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The Faber-Krahn inequality

Q C IR" a bounded domain, p > 1.

The first Dirichlet eigenvalue of p-Laplacian

@) =minf [ 197w € WR@), el =1}
Q
The Faber -Krahn inequality: If |Q| = |B,|, then
Ap(2) > Ap(Br) with ‘=" iff Q is a ball
Since A\p(r2) = rPAp(Q2) for r > 0, Faber-Krahn becomes

Q7 Ap(Q) > |B]"A5(B) B is the unit ball
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Let |Q2] = |B| and assume that A\,(2) = A\,(B)
Can we say that Q is close to the unit ball?
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The stability problem

Let |Q2] = |B| and assume that A\,(2) = A\,(B)
Can we say that Q is close to the unit ball?

- Hansen, Nadirashvili (1991) considered the case when Q is convex
and proved that

A2(Q) = A2(B) = y(n)(1 - ri(£2))*

where r;(§2) is the inner radius and

3 ifn=2
a(n) = < any number >3 ifn=3
%3 ifn>4

Melas (1992), proved a similar estimate in the convex case, using
the inner and the outer radius of Q



For a general open set a natural way to measure the distance from
a ball is to consider the Fraenkel asymmetry
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For a general open set a natural way to measure the distance from
a ball is to consider the Fraenkel asymmetry

[QAB(x)|

A(R2) := min { B,

1ol =151}
Note that A() is scaling invariant and that A(2) < 2

Conjecture by Hansen, Nadirashvili (1991) and by Bhattacharya,
Weitsman (1996) for the first eigenvalue of the Laplacian

1907 22(Q) — [B]7A2(B) = () AQ)?
We cannot expect a smaller exponent. Take the ellipsoids
Q. = {(¥,xn) e R IR : X2+ (14e)x2 < 1} for0<e<<1
Then one can show that

A(Q) ~ e Q2] 7 X\2(Q2) — |B]7 A2(B) ~ &2
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Conjecture:

(%) Q7 22(2) — |B|7A2(B) = 7(n)A(R)?

Bhattacharya (2001) proved for p > 1: if Q C IR?
1917 A\p(Q) = |B|7Ap(B) > 7(p)A(Q)®
F., Maggi and Pratelli (2009) proved that if O C R", p > 1
Q17 25(Q) ~ [BI7Ap(B) = +(n. p) A(R)"+

Brasco, De Philippis and Velichkov solved the conjecture (*) in
2013!! (in any dimension)
Proof based on the celebrated regularity results for free boundary
problems involving the Laplacian:

- Alt, Caffarelli (1981)
- Alt, Caffarelli, Friedman (1984)
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Our (N. F. & Y. Zhang) result (2016)

Let n > 2 and p > 1. Then there exists a constant v(n, p) s.t.
1205 25(9) — [BI5 Ap(B) = 7A(Q)?

The issue here is the “ 2"l
With “2" replaced by “3" see Brasco, De Philippis (2016)
Strategy of the proof:
Similar to the one of Brasco, De Philippis and Velichkov
Serious problems due to the nonlinearity and degeneracy of the

p-Laplacian

From now on we shall assume Q2| = |B]
and we write A\(Q2) instead of A,(€2) (p will be fixed)
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Step 1 (p > 1 fixed and |Q| = |B])

Following BDV, to prove M) — A(B) > v A(Q)?

we prove something weaker...

E(Q) - E(B) > v A(Q)*>  where
E(Q) = min{l/ |vu\de_/ wd: ue (@)}
pJa Q
If fq is the first eigenfunction of the p-Laplacian then
—div(|V&|P72V) = AM(Q)|fal”*fa fo=00n 0Q

If uq is minimizer of E(Q2) then
—div(]VuQ(p*QVuQ) =1 ug = 0 on 0Q

A(Q) — A(B) = /Q Vol - /B Vsl

£@ - £8) =L ( [ 1Vual? - [ (Vusl?)



