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Dirichlet eigenvalues

Let Ω ⊂ Rm,m ≥ 2, be an open set of finite Lebesgue measure |Ω| <∞.
Dirichlet eigenvalues of the Laplacian on Ω, λk(Ω) ∈ R, satisfy{

−∆uk(x) = λk(Ω)uk(x) x ∈ Ω,

uk(x) = 0 x ∈ ∂Ω,

and form a non-decreasing sequence, counted with multiplicities,

λ1(Ω) ≤ λ2(Ω) ≤ · · · ≤ λk(Ω) ≤ . . .

Goal

For each k ∈ N, determine an open set Ω∗k ⊂ Rm such that, for prescribed
c ∈ R, c > 0,

λk(Ω∗k) = inf{λk(Ω) : Ω ⊂ Rm open, |Ω| = c}.
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New approach

Antunes and Freitas:
If, for each k ∈ N, a minimiser Ω∗k for λk exists in a chosen collection of
sets in Rm, then determine the asymptotic minimal set as k →∞, i.e. the
limit of a sequence of minimisers (Ω∗k)k as k →∞.

Colbois and El Soufi:
The following are equivalent

λ∗k is asymptotically equal to 4π2(cωm)−2/mk2/m as k →∞, where
ωm is the measure of a ball of radius 1 in Rm.

Pólya’s Conjecture: for all bounded, open sets Ω ⊂ Rm of measure c ,

λk(Ω) ≥ 4π2(cωm)−2/mk2/m.
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Rectangles in R2 of unit measure

For b ≥ 1, let

Rb = {(x1, x2) ∈ R2 : 0 < x1 < b, 0 < x2 < b−1}.

For each k ∈ N, there is a minimising rectangle Rb∗k
such that

λ∗k = λk(Rb∗k
) = inf{λk(Rbk ) : |Rbk | = 1}.

Theorem (Antunes, Freitas, 2013)

Any sequence of minimising rectangles (Rb∗k
)k converges to the unit square

as k →∞.
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Cuboids in R3 of unit measure

For 0 < a1 ≤ a2 ≤ a3 with a1a2a3 = 1, let

Ra1,a2,a3 = {(x1, x2, x3) ∈ R3 : 0 < x1 < a1, 0 < x2 < a2, 0 < x3 < a3}.

Dirichlet eigenvalues of the Laplacian on Ra1,a2,a3

π2i21
a2

1

+
π2i22
a2

2

+
π2i23
a2

3

, i1, i2, i3 ∈ N.

Let λ ∈ R, λ ≥ 0, and a1, a2, a3 ∈ R such that a1a2a3 = 1.
Define the ellipsoid

E (λ, a1, a2) :=

{
(x1, x2, x3) ∈ R3 :

x2
1

a2
1

+
x2

2

a2
2

+
x2

3

a2
3

≤ λ

π2

}
with volume |E (λ, a1, a2)| = 4

3π2λ
3/2.
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Cuboids in R3 of unit measure

Dirichlet eigenvalues λ1(Ra1,a2,a3), . . . , λk(Ra1,a2,a3) correspond to the
integer lattice points that are inside or on the ellipsoid E (λk , a1, a2) in the
first octant.
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Dirichlet eigenvalues λ1(Ra1,a2,a3), . . . , λk(Ra1,a2,a3) correspond to the
integer lattice points that are inside or on the ellipsoid E (λk , a1, a2) in the
first octant.

The following are equivalent:

Determining a minimising cuboid for λk among all cuboids of unit
measure in R3.

Determining the 3-dimensional ellipsoid of minimal volume which
encloses k integer lattice points in the first octant.
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Cuboids in R3 of unit measure

For each k ∈ N, there is a minimising cuboid Ra∗1,k ,a
∗
2,k ,a

∗
3,k

such that

λ∗k = λk(Ra∗1,k ,a
∗
2,k ,a

∗
3,k

) = inf{λk(Ra1,a2,a3) : a1 ≤ a2 ≤ a3, a1a2a3 = 1}.

