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Why should we consider uncertainties in shape
optimization ?

• Mechanical systems rely on data, e.g. the loads, the properties of a
constituent material, or the geometry of the system itself.

• In concrete situations, such data are plagued with uncertainties because:

• they may be available only through (error-prone) measurements,
• they may be altered with time (wear) and conditions of the ambient

medium.

• The performances of structures are very sensitive to small perturbations of
data.

Need to somehow anticipate uncertainties when designing and optimizing shape



Available strategies

Modelisation choice : uncertainties are seen as a random process.
 we face a familly of shape functionals (J(ω,D))ω∈Ω for domains D in

an admissible class A.

How to take these uncertainties into account in a viable numerical optimization
strategy ?

A priori two strategies can be explored in order to compute such a shape:

1 solve each problem

D∗(ω) = ArgminD∈A J(ω,D)

and take the expectation of D∗

two difficulties : how to define an average shape ? how to compute it ?

2 consider an averaged objective

Jσ(D) = E [J(., D)] + σVar [J(., D)]

for σ ≥ 0 and solve
D∗ = ArgminD∈A Jσ(D)

difficulty: how to compute Jσ and its shape gradient ?



Available strategies

Modelisation choice : uncertainties are seen as a random process.

How to take these uncertainties into account in a viable numerical optimization
strategy ?

A priori two strategies can be explored in order to compute such a shape:

1 solve each problem

D∗(ω) = ArgminD∈A J(ω,D)

and take the expectation of D∗

two difficulties : how to define an average shape ? how to compute it ?

2 consider an averaged objective

Jσ(D) = E [J(., D)] + σVar [J(., D)]

for σ ≥ 0 and solve
D∗ = ArgminD∈A Jσ(D)

difficulty: how to compute Jσ and its shape gradient ?



Available strategies

Modelisation choice : uncertainties are seen as a random process.

How to take these uncertainties into account in a viable numerical optimization
strategy ?

A priori two strategies can be explored in order to compute such a shape:

1 solve each problem

D∗(ω) = ArgminD∈A J(ω,D)

and take the expectation of D∗

two difficulties : how to define an average shape ? how to compute it ?

2 consider an averaged objective

Jσ(D) = E [J(., D)] + σVar [J(., D)]

for σ ≥ 0 and solve
D∗ = ArgminD∈A Jσ(D)

difficulty: how to compute Jσ and its shape gradient ?



Available strategies

Modelisation choice : uncertainties are seen as a random process.

How to take these uncertainties into account in a viable numerical optimization
strategy ?

A priori two strategies can be explored in order to compute such a shape:

1 solve each problem

D∗(ω) = ArgminD∈A J(ω,D)

and take the expectation of D∗

two difficulties : how to define an average shape ? how to compute it ?

2 consider an averaged objective

Jσ(D) = E [J(., D)] + σVar [J(., D)]

for σ ≥ 0 and solve
D∗ = ArgminD∈A Jσ(D)

difficulty: how to compute Jσ and its shape gradient ?



Available strategies

Modelisation choice : uncertainties are seen as a random process.

How to take these uncertainties into account in a viable numerical optimization
strategy ?

A priori two strategies can be explored in order to compute such a shape:

1 solve each problem

D∗(ω) = ArgminD∈A J(ω,D)

and take the expectation of D∗

two difficulties : how to define an average shape ? how to compute it ?

2 consider an averaged objective

Jσ(D) = E [J(., D)] + σVar [J(., D)]

for σ ≥ 0 and solve
D∗ = ArgminD∈A Jσ(D)

difficulty: how to compute Jσ and its shape gradient ?



Exploring the first strategy: the Vorob’ev
expectation.

Theory of random sets, I. Molchanov, Springer serie Probability and its applications, 2005

• Taking expectation of parametrizations leads to non intrinsic notions of
expectation of random sets

• A convenient notion: Vorobe’v expectation.
• first introduce the coverage function p of a random set D(.)

∀x ∈ Rd, p(x) = E [x ∈ D(.)] .

• idea: The Vorob’ev expectation EV [D] of D(ω) is then defined as a
quantile of D(ω) such that its volume is E[Ld(D)].

Definition (Vorob’ev expectation)

The Vorob’ev expectation EV [D] of D(ω) is defined as the set {x ∈ R2 : p(x) ≥ µ} for
µ ∈ [0, 1] which is determined from the condition

Ld({x ∈ Rd : p(x) ≥ λ}) ≤ E[Ld(D)] ≤ Ld({x ∈ Rd : p(x) ≥ µ})

for all λ > µ.



• Drawback: there is no set-valued notion of correlation but notions of
scalar deviation like:

DV [D] = E
[
Ld(D(.)∆EV [D]

]
or DH[D] = E [dH(D(.),EV [D])]

Hence, we get only unsatisfactory Bienaymé-Tchebychev like inequalities.