Step 1 (p > 1 fixed and |Q| = |B])

A(Q) = X(B) > 7 AQ)?
we prove something weaker...
E(Q) - E(B) = 7 AQ)?

where

e@i=min {2 [ [wuPax- [ wan: ve wr@)} = -2 @)t



Step 1 (p > 1 fixed and |Q| = |B])
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we prove something weaker...
E(Q) - E(B) > v A(Q)?

where
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inequality (Brasco, 2014):
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Step 1 (p > 1 fixed and |Q| = |B])

A(R) = A(B) > 7 AQ)?
we prove something weaker...
E(Q) - E(B) > v A(Q)?

where
£(@) = min {2 [ [vub - [ wa: v e wir@)} = 2 )
P Ja Q p

and then we use the following extension of the Kohler-Jobin
inequality (Brasco, 2014):



Step 2 (|2 = |B])

To prove
E(Q) - E(B) > 7 AQ)?
we first assume that € is a bounded open set very close to B.

Given p € C%>%(9B), |¢| <1
We say that Q is a nearly spherical set
parameterized by ¢ if

0N ={x=2z(1+¢(z)): z€ 0B}

Theorem

There exist 6,7 such that if Q is a nearly spherical set of class

C? @ parametrized by o, with l¢llc2.aa) < 9, the barycenter of
Q is at the origin and |Q2| = |B|, then

E(Q) ~ E(B) 2 nollely



Step 2 (2| = |BJ)
To prove
E(Q) - E(B) > 7 A(Q)?

we first assume that € is a bounded open set very close to B.

Given p € C%>%(9B), |¢| <1
We say that Q is a nearly spherical set

parameterized by ¢ if

0N ={x=2z(1+¢(z)): z€ 0B}

Theorem
There exist 6,7 such that if Q is a nearly spherical set of class

C? @ parametrized by o, with l¢llc2.aam) < 6, the barycenter of Q
is at the origin and |Q| = |B|, then

E(Q) - E(B) = vllel?, . > 0lelizps> cAQ)?

1
3 (08B)



Step 3 (Reduction to bounded sets |Q2| = |B])

Since A(€2) < 2 to prove that
D(Q) := E(Q) — E(B) > v A(Q)?

it is enough to deal with the case that D(Q) < d



Step 3 (Reduction to bounded sets |Q2| = |B])

Since A(Q) < 2 to prove that
D(Q) := E(Q) — E(B) > 7 A(Q)?

it is enough to deal with the case that D(Q) < d

Lemma

There exist C,d, R > 0, such that || = |B| and D(2) < o, one
can find another open set Q with |Q2| = |B| and Q C Bg with the
property that

AQ) < AQ)+CD(Q),  D(Q) < CD(Q)



Step 4 (Reduction to nearly spherical sets via regularity)
We have now to show that if |Q| =|B|,Q C Bg then

D(Q) = E(Q) - E(B) = 7 A(Q)?
To prove this inequality we replace the Fraenkel asymmetry

A(Q) = mln  {[QAB(x)[}

with the following (almost equwalent, but smoother asymmetry)
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where xq is the barycenter of Q



Step 4 (Reduction to nearly spherical sets via regularity)
We have now to show that if |Q| =|B|,Q C Bg then

D(Q) = E(Q) - E(B) = 7 A(Q)?
To prove this inequality we replace the Fraenkel asymmetry
A(Q) = mln  {[QAB(x)[}
with the following (almost equwalent, but smoother asymmetry)

a(Q) = / ‘1 —|x - XQH dx (introd. by BDV)
QABl(XQ)

where xq is the barycenter of Q

Lemma
QCBr = a(Q)>cAQ)?