Theorem (van den Berg, Gittins, 2016)

Any sequence of minimising cuboids
(
Ra∗1,k ,a

∗
2,k ,a

∗
3,k

)
k

converges to the unit

cube in R3 as k →∞. Furthermore,

a∗3,k ≤ 1 + O(k−(2−β)/6), k →∞,

where β is an exponent of the remainder in

#{(i1, i2, i3) ∈ Z3 : i21 + i22 + i23 ≤ R2} − 4π

3
R3 = O(Rβ) ,R →∞.
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Cuboids in R3 of unit measure

Sketch of proof:

Relate the number of integer lattice points inside or on
E (λ∗k , a

∗
1,k , a

∗
2,k) to the number of such points in the first octant.

Use well-known estimates for the number of integer lattice points
inside or on an ellipsoid E (λ, a1, a2).

Compare to the case where a1 = a2 = 1.

The side-lengths {a∗1,k , a∗2,k , a∗3,k} must remain bounded as k →∞.

This depends upon an upper bound for the counting function

N(λ) = #{(i1, i2, i3) ∈ N3 ∩ E (λ, a1, a2)}

≤
∑
i1∈N

∑
i2∈N

⌊(
a2

3

π2
λ− a2

3

a2
1

i21 −
a2

3

a2
2

i22

)1/2

+

⌋
.

Q: Does an analogous result hold in higher dimensions?
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Neumann eigenvalues

Let Ω ⊂ Rm be a bounded, open set with Lipschitz boundary.
Neumann eigenvalues of the Laplacian on Ω, µk(Ω) ∈ R, satisfy{

−∆uk(x) = µk(Ω)uk(x) x ∈ Ω,
∂uk (x)
∂~n = 0 x ∈ ∂Ω,

where ~n is the outward pointing unit normal vector to ∂Ω, and form a
non-decreasing sequence, counted with multiplicities,

µ0(Ω) ≤ µ1(Ω) ≤ µ2(Ω) ≤ · · · ≤ µk(Ω) ≤ . . .

Goal

For each k ∈ N, determine an open set Ω∗k ⊂ Rm such that, for prescribed
c ∈ R, c > 0,

µk(Ω∗k) = sup{µk(Ω) : Ω ⊂ Rm bounded, open, Lipschitz, |Ω| = c}.
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Rectangles in R2 of unit measure

For b ≥ 1, let

Rb = {(x1, x2) ∈ R2 : 0 < x1 < b, 0 < x2 < b−1}.

Neumann eigenvalues on Rb:

π2m2

b2
+ π2n2b2, m, n ∈ N ∪ {0}.

For each k ∈ N, there is a maximising rectangle Rb∗k
such that

µ∗k = µk(Rb∗k
) = sup{µk(Rbk ) : |Rbk | = 1}.

For R ⊂ R2 a rectangle,

µk(R) =
4πk

|R|
− 2π1/2Per(R)k1/2

|R|3/2
+ o(k1/2), k →∞.
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Rectangles in R2 of unit measure

Theorem (van den Berg, Bucur, Gittins, 2016)

Any sequence of maximising rectangles (Rb∗k
) converges to the unit square

as k →∞. Moreover,

b∗k = 1 + O(k(θ−1)/4), k →∞,

where θ is an exponent of the remainder in Gauss’ circle problem

#{(i1, i2) ∈ Z2 : i21 + i22 ≤ R2} − πR2 = O(Rθ) ,R →∞.

Q: Does an analogous result hold in higher dimensions?
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Rectangles in R2 of prescribed perimeter

Let
Ra,c = {(x1, x2) ∈ R2 : 0 < x1 < c , 0 < x2 < a}.

Consider
inf{µk(Ra,c) : Per(Ra,c) = 2(a + c) = 4}.

Theorem (van den Berg, Bucur, Gittins, 2016)

(i) If k = 1, then this problem does not have a minimiser, and the

infimum equals π2

4 .

