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1. The Steklov eigenvalue problem

Let Ω be a compact Riemannian manifold of dimension
n ≥ 2 with smooth boundary M = ∂Ω of dimension n− 1.

The Dirichlet-to-Neumann map D : C∞(M)→ C∞(M) is
defined by

Df = ∂n(Hf)

where f ∈ C∞(M) and Hf ∈ C∞(Ω) is the harmonic extension
of f into Ω.

The eigenvalues of D are the Steklov eigenvalues of Ω.

0 = σ0 ≤ σ1 ≤ σ2 ≤ · · · ↗ +∞.

∆u = 0 in Ω,

∂nu = σu on M = ∂Ω.
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2. Isoperimetry on surfaces

Theorem (Weinstock, 1954)
If Ω ⊂ R2 is a simply-connected domain, then

σ1L ≤ 2π.

Theorem (Fraser-Schoen, 2013)
If Ω is a compact surface of genus γ with b boundary
components, then

σ1L ≤ 2π(γ + b).

Theorem (Kokarev, 2014)
If Ω is a compact surface of genus γ, then

σ1L ≤ 8π(γ + 1).



Theorem (Colbois– Girouard, 2014)
There exists a sequence ΩN of surfaces with the genus 1 + N
and such that

σ1(ΩN)L(∂ΩN) ≥ CN,

for some universal constant C > 0.

Strategy:

1. Consider a regular graph Γ of degree 4

2. Use a «fundamental piece» to build a surface ΩΓ

3. Prove a spectral comparison estimate with λ1(Γ)

4. Consider expanding sequence of graphs

QED

Question: How many boundary components are required?



2. Discretization of manifolds with boundary

Let κ ≥ 0 and r0 ∈ (0,1).

A n-dimensional compact manifold M is inM =M(κ, r0,n) if

H1) The boundary Σ admits a neighbourhood which is
isometric to the cylinder [0,1]× Σ, with the boundary
corresponding to {0} × Σ;

H2) The Ricci curvature of M is bounded below by −(n− 1)κ;

H3) The Ricci curvature of Σ is bounded below by −(n− 2)κ;

H4) For each point p ∈ M such that d(p,Σ) > 1, injM(p) > r0;

H5) For each point p ∈ Σ, injΣ(p) > r0.



Discretization of M ∈M(n, κ, r0)

Fix ε ∈ (0, r0/4).

VΣ ⊂ Σ: maximal ε-separated.

V′Σ := {4ε} × VΣ ⊂ M.

V′Σ ⊂ VI: maximal ε-separated in M \ [0,4ε[×Σ.



The set V = VΣ ∪ VI is given the structure of a graph Γ:

I any two v,w ∈ V adjacent if dM(v,w) < 3ε;

I any v ∈ VΣ adjacent to v′ = (4ε, v) ∈ V′Σ ⊂ VI.

This graph Γ = (V,E) is a ε-discretization of M.

Lemma
For any 0 < ε < r0/4, and any ε-discretization (Γ,VΣ) of M, the
natural inclusion V ⊂ M is a rough isometry:

ε

4
dΓ(x, y)− 10 ≤ dM(x, y) ≤ 4εdΓ(x, y) + 10.
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Rough isometries

A rough isometry between two metric spaces X and Y is a map
Φ : X→ Y such that, there exist constants a ≥ 1,b ≥ 0, τ ≥ 0
satisfying

a−1d(x1, x2)− b ≤ d(Φ(x1),Φ(x2)) ≤ a d(x1, x2) + b (1)

for every x1, x2 ∈ X and which satisfies⋃
x∈X

B(Φ(x), τ) = Y.



3. Comparison estimates

Let Γ = (V,E) be a graph with boundary B ⊂ V.

The Dirichlet energy of a function f : V → R is

q(f) :=
∑
v∼w

(
f(v)− f(w)

)2
.

For each j < |B|, the j-th Steklov eigenvalue of the (Γ,B) is

σj(Γ,B) = min
E

max
f∈E

q(f)

‖f‖2B

the minimum is over j + 1-dimensional subspaces E of `2(V).



Main theorem (Colbois–Girouard–Raveendran)

Let ε ∈ (0, r0/4).

There exist numbers a,b > 0 depending on κ, r0,n and ε such
that any ε-discretization (ΓM,VΣ) of M ∈M(κ, r0,n) satisfies

a <
σ1(M)

σ1(Γ,VΣ)
< b.



4. Two applications

Application 1
There exists a sequence of domains ΩN ⊂ R2, such that

1. The isoperimetric ratio I(ΩN)→∞ as N→∞;

2. There exists a constant c > 0, such that σ1(ΩN)|ΣN| ≥ c.

Application 2
There exist a sequence {ΩN}N∈N of compact surfaces with
connected boundary and a constant C > 0 such that,
genus(ΩN) = 1 + N, and

σ1(ΩN)L(∂ΩN) ≥ CN.



Application 1

Theorem (Colbois–Girouard–El Soufi, 2011)
There exists C = C(n) such that

σk(Ω)|∂Ω|1/n ≤ C

I(Ω)(n−1)/n
k2/n.

Where the isoperimetric ratio I(Ω) := |∂Ω|
|Ω|n/(n+1) ≥ I(B).

classical isoperimetric inequality

Corollary

If n ≥ 3 then any sequence of domains ΩN ⊂ Rn such that

lim
N→∞

I(ΩN) = +∞

satisfies
lim

N→∞
σk(ΩN)|∂ΩN| = 0.
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