• Advantage: this is computable. The idea is to build an estimator for p
with i.i.d. copies Di of D for 1 ≤ i ≤M , by the empirical mean

pM (x) =
1

M

M∑
i=1

1Di(x).

P. Heinrich, R. S. Stoica, and V. C. Tran. Level sets estimation and Vorob’ev expectation of random

compact sets. Spatial Statistics, 2(1):47–61, 2012.

• Drawback : this is extremely costly, computing each Di means solving a
shape optimization problem
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Illustration: exterior Bernoulli free boundary
problem

Solution of a free boundary problem in presence of geometric uncertainties, M.D., H. Harbrecht, M.Peters and B.

Puig, in redaction

We consider the free boundary problem
∆u = 0 in D,

‖∇u‖ = f on Γ,
u = 0 on Γ,
u = 1 on Σ,

in the case that the interior boundary is uncertain, i.e., if Σ = Σ(ω) with an
additional parameter ω ∈ Ω.



First example: the setting

The inner boundary is the union of four circles of radius 0.05 and random
centers

Ci,j(ω) =

(
(−1)i

10
+ 0.04X2(2i+j)(ω),

(−1)i

10
+ 0.04X2(2i+j)+1(ω)

)
for i, j = 0, 1.

The random variables X1, . . . , X8 are independants, uniform on [−1, 1]



First example: some realisations

Simulations by Michael PETERS

18 H. HARBRECHT AND M. PETERS

overlap. In order to illustrate the situation under consideration, we have depicted six

different realizations of Σ(ω) and of the related free boundaries Γ(ω) in Figure 4.7.

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

Figure 4.7. Different realizations of the random boundary Σ(ω) and

corresponding free boundary Γ(ω) for the fourth example.



First example: the coverage function and the
Vorob’ev expectation

106 computations of a free boundary problem: around ten days of computation on a big laptop



Second example: the setting

The inner boundary is the curve parametrized in polar coordinates by

r(θ, ω) = 0.2 + 0.01f(θ) +
10∑
k=1

√
2

k
[X2k−1 cos kθ +X2k sin kθ]

• the random variables X1, . . . , X8 are independants, uniform on [−1, 1]

• f is the trigonometric polynomial of coefficients

[a5, . . . , a0, b1, . . . , b4] = [0.33, 0.26, 0.51, 0.70, 0.89, 0.48, 0.55, 0.14, 0.15, 0.26]



Second example: the coverage function and the
Vorob’ev expectation



Second example: the coverage function and the
Vorob’ev expectation

the problem is extremely stable  it will be interesting to perform similar
simulation for a less stable problem but computational cost increases



Exploring the second strategy: using an averaged
objective.

Our objective: derive a deterministic expression for J and its shape gradient to
avoid Monte-Carlo method to obtain reasonable computational times

there is one significant case where we know how to do that.

Shape optimization for quadratic functionals and states with random right-hand sides M.D, C. Dapogny and H.

Harbrecht. SIAM Control and Optimization 53 (2015), no. 5, 3081–3103



A non trivial case.

• Consider an linear elliptic state equation with random right-hand side. For
example, the equations of linear elasticity with random forcing

−div(Ae(u)) = 0 in D,

u = 0 on ΓD,

Ae(u)n = g on ΓN ,

Ae(u)n = 0 on Γ,

where e(u) = (∇u+∇uT )/2 and with Hooke’s law A given by

∀e ∈ S(Rd), Ae = 2µe+ λ Tre I.

• Consider a quadratic functional in the state: for example compliance of
shapes

C(D,ω) =

∫
D

Ae(uD)(x, ω) : e(uD)(x, ω) dx =

∫
D

g(x, ω) · uD(x, ω) ds(x),
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The idea in finite dimension: the setting.

• Consider a finite dimensional space H of designs h. The cost function is

C(h, ω) =< Bu(h, ω), u(h, ω) >

where the state u(h, ω) is defined as the solution of the linear system with
random right-hand side

A(h)u(h, ω) = f(ω)

• The averaged objective is

M(h) = E[C(h, .)] =

∫
Ω

C(h, ω)P(dω)



The idea in finite dimension: doubling the variables
to transform quadratic quantities in linear ones.

Sparse finite elements for elliptic problems with stochastic loading, Numerische Mathematik, C. Schwab, R.Todor,

95/4 (2003), pp. 707-734

• Rewrite cost function as

C(h, ω) =< Bu(h, ω), u(h, ω) >= B : (u(h, ω)⊗ u(h, ω))

v ⊗ w of two vectors v, w ∈ RN is the (N ×N)-matrix with entries (v ⊗ w)i,j = viwj ,
i, j = 1, . . . , N ,

: stands for the Frobenius inner product over matrices.