(ii) If k ≥ 2, then a minimising rectangle, Ra∗k ,c
∗
k

with a∗k + c∗k = 2, for µk
exists. Any sequence of minimising rectangles converges to the unit
square as k →∞.
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Rectangles in R2 of prescribed perimeter

Consider
sup{µk(Ra,c) : Per(Ra,c) = 2(a + c) = 4}.

Theorem (van den Berg, Bucur, Gittins, 2016)

For k ∈ N, there is a unique maximising rectangle Ra∗k ,c
∗
k

with

a∗k = 2
k+1 ∈ (0, 1] and c∗k = 2− a∗k such that

µk(Ra∗k ,2−a
∗
k
) =

π2k2

(2− a∗k)2
=

π2

(a∗k)2
=
π2(k + 1)2

4
,

i.e. µ∗k = µk(Ra∗k ,2−a
∗
k
) is realised by the pairs (k, 0) and (0, 1).

The sequence of maximising rectangles collapses as k →∞.
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Higher dimensions with surface area constraint

For k ∈ N and m ≥ 3, the minimisation problem

inf{µk(R) : R is a cuboid in Rm,Per(R) = 4}

does not have a solution.

The infimum is equal to zero via a sequence of cuboids with at least two
vanishing edges.

For k ∈ N and m ≥ 3, the maximisation problem

sup{µk(R) : R is a cuboid in Rm,Per(R) = 4}

has a solution.
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Higher dimensions with surface area constraint

Either

there is a non-degenerate maximising sequence for µk , or

there is a maximising sequence
(
R
a

(n)
1 ,...,a

(n)
m

)
n

for µk with one

vanishing side-length a
(n)
1 → 0 and, for all i ∈ {1, . . . ,m}, a(n)

i → ai
as n→∞. The perimeter constraint becomes a2a3 . . . am = 2.

The eigenvalues of Ra1,...,am are the eigenvalues of the (m− 1)-dimensional
cuboid with edges of length a2, a3, . . . , am and measure 2.

For k ∈ N and m ≥ 3, the maximisation problem

sup{µk(R) : R is a cuboid in Rm−1, |R| = 2}

has a solution.
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Higher dimensions with surface area constraint

For k ∈ N and m ≥ 3,

sup{µk(R) : R is a cuboid in Rm,Per(R) = 4}

has a solution.

Q: What is the limit of a sequence of maximising cuboids in Rm as
k →∞?

For a maximising cuboid, µ∗k behaves like k2/m as k →∞.

On a degenerating sequence which collapses towards a fixed
(m − 1)-dimensional cuboid, µ∗k behaves like k2/(m−1) as k →∞.

Any sequence of maximisers must collapse as k →∞.
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Katie Gittins (Université de Neuchâtel) Asymptotic optimal sets for eigenvalues 21st November 2016 16 / 21



Higher dimensions with surface area constraint

For k ∈ N and m ≥ 3,

sup{µk(R) : R is a cuboid in Rm,Per(R) = 4}

has a solution.

Q: What is the limit of a sequence of maximising cuboids in Rm as
k →∞?

For a maximising cuboid, µ∗k behaves like k2/m as k →∞.

On a degenerating sequence which collapses towards a fixed
(m − 1)-dimensional cuboid, µ∗k behaves like k2/(m−1) as k →∞.

Any sequence of maximisers must collapse as k →∞.

Katie Gittins (Université de Neuchâtel) Asymptotic optimal sets for eigenvalues 21st November 2016 16 / 21



Higher dimensions with surface area constraint

For k ∈ N and m ≥ 3,

sup{µk(R) : R is a cuboid in Rm,Per(R) = 4}

has a solution.

Q: What is the limit of a sequence of maximising cuboids in Rm as
k →∞?

For a maximising cuboid, µ∗k behaves like k2/m as k →∞.

On a degenerating sequence which collapses towards a fixed
(m − 1)-dimensional cuboid, µ∗k behaves like k2/(m−1) as k →∞.

Any sequence of maximisers must collapse as k →∞.
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Related open problems

Let Ta,b denote the flat torus obtained from the parallelogram in R2 with
vertices (0, 0), (1, 0), (a, b), (a + 1, b) by identifying parallel edges.
Let λk(a, b) denote the eigenvalues of Laplace-Beltrami operator on Ta,b.

