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Peeling test and dynamic crack growth

I will present some results on a simple one dimensional model of a
dynamic peeling test for a thin film, initially attached to a rigid substrate.
Our main motivation for the study of this problem is to develop the
mathematical tools for a model of dynamic crack growth, which
combines the equations of elasto-dynamics for the displacement (out of
the crack) with an evolution law which connects the crack growth with
the displacement.
This simplified model was considered in the book by Freund: Dynamic
fracture mechanics (1990). It exhibits some of the relevant mathematical
difficulties due to the time dependence of the domain of the wave
equation.
Examples of solutions of this model were recently studied by
Dumouchel, Marigo, Charlotte (2008) and Bargellini, Dumouchel,
Lazzaroni, Marigo (2012). These examples show that the quasistatic
limit of this model is highly nontrivial.
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Geometry of the peeling process

A thin film is initially attached to a planar rigid substrate. The peeling
process is assumed to depend only on one variable. This hypothesis is
crucial for our analysis, since we frequently use d’Alembert’s formula
for the wave equation.

The film is described by a curve (in grey in the figure), which represents
its intersection with a vertical plane with horizontal coordinate x and
vertical coordinate y . The positive x-axis represents the substrate as
well as the reference configuration of the film.
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Assumptions on the peeling process

In its deformed configuration the film at time t ≥ 0 is parametrised by
(h(t, x), u(t, x)) , horizontal and vertical displacement of the point at x .
The film is assumed to be perfectly flexible, inextensible, and glued to
the rigid substrate on the half line {x≥`(t) , y=0} , where `(t) is a
nondecreasing function which represents the debonding front, with
`0 := `(0) > 0 .
At x = 0 we prescribe a time-dependent vertical displacement
u(t, 0) = w(t) and a fixed tension so that the speed of sound in the film
is constant.
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Equation satisfied by the vertical displacement

Using the linear approximation and the inextensibility it turns out that h
can be expressed in terms of u as

h(t, x) =
1

2

∫+∞
x

ux(t, z)
2dz,

and u solves the problem
utt(t, x) − uxx(t, x) = 0, t > 0 , 0 < x < `(t),

u(t, 0) = w(t), t > 0,

u(t, `(t)) = 0, t > 0,

where we normalised the speed of sound to one.
The system is supplemented by the initial conditions{

u(0, x) = u0(x), 0 < x < `0,

ut(0, x) = u1(x), 0 < x < `0,

where u0 and u1 are prescribed functions.
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Solution with a prescribed debonding front

On the debonding front ` : [0,+∞)→ [`0,+∞) , with `(0) = `0 , we
assume that for every T > 0 there exists 0 < LT < 1 such that

0 ≤ `(t2)−`(t1) ≤ LT (t2−t1) for every 0 ≤ t1 < t2 ≤ T.

On the prescribed displacement w(t) at x = 0 we assume that
w ∈ H1(0, T) for every T > 0 .
As for the initial conditions, on the displacement we assume that
u0 ∈ H1(0, `0) , and on the velocity we assume that u1 ∈ L2(0, `0) .
We assume the compatibility conditions u0(0) = w(0) and u0(`0) = 0 .
We look for a solution u such that u ∈ H1(ΩT ) for every T > 0 , where
ΩT := {(t, x) : 0 < t < T , 0 < x < `(t)} .

Theorem (DM-Lazzaroni-Nardini 2016)
The boundary value problem for the displacement u with prescribed
debonding front ` has a one and only one solution.
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The time dependent domain

x=l(t)	

u(t,l(t))=0	
	

u*(t,x)-uxx(t,x)=0	

u(t,0)=w(t)	
u(0,x)=u0(x)	
ut(0,x)=u1(x)	

ΩT	 Ω	

x

l0	

0	 T	 t	

Blue:	given	data	

Red:	condi<ons	on	the	unknown	func<on	u	
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Equivalent formulation

