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Why should we consider uncertainties in shape
optimization ¢

e Mechanical systems rely on data, e.g. the loads, the properties of a
constituent material, or the geometry of the system itself.
e In concrete situations, such data are plagued with uncertainties because:

e they may be available only through (error-prone) measurements,
e they may be altered with time (wear) and conditions of the ambient
medium.

e The performances of structures are very sensitive to small perturbations of
data.

Need to somehow anticipate uncertainties when designing and optimizing shape



Awailable strategies

Modelisation choice : uncertainties are seen as a random process.

~ we face a familly of shape functionals (J(w, D)), for domains D in
an admissible class A.
How to take these uncertainties into account in a viable numerical optimization

strategy ?
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Awailable strategies

Modelisation choice : uncertainties are seen as a random process.

How to take these uncertainties into account in a viable numerical optimization
strategy ?

A priori two strategies can be explored in order to compute such a shape:
® solve each problem
D*(w) = Argminp 4 J(w, D)

and take the expectation of D*
two difficulties : how to define an average shape 7 how to compute it 7

® consider an averaged objective

Jo(D) = E[J(., D)] + oVar [J(., D)]

for o > 0 and solve
D" = Argminp 4 Jo(D)

difficulty: how to compute J, and its shape gradient 7



Ezploring the first strategy: the Vorob’ev
expectation.

Theory of random sets, |. Molchanov, Springer serie Probability and its applications, 2005
e Taking expectation of parametrizations leads to non intrinsic notions of
expectation of random sets

e A convenient notion: Vorobe'v expectation.
e first introduce the coverage function p of a random set D(.)

vx e R, p(x) =E[z e D(.)].
e idea: The Vorob'ev expectation Ey[D] of D(w) is then defined as a
quantile of D(w) such that its volume is E[£¢(D)].
Definition (Vorob’ev expectation)

The Vorob'ev expectation Ey;[D] of D(w) is defined as the set {x € R? : p(x) > u} for
w1 € [0,1] which is determined from the condition

LY{x € RY: p(x) > A}) <E[£4(D)] < £4({x € R? : p(x) > u})
for all A > p.




e Drawback: there is no set-valued notion of correlation but notions of
scalar deviation like:

Dy[D] =E [cd(D(.)AEV [D]] or Dy [D] = E [dy(D(.), Ey[D])]

Hence, we get only unsatisfactory Bienaymé-Tchebychev like inequalities.
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compact sets. Spatial Statistics, 2(1):47-61, 2012.
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e Drawback : this is extremely costly, computing each D; means solving a
shape optimization problem



Hlustration: exterior Bernoulli free boundary
problem

Solution of a free boundary problem in presence of geometric uncertainties, M.D., H. Harbrecht, M.Peters and B.
Puig, in redaction

We consider the free boundary problem

Au=0 in D,
[Vul =f  onT,
u=20 onT,
u=1 on X,

in the case that the interior boundary is uncertain, i.e., if ¥ = X(w) with an
additional parameter w € Q.



First example: the setting

The inner boundary is the union of four circles of radius 0.05 and random
centers

—1)* -1)° .
Cij(w) = (( 10) +0.04X2(2i45) (W), ( 10) + 0~04X2(2i+j)+1(w)> fori,j =0,1.

The random variables X1, ..., X5 are independants, uniform on [—1,1]



First example: some realisations

Simulations by Michael PETERS
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First example: the coverage function and the
Vorob’ev expectation

106 computations of a free boundary problem: around ten days of computation on a big laptop
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Second example: the setting

The inner boundary is the curve parametrized in polar coordinates by

10
r(6,w) = 0.2+ 0.017(6) + 3 % [Xak_1 cos kO + Xoy, sin k0]
k=1

e the random variables X1, ..., X5 are independants, uniform on [—1,1]

e f is the trigonometric polynomial of coefficients

[as,-..,a0,b1,...,bs] = [0.33,0.26,0.51,0.70, 0.89, 0.48, 0.55,0.14, 0.15, 0.26]



Second example: the coverage function and the
Vorob’ev expectation




Second example: the coverage function and the
Vorob’ev expectation

the problem is extremely stable ~ it will be interesting to perform similar
simulation for a less stable problem but computational cost increases



Ezxploring the second strategy: using an averaged
objective.

Our objective: derive a deterministic expression for J and its shape gradient to
avoid Monte-Carlo method to obtain reasonable computational times

there is one significant case where we know how to do that.

Shape optimization for quadratic functionals and states with random right-hand sides M.D, C. Dapogny and H.

Harbrecht. SIAM Control and Optimization 53 (2015), no. 5, 3081-3103



A non trivial case.

o Consider an linear elliptic state equation with random right-hand side. For
example, the equations of linear elasticity with random forcing

—div(Ae(u)) =0 in D,
u=0 onIp,
Ae(u)n =g on Iy,
Ae(uyn=0 onT,
where e(u) = (Vu + VuT)/2 and with Hooke's law A given by

Ve € S(RY), Ae = 2ue+ A Tre .
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o Consider a quadratic functional in the state: for example compliance of
shapes

C(D,w) = /D Ae(up)(z,w) : e(up)(z,w) do = /Dg(:c,w) ‘up(z,w) ds(x),



The idea in finite dimension: the setting.