If Q is a nearly spherical set parametrized by ¢, ||| =@a8) < 9,

a(2) < C2||‘PH%2(8B)



Step 4 (Reduction to nearly spherical sets via regularity)

Thus we need to show that if |Q| =|B|,Q C Bg, ,D(Q2) < 9, then

D(Q) := E(Q) — E(B) > 0 a(Q)
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Thus we need to show that if |Q| =|B|,Q C Bg, ,D(Q2) < 9, then
D(R2) == E() — E(B) > 70 a(Q)

Strategy: A contradiction argument based on regularity
first proposed by Cicalese, Leonardi (2012)
then modified by Acerbi, F., Morini (2013)
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Caffarelli to a free boundary problem for the p-Laplacian equation



Step 4 (Reduction to nearly spherical sets via regularity)

Thus we need to show that if |Q| =|B|,Q C Bg, ,D(Q2) < 9, then
D(R2) == E() — E(B) > 70 a(Q)

Strategy: A contradiction argument based on regularity
first proposed by Cicalese, Leonardi (2012)
then modified by Acerbi, F., Morini (2013)

To implement this strategy one has to adapt the theory of Alt,
Caffarelli to a free boundary problem for the p-Laplacian equation

Danielli-Petrosjan (2005) studied the free boundary problem for the
p-Laplacian equation with right hand side = 0



Back to Step 2

Theorem
There exist 6,~o such that if Q is a nearly spherical set of class

C2 < parametrized by o, with lellc2.aam) < 9, the barycenter of Q
is at the origin and |Q| = |B|, then

() E(®)— £(8) = nollel?,

Recall that

E(Q):min{;/Q|Vu|pdx—/Qudx: ue Wol’p(Q)}



Back to Step 2

() E@) - £(8) = ollel?y

1
where E(Q) = min {p/ |vu|p dx—/ udx: ué€ Wgﬂp(Q)}
Q Q



Back to Step 2

() E(R) — E(8) = el

1
where E(Q) = min {p/ |vu|p dX—/ udx: ué€ W&ﬂP(Q)}
Q Q

To prove (*) we try a second variation argument.
We construct an autonomous vector field X € C>*(IR"), s.t.
div.X = 0 in a nhood of OB and consider the flow

%(X) = X(®:(x)), Po(x) =x, for(x,t) € R" x[0,1]

with |®¢(B)| = |B|, ®1(B)=Q



Back to Step 2

() E(R) — E(8) = el

1
where E(Q) = min {p/ |vu|p dX—/ udx: ué€ W&ﬂP(Q)}
Q Q

To prove (*) we try a second variation argument.
We construct an autonomous vector field X € C>*(IR"), s.t.
div.X = 0 in a nhood of OB and consider the flow

%(X) = X(®:(x)), Po(x) =x, for(x,t) € R" x[0,1]

with [®+(B)| = |B|, ®:1(B)=Q
Setting Q; := ®¢(B) and e(t) := E(Q¢) we would like to write

1
E(Q)~E(B) = e(1)—e(0) = €(0)+2¢"(0)+ /0 (1-1)(e"(£)—€"(0))dt



() E(@)— E(B) = wlel?y .

where E(Q):min{ll)/Q|Vu|pdx—/Qudx: ue Wol’p(Q)}
0(B)| = |B] 1(B) =2
Setting Q; 1= ®+(B) and e(t) := E(Q;), we would like to write
1
E(@)—E(B) = e(1)=e(0) = €(0)+3¢"(0)+ [ (1-t)(e()—e"(0))ee

Then we would like to prove that



() E(@)— E(B) = wlel?y .

where E(Q):min{l/ |Vu|pdx—/ udx: ue Wol’p(Q)}
pPJa Q
[®:(B)| = [B] ®1(B) =10
Setting Q; 1= ®+(B) and e(t) := E(Q;), we would like to write
1
E(Q)—E(B) =e(1)—e(0) = e’(O)—i—ie”(O)—i—/ (1—t)(e"(t)—€"(0))dt
0
Then we would like to prove that

e"(0) = 1llell? 5 " (t)—€"(0)] < w(llell, )l 5



() E(@)— E(B) = wlel?y .

where  E(Q) = min{ll)/Q|Vu|pdx—/Qudx: v e W)
0:(B)] = B :(8) =9
Setting Q; 1= ®+(B) and e(t) := E(Q;), we would like to write
E(Q)— E(B) = e(1)—e(0) = e’(O)—i—%e”(O)—i— /Ol(l—t)(e”(t)—e”(O))dt
Then we would like to prove that
e”(0) > 7||80Hi,% |e"(t)—€"(0)] < w(llell,, )H<P||2

e'(t) is OK, but due to the degeneracy of the p-Laplacian,

e’(t)  does not exist......