By d’Alembert’s formula, u is a solution in ΩT if and only if

u(t, x) = f(t−x) + g(t+x) for a.e. (t, x) ∈ ΩT

for some functions f ∈ H1loc(−`0, T) and g ∈ H1loc(0, T+`0) .
The boundary condition u(t, 0) = w(t) , together with the continuity of
f , g , and w , gives w(t) = f(t) + g(t) for every t ∈ (0, T) .
Therefore, u is a solution in ΩT satisfying the boundary condition
u(t, 0) = w(t) if and only if

u(t, x) = w(t+x) − f(t+x) + f(t−x) for a.e. (t, x) ∈ ΩT

or some functions f ∈ H1loc(−`0, T) .
The boundary condition u(t, `(t)) = 0 is satisfied if and only if

f(t+`(t)) = w(t+`(t)) + f(t−`(t)) for every t ∈ (0, T).
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Determining f on [−`0, `0]

Formula u(t, x) = w(t+x) − f(t+x) + f(t−x) and the corresponding
formula for ut(t, x) allow us to obtain the values of f(s) , for
−`0 ≤ s ≤ `0 , from the initial conditions u0 and u1 . More precisely,

f(s) =


w(s) −

u0(s)

2
−
1

2

∫ s
0

u1(x) dx−w(0) +
u0(0)

2
for s ∈ [0, `0],

u0(−s)

2
−
1

2

∫−s
0

u1(x) dx−
u0(0)

2
for s ∈ [−`0, 0].

To conclude the proof of existence and uniqueness of the solution u , we
have to show that f can be extended in a unique way to a function f
defined on [−`0,+∞) and satisfying

f(t+`(t)) = w(t+`(t)) + f(t−`(t)) for every t ∈ [0,+∞).
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Extending f to larger intervals

t	

x	

-l0	     l0	

l0	

u(t,x)	=	w(t+x)	-	f(t+x)	+	f(t-x)	

0	

from	ini3al	condi3ons	
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x	

x=l(t)	

-l0	     l0	
=s1-l(s1)	
	

t-l(t)	
	

t+l(t)	
	

s1	 	s1+l(s1)	

l0	
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Determining the debonding front

So far the debonding front ` was prescribed. We assume now that only
u0 , u1 , and w are given. The evolution of the debonding front ` has to
be determined on the basis of an additional energy criterion.
To formulate this criterion we fix once and for all the initial conditions
u0 and u1 and we consider the energy of u as a functional depending
on ` and w . More precisely,

E(t; `,w) := 1

2

∫ `(t)
0

ux(t, x)
2 dx+

1

2

∫ `(t)
0

ut(t, x)
2dx,

where u is the unique solution corresponding to u0 , u1 , ` and w . The
first term is the potential energy and the second one is the kinetic energy
at time t .
A crucial role is played by the dynamic energy release rate, which is
defined as a (sort of) partial derivative of E with respect to the elongation
of the debonded region.
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Dynamic energy release rate

To define the dynamic energy release rate Gα(t0) at time t0 for a given
speed 0 < α < 1 of the debonding front, we modify the debonding front
` and the prescribed displacement w using two functions λ and z such
that λ(t) = `(t) for t ≤ t0 , λ̇(t0+) = α , z(t) = w(t) for t ≤ to , and
z(t) = w(t0) for t > t0 .
We define

Gα(t0) := lim
t→t+0

E(t0; λ, z) − E(t; λ, z)
λ(t) − λ(t0)

,

the decrease of (potential + kinetic) energy per unit length of debonding.
We prove that, given ` , w , λ , and z as above, the limit exists for a.e.
t0 > 0 and depends on λ only through α . Moreover, we prove that

Gα(t0) = 2
1− α

1+ α
ḟ(t0−`(t0))

2,

where f is the function in the representation formula for the solution:
u(t, x) = w(t+x) − f(t+x) + f(t−x) .
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z(t) = w(t0) for t > t0 .
We define

Gα(t0) := lim
t→t+0

E(t0; λ, z) − E(t; λ, z)
λ(t) − λ(t0)

,

the decrease of (potential + kinetic) energy per unit length of debonding.
We prove that, given ` , w , λ , and z as above, the limit exists for a.e.
t0 > 0 and depends on λ only through α . Moreover, we prove that

Gα(t0) = 2
1− α

1+ α
ḟ(t0−`(t0))

2,

where f is the function in the representation formula for the solution:
u(t, x) = w(t+x) − f(t+x) + f(t−x) .
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Griffith’s criterion

The energy dissipated to debond [x1, x2] is given by
∫x2
x1
κ(x)dx, where

κ : [0,+∞)→ (0,+∞) is a prescribed function, representing the local
toughness of the glue between the film and the substrate.