Consider a finite dimensional space H of designs h. The cost function is
C(h,w) =< Bu(h,w), u(h,w) >

where the state u(h,w) is defined as the solution of the linear system with
random right-hand side

A(h)u(h,w) = f(w)

The averaged objective is

M(h) = E[C(h,.)] = /Q C(h,w)P(dw)



The idea in finite dimension: doubling the variables
to transform quadratic quantities in linear ones.

Sparse finite elements for elliptic problems with stochastic loading, Numerische Mathematik, C. Schwab, R.Todor,

95/4 (2003), pp. 707-734
e Rewrite cost function as
C(h,w) =< Bu(h,w),u(h,w) >= B : (u(h,w) @ u(h,w))
v ® w of two vectors v, w € RN is the (N x N)-matrix with entries (v ® w);,; = viw;,

ij=1,...,N,

: stands for the Frobenius inner product over matrices.

e The averaged objective becomes
M(h) =E[C(h,.)] = / C(h,w)P(dw) = B : Cov(u,u)(h)
Q

Cov(u, v)(h) is the covariance matrix (of size N?) of u(h, w), whose entries read
Cov(u,v)(h);,; = / ui(h,w)v;(h,w) P(dw), 4,j=1,...,N.
Q

Notation: Cov(u) = Cov(u,u)



The idea in finite dimension.

e Cov(u)(h) can be directly computed: it solves the (N?)-dimensional
system

(A(h) ® A(h)) Cov(u)(h) = Cov(f).
e we can derive with respect to h in the direction h:
M (m)(R) = (A'(h)(R) @ I') Cov(u, p)(h).
where Cov(u, p)(h) solves

(A(h) ® A(h)T) Cov(u,p)(h) = — (A(h) ® B) Cov(u)(h).

Conclusion

Both, the objective function M(h) and its gradient, can be exactly calculated
from the sole datum of the covariance matrix of f (and not of its law!).




Going back to the compliance case

Following the previous idea, M(D) can be rewritten

M(D) = /D ((Aeg : ey)Cov(u))(z,x) dx,

(Aes i ey) i [HE (D) @ [HE | (D)]* — L*(D) ® L*(D) is the linear operator induced from
the bilinear mapping
(u,v) — Ae(u) : e(v).

its derivative reads
V0 € ©qa, M'(D)(0) = — /1“ ((Aes : ey)Cov(u))(z,z)(0 - n)(z) ds(z).

It remains to compute Cov(u)



Just for joking

Cov(u) € [Ht,, (D))" @ [Ht, (D)]* is the unique solution to the following
boundary value problem:

(divy ® divy)(Aer ® Aey) Cov(u) =0in D x D,

with boundary conditions

Cov(u) =0 on'p xI'p,
(divey ® Iy)(Ae, ® Iy) Cov(u) =0 on D xTIp,
(I ® divy)(Iz ® Aey) Cov(u) =0 onI'p x D,
(Ae, ® Aey) Cov(u)(ng ® ny) = Cov(g) onIn xI'y,
(divey ® Iy)(Aes @ Aey) Cov(u)(Iz ® ny) =0 on D x (PyuUT),
(Iz @ divy)(Aes @ Aey) Cov(u)(ngy ® I,) =0 on ('y UT'n) X D,
(Aez ® Aey) Cov(u)(ng @ ny) =0 on (PN UT) x (IyUT)) \ (I'y x I'y)
(Aeg ® Iy) Cov(u)(nge ® Iy) =0 on (I'y xT') x I'p,
(I, ® Aey) Cov(u)(Ie @ ny) =0 on'p x (I'y xT).



Computing Cov(u)(h): low-rank approzimation of

Cov(f).
The idea in finite dimension
If -
Cov(f) =) fi® fi,
i=1
Then,
Cov(u)(h) ~ Zul(h) ® wui(h), and Cov(u,p)( Zul h) @ pi(h

where wu;(h) (resp. pi(h)) solves
A(h)ui(h) = fi resp. A(h) pi(h) = =B  ui(h).

Cost of the computation

Computing and its gradient cost m usual systems for the state and m for the
adjoint.
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Ezample: a robust bridge

The loadings are

9(z,w) = &1 (w)ga(x) + &2(w)gs(2),
with

(2 )e(h)

& and &2 are centered of variance
1.

Our goal: minimize the averaged compliance under the volume constraint
Vol(D) = 0.35 enforced owing to a standard Augmented Lagrangian procedure.



The numerical simulations

Simulations obtained by C. Dapogny - each 12 min on a MacBook air

Set o := [, £162 P(dw) so that
Cor(g) =9a ®@ga+ 9 @ 9o + @ (ga ® gb + G ® ga) -



The numerical simulations

Simulations obtained by C. Dapogny - each 12 min on a MacBook air

Set o := [, £162 P(dw) so that
Cor(9) =ga®ga + G @ g + (g ® gb + 96 @ ga) -

Optimal shapes obtained associated to degrees of correlation
a=-1,-0.7,0,0.5,0.8,1 (from left to right, top to bottom).