Thus, for k > 0 and t € (0,1) we set

ex(t) = Ex(Q2:) = min {1 /Q(KJ2 +|Vu?)2 dx — /Q udx}

uewy P(Q) LP

Note that ey(t) = e(t).



Thus, for k > 0 and t € (0,1) we set

ex(t) = Ex(Q2:) = min {1 / (K2 + [Vul?)? dx — /Q udx}

uewyP(Q) LPJa

Note that ey(t) = e(t).



Thus, for k > 0 and t € (0,1) we set

ex(t) = Ex(Q2:) = min {1 /Q(KJ2 +|Vu?)2 dx — /Q udx}

uewy P(Q) LP

Note that ey(t) = e(t).

1
E(Q)=E.(B) = en(1)=e.(0) = ek(0)+5el(0)+ | (1o)(ele)=e(0)et

For k > 0 we calculate

L(t)—llj/ div((m2+]Vu,§7t|2)§X)—/ div((nzﬂvumﬁ)%‘z\vun,tﬁx)

t Qt

where



Thus, for k > 0 and t € (0,1) we set

ex(t) = Ex(Q2:) = min {1 / (K2 + [Vul?)? dx — /Q udx}

uewyP(Q) LPJa

Note that ey(t) = e(t).

1
E(Q)=E.(B) = en(1)=e.(0) = ek(0)+5el(0)+ | (1o)(ele)=e(0)et

For k > 0 we calculate

]_ _
L(r)—p/ div((m2+]Vu,§7t|2)§X)—/ div((f#ﬂvumﬁ)”%\vun,tﬁx)
t Qt
where

7div((l-€2 + |Vu,§7t|2)p;22VuH7t) =1 inQ;
ugt =0 on 0%;.



For k >0

0=,
where

div((n2+qun,t|2)§x)—/ div((n2+qu,€,t|2)‘%2\vun,tﬁx)

t

—div((+2 + [Vue?)" Vi) =1 in Q
Ugr =10 on 0€;.



For k >0

e (t) = %/ div((/@2+]Vu,€,t|2)§X)—/ div((/@2+]Vu,€7t|2)p%2\Vu,.@t]zX)
Q;

t

where

—div((+2 + [Vue?)" Vi) =1 in Q
Ugr =10 on 0.

C1“ estimates for the p-laplacian in Q;

= Uy, converge in C to up as k — 0, uniformly w.r.t. t



For k >0

1 _
,(t):p/ﬂdw((n V)5 X) - /div((n2+yv%t|2)”f\vun,tﬁx)

t

where

—div((+2 + [Vue?)" Vi) =1 in Q
Ugr =10 on 0.

C1% estimates for the p-laplacian in Q;

= Uy, converge in C to up as k — 0, uniformly w.r.t. t

where

dlv(\Vut\p*2Vut) =1 in Q;
=0 on 8Qt



For k >0

1 _
,(t):p/ﬂdw((n V)5 X) - /div((n2+yv%t|2)”f\vun,tﬁx)

t

where

—div((+2 + [Vue?)" Vi) =1 in Q
Ugr =10 on 0.