The energy criterion for the debonding front, called Griffith’s criterion, is
a) ˙̀(t) ≥ 0,
b) G˙̀(t)(t) ≤ κ(`(t)),
c)

(
G˙̀(t)(t) − κ(`(t))

)˙̀(t) = 0.

a) asserts that the debonding can only grow (unidirectionality).
b) states that the dynamic energy release rate is always bounded by the
local toughness (otherwise more debonding would have occurred).
c) says that the debonding front can incrsease with a positive speed only
if the energy released by the vibrations of the film is totally dissipated by
the debonding process.
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Coupled problem

Given u0 , u1 , and w , we want to find a solution (u, `) to the coupled
problem: u solves the wave equation in the time dependent domain
determined by ` and ` satisfies the Griffith’s criterion with the dynamic
energy release rate corresponding to u .
The strategy for the proof of these results is to write Griffith’s criterion as
an ordinary differential equation for ` depending on the unknown
function f . More precisely, Griffith’s criterion is equivalent to

˙̀(t) =
2ḟ(t− `(t))2 − κ(`(t))

2ḟ(t− `(t))2 + κ(`(t))
∨ 0, for a.e. t > 0,

`(0) = `0.

(??)

Therefore we have to find f and ` so that

f(t+`(t)) = w(t+`(t)) + f(t−`(t)) (?)

holds (which is equivalent to the wave equation + boundary conditions)
and (??) is satisfied (which is equivalent to Griffith’s criterion).
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Existence and uniqueness for constant toughness

The next theorem gives existence and uniqueness for the coupled system
when the local toughness κ is constant.

Theorem (DM-Lazzaroni-Nardini 2016)

Let u0 ∈ C0,1([0, `0]) , let u1 ∈ L∞(0, `0) , let w ∈ C0,1([0, T ]) for every
T > 0 , and let κ > 0 be a constant. Assume the following compatibility
conditions: u0(0) = w(0) and u0(`0) = 0 . Then, there exists a unique
solution (u, `) of the coupled problem with (u, `) ∈ H1(ΩT )×C0,1([0, T ])
for every T > 0 . Moreover, for every T > 0 one has u ∈ C0,1(ΩT ) and there
exists LT < 1 such that 0 ≤ ˙̀(t) ≤ LT for a.e. t ∈ (0, T) .
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Differential equation for `

On [−`0, `0] we have

f(s) =


w(s) −

u0(s)

2
−
1

2

∫ s
0

u1(x) dx−w(0) +
u0(0)

2
for s ∈ [0, `0],

u0(−s)

2
−
1

2

∫−s
0

u1(x) dx−
u0(0)

2
for s ∈ [−`0, 0].

Our assumptions guarantee only that f ∈ C0,1([−`0, `0]) . Therefore we
have to justify existence and uniqueness of a local solution to the
differential equation

˙̀(t) =
2ḟ(t− `(t))2 − κ

2ḟ(t− `(t))2 + κ
∨ 0,

`(0) = `0.

(??)

This is done by reducing the problem to an autonomous equation, using
the fact that κ is constant.
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The autonomous differential equation

Set z(t) := t−`(t) . Then the following problems are equivalent
˙̀(t) =

2ḟ(t− `(t))2 − κ

2ḟ(t− `(t))2 + κ
∨ 0,

`(0) = `0,

{
ż(t) = F(z),

z(0) = −`0,

where F(z) := 1−

(
2ḟ(z)2 − κ

)
∨ 0

2ḟ(z)2 + κ
.

Since ḟ is bounded, 1/F is bounded on [−`0, `0] . The standard formula
for autonomous problems implies that the Cauchy problem for z has a
unique solution z ∈ C0,1([0, s1]) and that this solution satisfies∫ z(t)

−`0

dz
F(z)

= t for every t ∈ [0, s1], where s1 =
∫ `0
−`0

dz
F(z)

.