For k ∈ N, there is a maximising flat torus Ta∗k ,b
∗
k

which realises the
supremum

sup{b · λk(a, b) : (a, b) ∈ R2}.

Conjecture (Kao, Lai and Osting, 2016)

For k ∈ N, the maximising flat torus Ta∗k ,b
∗
k

has

(a∗k , b
∗
k) =

(
1

2
,

√⌈k
2

⌉2
− 1

4

)
.

Q: Is this true?
Q: Optimal cylinders for the Dirichlet and Neumann eigenvalues with a
measure constraint?

Katie Gittins (Université de Neuchâtel) Asymptotic optimal sets for eigenvalues 21st November 2016 17 / 21



Related open problems

Let Ta,b denote the flat torus obtained from the parallelogram in R2 with
vertices (0, 0), (1, 0), (a, b), (a + 1, b) by identifying parallel edges.
Let λk(a, b) denote the eigenvalues of Laplace-Beltrami operator on Ta,b.

For k ∈ N, there is a maximising flat torus Ta∗k ,b
∗
k

which realises the
supremum

sup{b · λk(a, b) : (a, b) ∈ R2}.

Conjecture (Kao, Lai and Osting, 2016)

For k ∈ N, the maximising flat torus Ta∗k ,b
∗
k

has

(a∗k , b
∗
k) =

(
1

2
,

√⌈k
2

⌉2
− 1

4

)
.

Q: Is this true?
Q: Optimal cylinders for the Dirichlet and Neumann eigenvalues with a
measure constraint?
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Optimisation of Dirichlet eigenvalues: perimeter constraint

For ` ∈ R, ` > 0,

λk(Ω∗k) = inf{λk(Ω) : Ω ⊂ Rm open, |Ω| <∞,Per(Ω) = `}.

De Philippis and Velichkov: a minimiser exists, is bounded and connected.

Bucur and Freitas: any sequence of minimisers Ω∗k ⊂ R2 of λk with
perimeter ` converges to the disc of perimeter ` as k →∞.

van den Berg: for each k ∈ N, there exists Ω∗k ⊂ Rm, m ≥ 2, such that

λk(Ω∗k) = inf{λk(Ω) : Ω ⊂ Rm open, convex, |Ω| <∞,Per(Ω) = `}.

For any sequence of minimisers, there exists a sequence of isometries of
these minimisers which converges to a ball of perimeter ` as k →∞.

Antunes and Freitas: any sequence of m-dimensional minimising cuboids
converges to the m-dimensional unit cube as k →∞.
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Optimal cylinders

Cylinder C (r , `) = Sr × [0, `], where Sr is a circle of radius r .

For b > 0, set ` = b and r = b−1 so |C (b−1, b)| = 2π.

Dirichlet eigenvalues on C (b−1, b):

π2i2

b2
+ j2b2, i ∈ N, j ∈ Z.

inf{λk(C (b−1, b)) : b > 0} = 0 via a sequence of cylinders with (b`k)` such
that b`k →∞ as `→∞.

sup{λk(C (b−1, b)) : b > 0} =∞ via a sequence of cylinders with (b`k)`
such that b`k → 0 as `→∞.
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Optimal cylinders

Cylinder C (r , `) = Sr × [0, `], where Sr is a circle of radius r .

For b > 0, set ` = b and r = b−1 so |C (b−1, b)| = 2π.

Neumann eigenvalues on C (b−1, b):

π2i2

b2
+ j2b2, i ∈ N ∪ {0}, j ∈ Z.

inf{µk(C (b−1, b)) : b > 0} = 0 via a sequence of cylinders with (b`k)` such
that b`k →∞ as `→∞, and via a sequence of cylinders with (b`k)` such
that b`k → 0 as `→∞.

A maximising cylinder for µk exists.

Q: What is it? What is the asymptotic maximal cylinder as k →∞?
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