the proof is far from being easy (2014).
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Answer: Yes, but the proof is far from being easy (2014). There are
two different proofs by Bucur & Henrot (Europ. J. Math., to appear) and
Ferone, K., Nitsch (Math. Annalen (2016))

Our proof uses the scale invariant functional J(v) = [ x2ds |Q|'/?,
where |Q] is the area enclosed by v and a reduction from simply
connected sets 2 to convex ones.
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Answer: Yes, but the proof is far from being easy (2014). There are
two different proofs by Bucur & Henrot (Europ. J. Math., to appear) and
Ferone, K., Nitsch (Math. Annalen (2016))

Our proof uses the scale invariant functional J(v) = [ x2ds |Q|'/?,
where |Q] is the area enclosed by v and a reduction from simply
connected sets 2 to convex ones.

Analogous problems in three dimensions could be:

Show that among all simply-connected open three-dimensional sets

with boundary ~ the ball minimizes the Willmore energy f7 H? ds

(H denoting mean curvature) for given surface area (or perimeter) ||
or for given enclosed volume |Q|.
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Answer: Yes, but the proof is far from being easy (2014). There are
two different proofs by Bucur & Henrot (Europ. J. Math., to appear) and
Ferone, K., Nitsch (Math. Annalen (2016))

Our proof uses the scale invariant functional J(v) = [ x2ds |Q|'/?,
where |Q] is the area enclosed by v and a reduction from simply
connected sets 2 to convex ones.

Analogous problems in three dimensions could be:

Show that among all simply-connected open three-dimensional sets

with boundary ~ the ball minimizes the Willmore energy fv H? ds

(H denoting mean curvature) for given surface area (or perimeter) ||
or for given enclosed volume |Q|.

However, for n = 3 the Willmore energy alone is scale invariant, so
prescribing the perimeter or enclosed volume provides no restriction.
This was already noticed in 1924 by Thomsen, and a simple proof was
given by Willmore in 1965 that the minimizing shape must be a sphere.
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Another generalization to three and more dimensions might be the
study of the scale-invariant functional J(v) = [, H"ds 1Q|1/n.

At least among convex sets Q C R” with boundary v and for n > 2
one can easily show that

_n_ n721 =1 n =1
/H” ds > / Kn-1 ds > </de> Iy 7=T = (nwp) =T |y|n=T.
v v v

Here K denotes Gauss curvature and nw, the (n — 1)-dimensional
perimeter of the unit sphere in R". The first inequality uses the
geometric-algebraic mean inequality, the second one Hdlder’s, and for
given perimeter |v| the estimate becomes sharp if and only if v is a
sphere.
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Another generalization to three and more dimensions might be the
study of the scale-invariant functional J(v) = [, H"ds 1Q|1/n.

At least among convex sets Q C R” with boundary v and for n > 2
one can easily show that

_n_ nﬁ1 —1 n —1
/H" ds > / Kn-1 ds > </de> Iy 7=T = (nwp) =T |y|n=T.
v v v

Here K denotes Gauss curvature and nw, the (n — 1)-dimensional
perimeter of the unit sphere in R". The first inequality uses the
geometric-algebraic mean inequality, the second one Hdlder’s, and for
given perimeter |v| the estimate becomes sharp if and only if v is a
sphere.

For nonconvex Q and n = 3 a counterexample to the estimate was just
recently given by Ferone, Nitsch and Trombetti.
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Open Problem 6: Farthest Point Distance Function

Forn=1 u(x)=}x—y| is harmonic off y

and Au = Jy.
Forn=2 u(x)= 217 log |x — y| is harmonic off y

and Au = 9.
Forn>2 u(x)= —m]x — y|2=" is harmonic off y

and Au = Jy.

In all three cases u(x) = ¢(|x — y|)
is @ monotone increasing function of the distance |x — y/|,
and Au is a (nonnegative) probability measure with supportin y.
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Open Problem 6: Farthest Point Distance Function

Forn=1 u(x)=}x—y| is harmonic off y

and Au = Jy.
Forn=2 u(x)= 217 log |x — y| is harmonic off y

and Au = 9.
Forn>2 u(x)= —m]x — y|2=" is harmonic off y

and Au = Jy.

In all three cases u(x) = ¢(|x — y|)
is @ monotone increasing function of the distance |x — y/|,
and Au is a (nonnegative) probability measure with supportin y.

For E # () compact we define the farthest point distance function to E:

de(x) ;== max |x — y|.
yeE
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The measure of E
What happens to Au when u(x) = ¢(dg(x)) and when E consists of
more than one point y?

¢(de(x)) = ¢(max |x — y|) = maxé(|x — y/)
yeE y€eE

is subharmonic (as maximum of subharmonic functions)
and Au(x) is still a nonnegative probability measure o¢.
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The measure of E
What happens to Au when u(x) = ¢(dg(x)) and when E consists of
more than one point y?

¢(de(x)) = ¢(max|x — y|) = max ¢(|x — y|)
yeE y€eE

is subharmonic (as maximum of subharmonic functions)
and Au(x) is still a nonnegative probability measure o¢.

E, E, E, E,

Figura : Four compact sets E; with og,(E;) = . Only the last one, the
Reuleaux triangle, is of constant width. For all four we have E; = E,.
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How big is og(E)?

If n=1then og(E) < o¢o)(co(E)) = 1, no matter what E is.
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How big is og(E)?

If n=1then og(E) < o¢o(e)(co(E)) = 1, no matter what E is.