• The averaged objective becomes

M(h) = E[C(h, .)] =

∫
Ω

C(h, ω)P(dω) = B : Cov(u, u)(h)

Cov(u, v)(h) is the covariance matrix (of size N2) of u(h, ω), whose entries read

Cov(u, v)(h)i,j =

∫
Ω

ui(h, ω)vj(h, ω) P(dω), i, j = 1, . . . , N.

Notation: Cov(u) = Cov(u, u)



The idea in finite dimension.

• Cov(u)(h) can be directly computed: it solves the (N2)-dimensional
system

(A(h)⊗A(h)) Cov(u)(h) = Cov(f).

• we can derive with respect to h in the direction ĥ:

M′(h)(ĥ) =
(
A′(h)(ĥ)⊗ I

)
Cov(u, p)(h).

where Cov(u, p)(h) solves(
A(h)⊗A(h)T

)
Cov(u, p)(h) = − (A(h)⊗ B) Cov(u)(h).

Conclusion

Both, the objective function M(h) and its gradient, can be exactly calculated
from the sole datum of the covariance matrix of f (and not of its law!).



Going back to the compliance case

Following the previous idea, M(D) can be rewritten

M(D) =

∫
D

((Aex : ey)Cov(u))(x, x) dx,

(Aex : ey) : [H1
ΓD

(D)]d ⊗ [H1
ΓD

(D)]d → L2(D)⊗ L2(D) is the linear operator induced from

the bilinear mapping
(u, v) 7→ Ae(u) : e(v).

its derivative reads

∀θ ∈ Θad, M′(D)(θ) = −
∫

Γ

((Aex : ey)Cov(u))(x, x)(θ · n)(x) ds(x).

It remains to compute Cov(u)



Just for joking

Cov(u) ∈ [H1
ΓD

(D)]d ⊗ [H1
ΓD

(D)]d is the unique solution to the following
boundary value problem:

(divx ⊗ divy)(Aex ⊗Aey) Cov(u) = 0 in D ×D,
with boundary conditions

Cov(u) = 0 on ΓD × ΓD,

(divx ⊗ Iy)(Aex ⊗ Iy) Cov(u) = 0 on D × ΓD,

(Ix ⊗ divy)(Ix ⊗ Aey) Cov(u) = 0 on ΓD ×D,

(Aex ⊗ Aey) Cov(u)(nx ⊗ ny) = Cov(g) on ΓN × ΓN ,

(divx ⊗ Iy)(Aex ⊗ Aey) Cov(u)(Ix ⊗ ny) = 0 on D × (ΓN ∪ Γ),

(Ix ⊗ divy)(Aex ⊗ Aey) Cov(u)(nx ⊗ Iy) = 0 on (ΓN ∪ ΓN )×D,

(Aex ⊗ Aey) Cov(u)(nx ⊗ ny) = 0 on
(
(ΓN ∪ Γ)× (ΓN ∪ Γ)

)
\ (ΓN × ΓN ),

(Aex ⊗ Iy) Cov(u)(nx ⊗ Iy) = 0 on (ΓN × Γ)× ΓD,

(Ix ⊗ Aey) Cov(u)(Ix ⊗ ny) = 0 on ΓD × (ΓN × Γ).



Computing Cov(u)(h): low-rank approximation of
Cov(f).

The idea in finite dimension

If

Cov(f) ≈
m∑
i=1

fi ⊗ fi,

Then,

Cov(u)(h) ≈
m∑
i=1

ui(h)⊗ ui(h), and Cov(u, p)(h) ≈
m∑
i=1

ui(h)⊗ pi(h)

where ui(h) (resp. pi(h)) solves

A(h)ui(h) = fi resp. A(h)T pi(h) = −BTui(h).

Cost of the computation

Computing and its gradient cost m usual systems for the state and m for the
adjoint.



Example: a robust bridge

�N

�D

1

1

ga
gb

The loadings are

g(x, ω) = ξ1(ω)ga(x) + ξ2(ω)gb(x),

with

ga =

(
1
−1

)
, gb =

(
1
−1

)
,

ξ1 and ξ2 are centered of variance
1.

Our goal: minimize the averaged compliance under the volume constraint
V ol(D) = 0.35 enforced owing to a standard Augmented Lagrangian procedure.



The numerical simulations
Simulations obtained by C. Dapogny - each 12 min on a MacBook air

Set α :=
∫

Ω
ξ1ξ2 P(dω) so that

Cor(g) = ga ⊗ ga + gb ⊗ gb + α (ga ⊗ gb + gb ⊗ ga) .

Optimal shapes obtained associated to degrees of correlation
α = −1,−0.7, 0, 0.5, 0.8, 1 (from left to right, top to bottom).
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