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The first eigenvalue of the Robin-Laplacian

Let Ω ⊆ RN be open, bounded and with a Lipschitz boundary, and
let β > 0. We set

λ1,β(Ω) := min
u∈H1(Ω),u 6=0

∫
Ω |∇u|

2 dx + β
∫
∂Ω u2 dHN−1∫

Ω u2 dx
.

The value λ1,β is characterized by the elliptic boundary value
problem 

−∆u = λ1,βu in Ω
∂u
∂n + βu = 0 on ∂Ω

u > 0 in Ω.
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The Faber-Krahn inequality

Faber-Krahn inequality (Bossel (1986) and Daners (2007))

We have
λ1,β(B) ≤ λ1,β(Ω),

where B is a ball such that |B| = |Ω|. Equality holds if and only if
Ω is a ball.

Admissible functions to compute λ1,β(Ω) do not vanish on
∂Ω:  no trivial rearrangements.

Bossel and Daners’ approach is based on a direct comparison
between Ω and B through a dearrangement.
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Trying to apply the direct method of the Calculus of Variations

compactness properties on the domains (in some topology)
are not obvious;

concerning the eigenfunctions, after an extension to 0 outside
the domain we have

‖u2‖BV

=

∫
RN

|2u∇u| dx +

∫
Ju

|γ1(u)2 − γ2(u)2| dHN−1 +

∫
RN

u2 dx

≤
∫
Ω
u2 dx +

∫
Ω
|∇u|2 dx +

∫
∂Ω

u2 dHN−1 +

∫
Ω
u2 dx

≤ C (1 + λ1,β(Ω))

∫
Ω
u2 dx .

Some compactness for the eigenfunctions is available...
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A free discontinuity framework

We concentrate the free discontinuity functional

Rβ(u) :=

∫
RN |∇u|2 dx + β

∫
Ju

[γ1(u)2 + γ2(u)2] dHN−1∫
RN u2 dx

on a suitable class of functions of bounded variation. If u is the
first eigenfunction of Ω, we have

λ1,β(Ω) = Rβ(u)
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The surface term

β

∫
Ju

[γ1(u)2 + γ2(u)2] dHN−1 (1)

is somehow unusual: several forms would be admissible in
connection with our problem, since γ2(u) = 0 for the
eigenfunctions. The sum is natural if we want to deal with a
minimization, as suggested by the picture

Ωn → Ω

Ωn Ω
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The Faber-Krahn inequality

The problem inf |Ω|=m λ1,β(Ω) leads to

inf
u∈SBV

1
2 (RN),|supp(u)|=m

Rβ(u).

where

SBV
1
2 (RN) := {u ∈ L2(RN) : u ≥ 0, u2 ∈ SBV (RN)}.

Theorem (Bucur-G. (ARMA 2010 and ARMA 2015))

The free discontinuity problem admits a solution. Every solution is
of the form u = ψ1B , where B is a ball with |B| = |Ω| and ψ is
the associated first classical eigenfunction.
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If we consider

R̃β(u) :=

∫
RN |∇u|2 dx + β

∫
Ju

[γ1(u)2 + γ2(u)2] dHN−1(∫
RN u dx

)2
,

we can show that Tβ(Ω) ≥ Tβ(B) where

Tβ(Ω) := min
u∈H1(Ω),u 6=0

∫
Ω |∇u|

2 dx + β
∫
∂Ω u2 dHN−1(∫

Ω |u| dx
)2

,

so that we have a Saint-Venant inequality for the torsional rigidity
under Robin conditions.
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If we consider

R̂β(u) :=

(∫
RN |∇u|2 dx

)1/2
+
(∫

Ju
[γ1(u)2 + γ2(u)2] dHN−1

)1/2

(∫
RN u2 dx

)1/2
,

we can prove C2(Ω) ≥ C2(B), where

C2(Ω) := min
u∈W 1,2(Ω),u 6=0

‖∇u‖L2(Ω) + ‖u‖L2(∂Ω)

‖u‖L2(Ω)
.

We thus recover the optimal constant in the Poincaré inequality
with traces

‖∇u‖L2(Ω) + ‖u‖L2(∂Ω) ≥ C2(B)‖u‖L2(Ω)
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Existence of a minimizer follow by the direct method modulo
a concentration compactness alternative.

By means of a regularity analysis, the support of u is shown to
be an open and connected set Ω with ∂Ω which is rectifiable
with HN−1(∂Ω) < +∞. Moreover u is smooth on Ω with

−∆u = λuu,

where λu = Rβ(u).

By suitable reflection arguments, one shows that

Ω = B and u = ψ1B

obtaining the Faber-Krahn inequality.
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A free discontinuity functional for λk

Recall that

λk,β(Ω) = min
S∈Sk

max
u∈S\{0}

∫
Ω |∇u|

2 dx + β
∫
∂Ω u2 dHN−1∫

Ω u2 dx
,

where Sk denotes the family of k-dimensional subspaces of H1(Ω).

We thus consider for u = (u1, . . . , uk) the functional

Rk,β(u) := max
v∈V (u)

∫
RN |∇v |2 dx + β

∫
Ju

[γ1(v)2 + γ2(v)2] dHN−1∫
RN v2 dx
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where

u ∈ SBV
1
2
±(RN ;Rk) :=

{
u = (u1, . . . , uk) : u±i ∈ SBV

1
2 (RN),∫

RN

|∇u|2 dx +

∫
Ju

[|γ1(u)|2 + |γ2(u)|2] dHN−1 < +∞
}
,

V (u) is the vector space generated by the components of u, and
dimV (u) = k . We denote the space with Fk(RN).

Theorem (Bucur-G. (2016))

For every k ≥ 1 the free discontinuity problem admits a solution
with bounded support. Moreover

min
u∈Fk (RN),|supp(u)|=m

Rk,β(u) = inf
|Ω|=m

λk,β(Ω). (2)
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