

The Steklov spectrum and coarse discretization

with B. Colbois and B. Raveendran

Alexandre Girouard

Plan

- 1. Introduction/Motivation
- 2. Coarse discretizations of manifolds with bounded geometry
- 3. Spectral comparison
- 4. Applications

Let Ω be a **compact Riemannian manifold of dimension** $n \ge 2$ with smooth boundary $M = \partial \Omega$ of dimension n - 1.

Let Ω be a **compact Riemannian manifold of dimension** $n \ge 2$ with smooth boundary $M = \partial \Omega$ of dimension n - 1.

The **Dirichlet-to-Neumann map** $\mathcal{D} : C^{\infty}(M) \to C^{\infty}(M)$ is defined by

 $\mathcal{D}f = \partial_n(Hf)$

where $f \in C^{\infty}(M)$ and $Hf \in C^{\infty}(\Omega)$ is the harmonic extension of f into Ω .

Let Ω be a **compact Riemannian manifold of dimension** $n \ge 2$ with smooth boundary $M = \partial \Omega$ of dimension n - 1.

The **Dirichlet-to-Neumann map** $\mathcal{D} : C^{\infty}(M) \to C^{\infty}(M)$ is defined by

 $\mathcal{D}f = \partial_n(Hf)$

where $f \in C^{\infty}(M)$ and $Hf \in C^{\infty}(\Omega)$ is the harmonic extension of f into Ω .

The eigenvalues of \mathcal{D} are the Steklov eigenvalues of Ω .

$$\mathbf{0} = \sigma_{\mathbf{0}} \leq \sigma_{\mathbf{1}} \leq \sigma_{\mathbf{2}} \leq \cdots \nearrow +\infty.$$

Let Ω be a **compact Riemannian manifold of dimension** $n \ge 2$ with smooth boundary $M = \partial \Omega$ of dimension n - 1.

The **Dirichlet-to-Neumann map** $\mathcal{D} : C^{\infty}(M) \to C^{\infty}(M)$ is defined by

 $\mathcal{D}f = \partial_n(Hf)$

where $f \in C^{\infty}(M)$ and $Hf \in C^{\infty}(\Omega)$ is the harmonic extension of f into Ω .

The eigenvalues of \mathcal{D} are the Steklov eigenvalues of Ω .

$$0 = \sigma_0 \leq \sigma_1 \leq \sigma_2 \leq \cdots \nearrow +\infty.$$

 $\Delta u = 0 \text{ in } \Omega,$ $\partial_n u = \sigma u \text{ on } M = \partial \Omega.$

2. Isoperimetry on surfaces

Theorem (Weinstock, 1954) If $\Omega \subset \mathbb{R}^2$ is a simply-connected domain, then

 $\sigma_1 L \leq 2\pi.$

Theorem (Fraser-Schoen, 2013)

If Ω is a compact surface of genus γ with b boundary components, then

 $\sigma_1 L \leq 2\pi (\gamma + b).$

Theorem (Kokarev, 2014)

If Ω is a compact surface of genus γ , then

 $\sigma_1 L \leq 8\pi (\gamma + 1).$

Theorem (Colbois-Girouard, 2014)

There exists a sequence Ω_N of surfaces with the genus 1+N and such that

 $\sigma_1(\Omega_N)L(\partial\Omega_N)\geq CN,$

for some universal constant C > 0.

Strategy:

- 1. Consider a regular graph Γ of degree 4
- 2. Use a «fundamental piece» to build a surface Ω_{Γ}
- 3. Prove a spectral comparison estimate with $\lambda_1(\Gamma)$
- 4. Consider expanding sequence of graphs

QED

Question: How many boundary components are required?

2. Discretization of manifolds with boundary

Let $\kappa \geq 0$ and $r_0 \in (0, 1)$.

A *n*-dimensional compact manifold *M* is in $\mathcal{M} = \mathcal{M}(\kappa, r_0, n)$ if

- H1) The boundary Σ admits a neighbourhood which is isometric to the cylinder $[0, 1] \times \Sigma$, with the boundary corresponding to $\{0\} \times \Sigma$;
- H2) The Ricci curvature of *M* is bounded below by $-(n-1)\kappa$;
- H3) The Ricci curvature of Σ is bounded below by $-(n-2)\kappa$;
- H4) For each point $p \in M$ such that $d(p, \Sigma) > 1$, $inj_M(p) > r_0$;
- H5) For each point $p \in \Sigma$, $inj_{\Sigma}(p) > r_0$.

