Shape optimization with Robin conditions and free discontinuity problems

Alessandro Giacomini

Università degli Studi di Brescia

November 2016

Alessandro Giacomini

Università degli Studi di Brescia

The first eigenvalue of the Robin-Laplacian

Let $\Omega \subseteq \mathbb{R}^N$ be open, bounded and with a Lipschitz boundary, and let $\beta > 0$. We set

$$\lambda_{1,\beta}(\Omega) := \min_{u \in H^1(\Omega), u \neq 0} \frac{\int_{\Omega} |\nabla u|^2 \, dx + \beta \int_{\partial \Omega} u^2 \, d\mathcal{H}^{N-1}}{\int_{\Omega} u^2 \, dx}$$

The value $\lambda_{1,\beta}$ is characterized by the elliptic boundary value problem

$$\begin{cases} -\Delta u = \lambda_{1,\beta} u & \text{in } \Omega\\ \frac{\partial u}{\partial n} + \beta u = 0 & \text{on } \partial \Omega\\ u > 0 & \text{in } \Omega. \end{cases}$$

Alessandro Giacomini

Università degli Studi di Brescia

The Faber-Krahn inequality

Faber-Krahn inequality (Bossel (1986) and Daners (2007))

We have

$$\lambda_{1,\beta}(B) \leq \lambda_{1,\beta}(\Omega),$$

where B is a ball such that $|B| = |\Omega|$. Equality holds if and only if Ω is a ball.

- Admissible functions to compute λ_{1,β}(Ω) do not vanish on ∂Ω: → no trivial rearrangements.
- Bossel and Daners' approach is based on a direct comparison between Ω and B through a dearrangement.

Alessandro Giacomini

Università degli Studi di Brescia

< 17 >

Shape optimization with Robin conditions and free discontinuity problems

Trying to apply the direct method of the Calculus of Variations

- compactness properties on the domains (in some topology) are not obvious;
- concerning the eigenfunctions, after an extension to 0 outside the domain we have

$$\begin{split} \|u^2\|_{BV} &= \int_{\mathbb{R}^N} |2u\nabla u| \, dx + \int_{J_u} |\gamma_1(u)^2 - \gamma_2(u)^2| \, d\mathcal{H}^{N-1} + \int_{\mathbb{R}^N} u^2 \, dx \\ &\leq \int_{\Omega} u^2 \, dx + \int_{\Omega} |\nabla u|^2 \, dx + \int_{\partial\Omega} u^2 \, d\mathcal{H}^{N-1} + \int_{\Omega} u^2 \, dx \\ &\leq C(1 + \lambda_{1,\beta}(\Omega)) \int_{\Omega} u^2 \, dx. \end{split}$$

Some compactness for the eigenfunctions is available...

Alessandro Giacomini

Università degli Studi di Brescia

A free discontinuity framework

We concentrate the free discontinuity functional

$$R_{\beta}(u) := \frac{\int_{\mathbb{R}^N} |\nabla u|^2 \, dx + \beta \int_{J_u} [\gamma_1(u)^2 + \gamma_2(u)^2] \, d\mathcal{H}^{N-1}}{\int_{\mathbb{R}^N} u^2 \, dx}$$

on a suitable class of functions of bounded variation. If u is the first eigenfunction of Ω , we have

$$\lambda_{1,\beta}(\Omega)=R_{\beta}(u)$$

Alessandro Giacomini

Shape optimization with Robin conditions and free discontinuity problems

Università degli Studi di Brescia

The surface term

$$\beta \int_{J_u} [\gamma_1(u)^2 + \gamma_2(u)^2] \, d\mathcal{H}^{N-1} \tag{1}$$

is somehow *unusual*: several forms would be admissible in connection with our problem, since $\gamma_2(u) = 0$ for the *eigenfunctions*. The sum is natural if we want to deal with a minimization, as suggested by the picture

Alessandro Giacomini

Università degli Studi di Brescia

The Faber-Krahn inequality

The problem $\inf_{|\Omega|=m} \lambda_{1,\beta}(\Omega)$ leads to

$$\inf_{u \in SBV^{\frac{1}{2}}(\mathbb{R}^N), |supp(u)|=m} R_{\beta}(u).$$

where

$$SBV^{\frac{1}{2}}(\mathbb{R}^N) := \{u \in L^2(\mathbb{R}^N) : u \ge 0, u^2 \in SBV(\mathbb{R}^N)\}.$$

Theorem (Bucur-G. (ARMA 2010 and ARMA 2015))

The free discontinuity problem admits a solution. Every solution is of the form $u = \psi 1_B$, where B is a ball with $|B| = |\Omega|$ and ψ is the associated first classical eigenfunction.