C1% estimates for the p-laplacian in Q;

= Uy, converge in C to up as k — 0, uniformly w.r.t. t

where

dlv(\Vut\p*2Vut) =1 in Q;
=0 on 8Qt

= lim e/.(t) = €)(t) uniformly w.r.t. t
K—0



For k >0, t € [0,1] we calculate
eg(t):/m (R |Vt 12) 2 (VWi - v, )W edH
+(p—2)/39 (R IV 0t P) 2 (YWt - V) (Vs - v, )W ed H L
—/m (24 |Vt £2) 52 (V20 o[V 1] - X0 ) (X - i, )~
- (13—2)/8Q (K24 |V e) 2 [V e (V20 [V o] Xe) (X vg, ) dH
Il (52 V 0 )5 D Hi, = 1) (X -2l

where W, ; is the unique solution in H!(Q;) of the equation



For k >0, t € [0,1] we calculate
eg(t):/m (R |Vt 12) 2 (VWi - v, )W edH
+(p—2)/39 (R IV 0t P) 2 (YWt - V) (Vs - v, )W ed H L
—/m (24 |Vt £2) 52 (V20 o[V 1] - X0 ) (X - i, )~
- (13—2)/8Q (K24 |V e) 2 [V e (V20 [V o] Xe) (X vg, ) dH
Il (52 V 0 )5 D Hi, = 1) (X -2l

where W, ; is the unique solution in H!(Q;) of the equation

. p=2 Vu.: VW, .

Ugt = =V X on 0¥



Passing to the limit in

1 1
Ex(Q) — Ex(B) = €.(0) + 5:(0) +/0 (1-1)(e(t) — e(0))dt



Passing to the limit in

1 1
Ex(Q) — Ex(B) = €.(0) + 5:(0) +/O (1-1)(e(t) — e(0))dt

e!(t) is quadratic in VW, ; and linear in V2u, [V, (]

K

with coefficients ~ (12 + |V, |?)(P~2)/2



Passing to the limit in

1 1
Ex(Q) — Ex(B) = €.(0) + 5:(0) +/O (1-1)(e(t) — e(0))dt

e!(t) is quadratic in VW, ; and linear in V2u, [V, (]
with coefficients ~ (12 + |V, |?)(P~2)/2

. p—2 Vu.+ VW, .
{le [(/{2—{—|VU,{¢|2)F2 <VW,€7t -+ (p—Z)WVumt)] =0 in Qt

Wli,t = —VUKJ - X on 8Qt



Passing to the limit in

1 1
Ex(Q) — Ex(B) = €.(0) + 5:(0) +/O (1-1)(e(t) — e(0))dt

e!(t) is quadratic in VW, ; and linear in V2u, [V, (]
with coefficients ~ (12 + |V, |?)(P~2)/2

. p—2 Vu.+ VW, .
{le [(/{2—{—|VU,{¢|2)F2 <VW,€7t -+ (p—Z)WVumt)] =0 in Qt

Wli,t = —VUKJ - X on 8Qt

ind 4 —dv((F + VU )T V) =1 in Q
Ugt =0 on 0.



Passing to the limit in

1 1
Ex(Q) — Ex(B) = €.(0) + 5:(0) +/O (1-1)(e(t) — e(0))dt

e!(t) is quadratic in VW, ; and linear in V2u, [V, (]

with coefficients ~ (12 + |V, |?)(P~2)/2

vuh‘qt . VWK t

d1V|:(I{ +| V|2 ) <VWHt+(p 2) H2+|Vu5,t|27 Vu,w>] =0 inQ;

Wli,t = —VUKJ - X on 8Qt
ind 4 —dv((F + VU )T V) =1 in Q
Ugt =0 on 0.
We know

— 2
U — c(1— ]x\ﬁ) in Che, (K% + |Vunol?) RN |x|z 1



1
— en
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where W is the unique weak solution in H*(B; 1) of the equation
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Lemma 2 (harder!) For k.t € (0,1] we have

" /!
ei(t) = ()] < wliglicae +RIX-wsl2y



-1
EA(Q) — Ex(B) = €,(0) + 2¢/'(0) + /O (1-1)(e (1) — €!'(0))dt

Using the two previous lemmas and €{(0) = 0, let us take x — 0T
and then we get



EA(Q) — Eu(B) = €.(0) + ~e/(0) + /1(1—t)<e,’;<t) — ¢/(0))dt
0

Using the two previous lemmas and €{(0) = 0, let us take x — 0T
and then we get

p—2 2
E(@) ~ E(8) 2 10 | 175 (VWP + (o= 2)| 5 v W[ )

g | WEHTE (Il conio)IX - 6 Baos)