Discretization of $M \in \mathcal{M}(n, \kappa, r_0)$

 $V'_{\Sigma} \subset V_{I}$: maximal ϵ -separated in $M \setminus [0, 4\epsilon[\times \Sigma.$

The set $V = V_{\Sigma} \cup V_{I}$ is given the structure of a graph Γ :

- ▶ any two $v, w \in V$ adjacent if $d_M(v, w) < 3\epsilon$;
- any $v \in V_{\Sigma}$ adjacent to $v' = (4\epsilon, v) \in V'_{\Sigma} \subset V_{I}$.

This graph $\Gamma = (V, E)$ is a <u> ϵ -discretization of M</u>.

The set $V = V_{\Sigma} \cup V_{I}$ is given the structure of a graph Γ :

- ▶ any two $v, w \in V$ adjacent if $d_M(v, w) < 3\epsilon$;
- any $v \in V_{\Sigma}$ adjacent to $v' = (4\epsilon, v) \in V'_{\Sigma} \subset V_{I}$.

This graph $\Gamma = (V, E)$ is a <u> ϵ -discretization of M</u>.

Lemma

For any $0 < \epsilon < r_0/4$, and any ϵ -discretization (Γ, V_{Σ}) of M, the natural inclusion $V \subset M$ is a rough isometry:

$$rac{\epsilon}{4} d_{\Gamma}(x,y) - 10 \leq d_{M}(x,y) \leq 4\epsilon d_{\Gamma}(x,y) + 10.$$

Rough isometries

A <u>rough isometry</u> between two metric spaces X and Y is a map $\Phi: X \to Y$ such that, there exist constants $a \ge 1, b \ge 0, \tau \ge 0$ satisfying

$$a^{-1}d(x_1,x_2) - b \le d(\Phi(x_1),\Phi(x_2)) \le a d(x_1,x_2) + b$$
 (1)

for every $x_1, x_2 \in X$ and which satisfies

$$\bigcup_{x\in X} B(\Phi(x),\tau) = Y.$$

3. Comparison estimates

Let $\Gamma = (V, E)$ be a graph with boundary $B \subset V$.

The <u>Dirichlet energy</u> of a function $f: V \to \mathbb{R}$ is

$$q(f) := \sum_{v \sim w} (f(v) - f(w))^2.$$

For each j < |B|, the *j*-th <u>Steklov eigenvalue</u> of the (Γ, B) is

$$\sigma_j(\Gamma, B) = \min_{E} \max_{f \in E} \frac{q(f)}{\|f\|_B^2}$$

the minimum is over j + 1-dimensional subspaces E of $\ell^2(V)$.

Let $\epsilon \in (0, r_0/4)$.

There exist numbers a, b > 0 depending on κ, r_0, n and ϵ such that any ϵ -discretization (Γ_M, V_{Σ}) of $M \in \mathcal{M}(\kappa, r_0, n)$ satisfies

$$a < rac{\sigma_1(M)}{\sigma_1(\Gamma,V_{\Sigma})} < b.$$

4. Two applications

Application 1

There exists a sequence of domains $\Omega_N \subset \mathbb{R}^2$, such that

- 1. The isoperimetric ratio $I(\Omega_N) \to \infty$ as $N \to \infty$;
- 2. There exists a constant c > 0, such that $\sigma_1(\Omega_N)|\Sigma_N| \ge c$.

Application 2

There exist a sequence $\{\Omega_N\}_{N\in\mathbb{N}}$ of compact surfaces with connected boundary and a constant C > 0 such that, genus $(\Omega_N) = 1 + N$, and

 $\sigma_1(\Omega_N)L(\partial\Omega_N) \geq CN.$

Application 1

Theorem (Colbois–Girouard–El Soufi, 2011) There exists C = C(n) such that

$$\sigma_k(\Omega)|\partial \Omega|^{1/n} \leq \frac{C}{I(\Omega)^{(n-1)/n}}k^{2/n}.$$

Where the isoperimetric ratio $I(\Omega) := \frac{|\partial \Omega|}{|\Omega|^{n/(n+1)}} \ge I(\mathbb{B}).$

Corollary

If $n \geq 3$ then any sequence of domains $\Omega_N \subset \mathbb{R}^n$ such that

$$\lim_{N\to\infty} I(\Omega_N) = +\infty$$

satisfies

$$\lim_{N\to\infty}\sigma_k(\Omega_N)|\partial\Omega_N|=0.$$

Application 1

There exists a sequence of domains $\Omega_N \subset \mathbb{R}^2$, such that

- 1. The isoperimetric ratio $I(\Omega_N) \to \infty$ as $N \to \infty$;
- 2. There exists a constant c > 0, such that $\sigma_1(\Omega_N)|\Sigma_N| \ge c$.

Application 2

There exist a sequence $\{\Omega_N\}_{N\in\mathbb{N}}$ of compact surfaces with connected boundary and a constant C > 0 such that, genus $(\Omega_N) = 1 + N$, and

 $\sigma_1(\Omega_N)L(\partial\Omega_N) \geq CN.$