Alessandro Giacomini

Università degli Studi di Brescia

If we consider

$$ilde{\mathsf{R}}_eta(u) := rac{\int_{\mathbb{R}^N} |
abla u|^2 \, d\mathsf{x} + eta \int_{J_u} [\gamma_1(u)^2 + \gamma_2(u)^2] \, d\mathcal{H}^{N-1}}{\left(\int_{\mathbb{R}^N} u \, d\mathsf{x}
ight)^2},$$

we can show that $T_{\beta}(\Omega) \geq T_{\beta}(B)$ where

$$T_{\beta}(\Omega) := \min_{u \in H^{1}(\Omega), u \neq 0} \frac{\int_{\Omega} |\nabla u|^{2} dx + \beta \int_{\partial \Omega} u^{2} d\mathcal{H}^{N-1}}{\left(\int_{\Omega} |u| dx\right)^{2}},$$

so that we have a Saint-Venant inequality for the torsional rigidity under Robin conditions.

Università degli Studi di Brescia

Alessandro Giacomini

If we consider

$$\hat{R}_{\beta}(u) := \frac{\left(\int_{\mathbb{R}^{N}} |\nabla u|^{2} dx\right)^{1/2} + \left(\int_{J_{u}} [\gamma_{1}(u)^{2} + \gamma_{2}(u)^{2}] d\mathcal{H}^{N-1}\right)^{1/2}}{\left(\int_{\mathbb{R}^{N}} u^{2} dx\right)^{1/2}},$$

we can prove $C_2(\Omega) \ge C_2(B)$, where

$$C_2(\Omega) := \min_{u \in W^{1,2}(\Omega), u \neq 0} \frac{\|\nabla u\|_{L^2(\Omega)} + \|u\|_{L^2(\partial\Omega)}}{\|u\|_{L^2(\Omega)}}$$

We thus recover the optimal constant in the Poincaré inequality with traces

$$\|\nabla u\|_{L^{2}(\Omega)} + \|u\|_{L^{2}(\partial\Omega)} \ge C_{2}(B)\|u\|_{L^{2}(\Omega)}$$

Alessandro Giacomini

Università degli Studi di Brescia

.

- Existence of a minimizer follow by the direct method modulo a concentration compactness alternative.
- By means of a regularity analysis, the support of u is shown to be an open and connected set Ω with ∂Ω which is rectifiable with H^{N-1}(∂Ω) < +∞. Moreover u is smooth on Ω with

$$-\Delta u = \lambda_u u,$$

where $\lambda_u = R_\beta(u)$.

By suitable reflection arguments, one shows that

$$\Omega = B$$
 and $u = \psi \mathbf{1}_B$

obtaining the Faber-Krahn inequality.

Alessandro Giacomini

Shape optimization with Robin conditions and free discontinuity problems

Università degli Studi di Brescia

A free discontinuity functional for λ_k

Recall that

$$\lambda_{k,\beta}(\Omega) = \min_{S \in \mathcal{S}_k} \max_{u \in S \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^2 \, dx + \beta \int_{\partial \Omega} u^2 \, d\mathcal{H}^{N-1}}{\int_{\Omega} u^2 \, dx},$$

where S_k denotes the family of k-dimensional subspaces of $H^1(\Omega)$.

We thus consider for $u = (u_1, \ldots, u_k)$ the functional

$$\mathsf{R}_{k,\beta}(u) := \max_{v \in V(u)} \frac{\int_{\mathbb{R}^N} |\nabla v|^2 \, dx + \beta \int_{J_u} [\gamma_1(v)^2 + \gamma_2(v)^2] \, d\mathcal{H}^{N-1}}{\int_{\mathbb{R}^N} v^2 \, dx}$$

Alessandro Giacomini

Università degli Studi di Brescia

where

$$u \in SBV_{\pm}^{\frac{1}{2}}(\mathbb{R}^{N};\mathbb{R}^{k}) := \left\{ u = (u_{1}, \dots, u_{k}) : u_{i}^{\pm} \in SBV^{\frac{1}{2}}(\mathbb{R}^{N}), \\ \int_{\mathbb{R}^{N}} |\nabla u|^{2} dx + \int_{J_{u}} [|\gamma_{1}(u)|^{2} + |\gamma_{2}(u)|^{2}] d\mathcal{H}^{N-1} < +\infty \right\},$$

V(u) is the vector space generated by the components of u, and dim V(u) = k. We denote the space with $\mathcal{F}_k(\mathbb{R}^N)$.

Theorem (Bucur-G. (2016))

For every $k \ge 1$ the free discontinuity problem admits a solution with bounded support. Moreover

$$\min_{u \in \mathcal{F}_k(\mathbb{R}^N), |supp(u)| = m} R_{k,\beta}(u) = \inf_{|\Omega| = m} \lambda_{k,\beta}(\Omega).$$
(2)

Alessandro Giacomini

Università degli Studi di Brescia