

On the selection of solutions to a nonlinear PDE system

Gisella Croce (joint work with G. Pisante)

Shape Optimization and Isoperimetric and Functional Inequalities November 21 - 25, 2016

Implicit PDE

$$\begin{cases} F_i(Du) = 0 & \text{in } \Omega, i = 1, \dots, m \\ u = \varphi & \text{on } \partial \Omega \end{cases}$$

- Ω is an open bounded subset of \mathbb{R}^n
- $u: \Omega \to \mathbb{R}^N, N \ge 1$
- $F_i : \mathbb{R}^{N \times n} \to \mathbb{R}, i = 1, ..., m \text{ and } \varphi : \overline{\Omega} \to \mathbb{R}^N$ given

•
$$\{\xi: F_i(\xi) = 0\}$$
 compact

The quasilinear problems are excluded!

- 1. scalar case (N = 1): viscosity solutions (Crandall-Lions), pyramidal construction (Cellina)
- vectorial case (N > 1): Baire category method (Dacorogna-Marcellini), Gromov integration (Müller-Sverak)

Examples: eikonal equation, potential wells, singular value problems...

Scalar case (N = 1)

VISCOSITY APPROACH:

1. $\begin{cases} |Du| = 1 & \text{a.e. in } \Omega \\ u = \varphi & \text{on } \partial \Omega \end{cases}$ (EE)

If $|D arphi| \leq 1$ there exists a unique viscosity solution, given by

$$u(x) = \inf_{y \in \partial \Omega} \{\varphi(y) + |x - y|\}$$

2.
$$\begin{cases} \left| \frac{\partial u}{\partial x_1} \right| = \left| \frac{\partial u}{\partial x_2} \right| = 1 \quad \text{a.e. in } \Omega \\ u = 0 \quad \text{on } \partial \Omega \end{cases}$$
 (SEE)

If Ω is a rectangle whose sides are parallel to $x_2 = \pm x_1$, then $d_{l^1}(\cdot, \partial \Omega)$ is a viscosity solution.

PYRAMIDAL CONSTRUCTION:

Theorem (Cellina)

Let $E = \{\xi : F_i(\xi) = 0\}$. If $D\varphi \in E \cup \text{intco } E$, then there exists a solution.

... but there exist infinitely many solutions! For example, for

(SEE)
$$\begin{cases} \left| \frac{\partial u}{\partial x_1} \right| = \left| \frac{\partial u}{\partial x_2} \right| = 1 & \text{a.e. in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

here is a solution:

Litterature

B. Dacorogna and P. Marcellini, 2004: they give an explicit covering of Ω , made up of rectangles R_i

putting on each one the viscosity solution. What are the global properties of such a solution?

$$\mathcal{S} := \left\{ v \in W_0^{1,\infty}(\Omega) : \left| \frac{\partial v}{\partial x_1} \right| = \left| \frac{\partial v}{\partial x_2} \right| = 1 \text{ a.e.} \right\}$$

Define a good functional ${\mathcal F}$ over ${\mathcal S}$

∜

The functions $v \in S$ minimizing \mathcal{F} are selected solutions of (SEE).

Warning: S is not convex!

EXAMPLE:
$$\mathcal{F}(v) = \int_{\Omega} |v|^{p}$$
, has neither a minimizer nor a maximizer over S .

Let $v \in S$. Then, for i = 1, 2

•
$$\frac{\partial v}{\partial x_i}$$
 is an $L^{\infty}(\Omega)$ function

• which takes just two values (a.e. in Ω): ± 1

Minimize the measure of the discontinuity set of $\frac{\partial v}{\partial x_i}$, i = 1, 2

$\mathcal{E} = \{ v \in \mathcal{S} : Dv \in SBV_{loc}(\Omega) \}$

Can we minimize $\mathcal{H}^t\left(J_{\frac{\partial v}{\partial x_1}} \cup J_{\frac{\partial v}{\partial x_2}}\right)$ over \mathcal{E} , for $t \ge 1$?