> (writing W in terms of spherical harmonics)
> Y |IX - velta20m) — W@l cza@e) X - V81208



EA(Q) — Eu(B) = €.(0) + ~e/(0) + /1(1—t)<e,’;<t) — ¢/(0))dt
0

Using the two previous lemmas and €{(0) = 0, let us take x — 0T
and then we get

E(@) ~ E(8) 2 10 | 175 (VWP + (o= 2)| 5 v W[ )

g | WEHTE (Il conio)IX - 6 Baos)
> (writing W in terms of spherical harmonics)
> Y |IX - velta20m) — W@l cza@e) X - V81208

Thus if [|¢]lc2.4(9p) is small we conclude



1
E«(Q) — Ex(B) = €/(0) + 5€/(0) +/O (1—t)(e(t) — €(0))dt

Using the two previous lemmas and €{(0) = 0, let us take x — 0T
and then we get
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Back to Step 4 (Reduction to nearly spherical sets via
regularity)
Thus we need to show that if |Q2| =|B|,Q C Bg, ,D(Q2) <9, then

D(Q) := E(Q) — E(B) > 70 a(Q)

where

a(Q):/ ’1—|X—XQHdX
QAB; (xa)
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Back to Step 4 (Reduction to nearly spherical sets via

regularity)
Thus we need to show that if |Q] =|B|,Q C Bg, ,D(Q2) < 9, then

D(Q) = E(@) - E(B) > 10a(Q)
Assume that there exists a sequence Q, C Bg, |Q24| = |B| with

6h=D(Qp) — 0 but E(Q) - E(B)<c*a(Q) forsome0< o<1

(+) Inf{E(U) + /02 + o2(an(U) — 60)2 + P(U| - |BI) - U C BR}

We show that (%) has a minimizer Uy, that D(Uy) — 0 and
() E(Un) — E(B) < c(n, p)o a(Up)

Moreover, Uy is smooth and U, — B in Ck forall k Then
(xx) gives a contradiction if o is sufficiently small!
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E(U) + /82 + 02(an(U) — 64)% + P(|U| — |B])?
We consider a larger class of sets the p-quasiopen sets

U p-quasiopen iff U = {u* > 0} for some u € Wol’p(an)

Then the problem

() min {E(U)}+/5+02(an(U) —64)2 + P(U| — |BI) :

UcC Bg, U p—quasiopen}

has a solution U,!  Observe that if v e Wol’p(BR) then

E(Un) + /02 + 02(an(Un) — 65)2 + P(|Un| — |BI)

< E({v>0}) + /62 + o2(an({v>0})—85)2 + P(|{v>>0}| | B)
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If ve Wol’p(BR) then

E(U) + /82 + 02(an(Un) — 62 + P(Us] — |BI)
< E({v>0}) + /0% + 0?(an({v>0})~04)? + P(|{v>0}|-|B])
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Therefore if wp, is the function minimizing E(Up) we have

o IVl = fun -t /34 o2(n((n>01) -0 + P10} - B

< [19vpdc = [v it \ [0y >0 =602 + P(1{v>0 ||

for all v ¢ Wol’p(BR)
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Since uy, satisfies

;/\Vuh|pdx —/u,, dx + /82 +02(an({un > 0})—8n)2 + P(|{un >0} || B])

= %/'Vv‘pdx ‘/V dix + /3 +2(an({v > 0})—64)2 + P(I{v >0}~ | )

for all v e WyP(Bg)
....There exists a nonnegative Borel function g, such that
—div(|Vun(x) P2V un(x)) = X, (x) = qu,(x)P " H" T L AU, in Bg

where Up = {up > 0} and for all x € U},

<qu(x)<C
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