If n> 2 and E is singleton, then og(E) =1,
but if E is a ball of radius R then dg(x) = R+ | x|
and one can calculate that og(B) = 2'~" < 1.

Conjecture (Laugesen & Pritsker, 2003)
For any compact E with more than one point we have og(E) < 21"
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How big is og(E)?

If n=1then og(E) < o¢o(e)(co(E)) = 1, no matter what E is.

If n> 2 and E is singleton, then og(E) =1,
but if E is a ball of radius R then dg(x) = R+ | x|
and one can calculate that og(B) = 2'~" < 1.

Conjecture (Laugesen & Pritsker, 2003)
For any compact E with more than one point we have og(E) < 21"

Theorem (Gardiner & Netuka 2006)
Conijecture holds for n = 2.
Moreover, equality og(E) = 1/2 holds whenever E has constant width.
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How big is og(E)?

If n=1then og(E) < o¢o(e)(co(E)) = 1, no matter what E is.

If n> 2 and E is singleton, then og(E) =1,
but if E is a ball of radius R then dg(x) = R+ | x|
and one can calculate that og(B) = 2'~" < 1.

Conjecture (Laugesen & Pritsker, 2003)
For any compact E with more than one point we have og(E) < 21",

Theorem (Gardiner & Netuka 2006)
Conijecture holds for n = 2.
Moreover, equality og(E) = 1/2 holds whenever E has constant width.

Theorem (Kawohl, Nitsch & Sweers 2014)
Conjecture holds for n > 2 and E of constant width,
but in this class equality o£(E) = 2'=" holds only for the balll.
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\ \

/
( W, \ 4

Figura : Level lines of dg for a triangle and an ellipse; the white lines show
where de is not C' and where o is not absolutely continuous with respect to
the Lebesgue measure.
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Formally
7e(E) = [ Ad(de(x)) oK,

but o is not absolutely continuous with respect to Lebesgue measure.
However, the following integrals are well defined and we were able to

show 0o(de(x)) 1 od
EWX 1-nOdE
< p— —_—
oe(E) < /a (e ds = /6 Lok ds (1)
For a ball of radius R we have dg = 2R and the rhs becomes
1 B 1 B Nwp R oion
nwn(2R)"-1 /35 ds = nwn(2R)"-1 10E1 = nwp(2R)"-1 2

For a set of constant width wg we have dg = wg on OE so that

1
E)y< —|0E|.
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For sets of constant width
1

0e(E) < ————=I0E],

and their perimeter |0E| can be estimated in terms of wg.
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For sets of constant width

1
Ey< ——_|0E|,

and their perimeter |0E| can be estimated in terms of wg.

(Hernandez-Cifre et al 2004) showed that among all sets of given
constant width wge the ball maximizes perimeter. Blaschke already
knew this in the 3d case.
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For sets of constant width

1
Ey< ——_|0E|,

and their perimeter |0E| can be estimated in terms of wg.

(Hernandez-Cifre et al 2004) showed that among all sets of given
constant width wge the ball maximizes perimeter. Blaschke already
knew this in the 3d case. Ul

There are other partial results,
e.g. for polyhedra (Wise 2014)
or point symmetric sets (K, Nitsch, Sweers)
that take more time to explain....
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Problem 7: Hadwiger’s inequality

is a relative isoperimetric inequality. Let Q, be the open unit cube in
RY and A any measurable subset of Q,. Then

Per(A; Qn) > 4 |A| (1 - |A).

The result holds in any dimension and there are proofs by Hadwiger
(1972) and Ambrosio, Bourgain, Brezis & Figalli (2016).

B. Kawohl (Universitat zu Kéln) 2 dimensions are easier

Luminy, Nov 25, 2016 27/30



Problem 7: Hadwiger’s inequality

is a relative isoperimetric inequality. Let Q, be the open unit cube in
RY and A any measurable subset of Q,. Then
Per(A; Qn) > 4 1Al (1 — |A]).

The result holds in any dimension and there are proofs by Hadwiger
(1972) and Ambrosio, Bourgain, Brezis & Figalli (2016).

| tried my own proof. After repeated reflections and Steiner
symmetrizations one may assume that the optimal A is starshaped
with respect to zero and that its boundary can be parametrized by a
function y(x1, ..., X,_1). Given the volume of A, we minimize surface
area, so 0AN Qp must have constant mean curvature, and the natural
boundary condition for this geometric variational problem tells us that
0A runs orthogonally into Q).
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Problem 7: Hadwiger’s inequality

Again 2d are easier. The only boundaries that can occur are circular

arcs (for small or large |A|) or straight line segments (for intermediate
|A]), running vertically into the sides of a square.

The optimal shape occurs for |A| = 1/2 and it is a rectangle.
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Problem 7: Hadwiger’s inequality

Again 2d are easier. The only boundaries that can occur are circular
arcs (for small or large |A|) or straight line segments (for intermediate
|A]), running vertically into the sides of a square.

The optimal shape occurs for |A| = 1/2 and it is a rectangle.

For d > 3 the optimal A has constant mean curvature and runs
vertically into 0Q,. Here are some cmc sets which qualify for the
competition in 3d, taken from Ritore & Ross (2002)

y

Show that these are the only interesting ones and rule out others
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Problem 7: Hadwiger’s inequality
like the Schwarz surface . ..

B. Kawohl (Universitat zu Koin)
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Thank you for your patience and attention.

The paper “2 dimensions are easier”

is open access and has all the references for Problems 1a and 2—6.
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