Notice that s1 is the unique point such that s1 − `(s1) = `0 .
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Since ḟ is bounded, 1/F is bounded on [−`0, `0] . The standard formula
for autonomous problems implies that the Cauchy problem for z has a
unique solution z ∈ C0,1([0, s1]) and that this solution satisfies∫ z(t)

−`0

dz
F(z)

= t for every t ∈ [0, s1], where s1 =
∫ `0
−`0

dz
F(z)

.

Notice that s1 is the unique point such that s1 − `(s1) = `0 .

Gianni Dal Maso Dynamic evolutions for a peeling test Luminy



The autonomous differential equation

Set z(t) := t−`(t) . Then the following problems are equivalent
˙̀(t) =
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Construction of f and `

t	

x	

x=l(t)	

-l0	     l0	
=s1-l(s1)	
	

s1	

l0	

(*)			f(t+l(t))	=	w(t+l(t))	+	f(t-l(t))		

 (**)	l(t)	=	

0	

f	from	ini4al	condi4ons	

.	 2f(t-l(t))2	–	κ	
2f(t-l(t))2	+	κ	
	

__________	.	
.

∨	0	

l	from	f	in	 using	(**)	
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The case of a nonconstant κ

The previous result can be extended to a local toughness κ depending on x .

Theorem (DM-Lazzaroni-Nardini 2016)

Let u0 ∈ C0,1([0, `0]) , let u1 ∈ L∞(0, `0) , let w ∈ C0,1([0, T ]) for every
T > 0 , and let κ ∈ C0,1([0, a]; [c1, c2]) for every a > 0 , where
0 < c1 < c2 < +∞ are independent of a . Assume the following
compatibility conditions: u0(0) = w(0) and u0(`0) = 0 .
Then, there exists a unique solution (u, `) of the coupled problem such that
(u, `) ∈ H1(ΩT )×C0,1([0, T ]) for every T > 0 . Moreover, for every T > 0
one has u ∈ C0,1(ΩT ) and there exists LT < 1 such that 0 ≤ ˙̀(t) ≤ LT for
a.e. t ∈ (0, T) .
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Changes in the proof

Set z(t) := t−`(t) . Then the following problems are equivalent
˙̀(t) =

2ḟ(t− `(t))2 − κ(`(t))

2ḟ(t− `(t))2 + κ(`(t))
∨ 0,

`(0) = `0.

ż(t) =
2κ(t−z)

2ḟ(z)2 + κ(t−z)
∧ 1,

z(0) = −`0.

Any solution of the second problem must satisfy ż > 0 a.e. and therefore
t 7→ z(t) is invertible. The equation solved by the inverse function t(z)
is

dt

dz
=

(
1

2
+

ḟ(z)2

κ(t−z)

)
∨ 1 =: Φ(z, t),

with initial condition t(−`0) = 0 .

Recalling that ḟ is bounded in [−`0, `0] , it is easy to prove that Φ is
locally Lipschitz in t , uniformly with respect to z .
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Changes in the proof

Set z(t) := t−`(t) . Then the following problems are equivalent
˙̀(t) =

2ḟ(t− `(t))2 − κ(`(t))

2ḟ(t− `(t))2 + κ(`(t))
∨ 0,

`(0) = `0.

ż(t) =
2κ(t−z)

2ḟ(z)2 + κ(t−z)
∧ 1,

z(0) = −`0.

Any solution of the second problem must satisfy ż > 0 a.e. and therefore
t 7→ z(t) is invertible. The equation solved by the inverse function t(z)
is

dt

dz
=

(
1

2
+

ḟ(z)2

κ(t−z)

)
∨ 1 =: Φ(z, t),

with initial condition t(−`0) = 0 .

Recalling that ḟ is bounded in [−`0, `0] , it is easy to prove that Φ is
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Conclusion of the proof

We can apply classical results of ordinary differential equations and
obtain a unique solution z 7→ t(z) .

Then z(t) is found by inverting the function t(z) .

Finally `(t) := t−z(t) is the unique solution to
˙̀(t) =

2ḟ(t− `(t))2 − κ(`(t))

2ḟ(t− `(t))2 + κ(`(t))
∨ 0,

`(0) = `0.

(??)

up to time s1 = t(`0) , which is the unique point such that
s1 − `(s1) = `0 .

After the construction of ` in the first time interval [0, s1] , the proof
continues as in the previous theorem.
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