1. t = 1Let $\Omega = (0, 1)^2$ and $v \in \mathcal{E}$; define, for $t \in (0, 1/2)$ $w_t : [0, 1] \mapsto \mathbb{R}$

$$s \mapsto v(s,t)$$

Since $|v(\cdot)| \leq dist_{l^1}(\cdot, \partial \Omega)$ then w'_t has at least $\left[\frac{1}{2t}\right]$ jumps.

$$\mathcal{H}^1\left(J_{rac{\partial v}{\partial x_1}}
ight)\geq \int_0^{1/2}\mathcal{H}^0(J_{w_t'})\,dt\geq \int_0^{1/2}\left[rac{1}{2t}
ight]dt=+\infty$$

2. *t* > 1

By the properties of the Hausdorff measures, since $v \in \mathcal{E}$, one has $\mathcal{H}^t \left(J_{\frac{\partial v}{\partial x_1}} \cup J_{\frac{\partial v}{\partial x_2}} \right) = 0$, for every t > 1.

IDEA: we measure $J_{\frac{\partial v}{\partial x_i}}$ using a weight $h \in C_0(\Omega)$. Assume that Ω is *admissible*, i.e.:

- Ω is a bounded C_{pw}^1 domain
- ► there exists a finite number of points ∂Ω such that the normal ν satisfies |ν₁| = |ν₂| and a finite number of segments parallel to x₂ = ±x₁.

THEOREM 2 (G. Pisante and G.C.) Let $\Omega \subset \mathbb{R}^2$ be a admissible domain. Then $\inf \left\{ \sum_{i=1}^2 \int_{\Omega} d_1(x, \partial \Omega) \ d \left| D \frac{\partial v}{\partial x_i} \right| (x), \quad v \in \mathcal{E}(\Omega) \right\}$

has a solution.

N.B.: If $\partial\Omega$ is composed of a finite number of segments parallel to $x_2 = \pm x_1$, then one can consider $h \equiv 1$.

A vectorial problem:

 $\begin{cases} \begin{array}{cc} Du \in \mathcal{O}(2) & \Omega \\ u = 0 & \partial \Omega \end{array} (OP) \\ \text{N.B.: } u : \Omega \subset \mathbb{R}^2 \to \mathbb{R}^2 \text{ satisfies } |Du|^2 = 2; |det(Du)| = 1 \end{cases}$

- Existence of solutions: Baire category approach, Gromov integration approach...infinitely many solutions!!! Pyramidal construction???
- ► In $\Omega = (-2, 2)^2$, Dacorogna, Marcellini and Paolini constructed an explicit solution with a fractal behaviour at $\partial \Omega$ of

$$\begin{cases} Du \in E & \Omega \\ u = 0 & \partial \Omega \end{cases}$$

where $E \subset \mathcal{O}(2)$ is the set of matrices $e_i, i = 1 \dots, 8$

$$\left\{\pm \left(\begin{array}{rrr}1 & 0\\ 0 & 1\end{array}\right), \pm \left(\begin{array}{rrr}1 & 0\\ 0 & -1\end{array}\right), \pm \left(\begin{array}{rrr}0 & 1\\ 1 & 0\end{array}\right), \pm \left(\begin{array}{rrr}0 & 1\\ -1 & 0\end{array}\right)\right\}$$

An explicit solution
$$u = (u^1, u^2)$$
 in $T = \{(x, y) \in \mathbb{R}^2 : x \ge y \ge 0\}$:

$$\begin{aligned} \mathbf{a}(x,y) &= \min\{1 \pm x, 1 \pm y\}, \\ \mathbf{b}(x,y) &= \max\{1 - |x|, 1 - |y|\}, \\ \mathbf{c}(x,y) &= \begin{cases} 1 - |x|, if|x| \le y\\ 1 - y, if|y| \le -x\\ 1 - x, if|x| \le -y\\ 1 - |y|, if|y| \le x \end{cases} \quad \mathbf{d}(x,y) = \begin{cases} 1 - x, if|x| \le y\\ 1 + y, if|y| \le -x\\ 1 - |x|, if|x| \le -y\\ 1 - |y|, if|y| \le x \end{cases} \end{aligned}$$

We have to deal with possible fractalisations in Ω !!

► Γ_u : "good" points in the sense that $x_0 \in \Gamma_u$ if there exists a ball $B(x_0) \subset \Omega$ centered at x_0 such that $\{x : Du = e_i\} \cap B(x_0)$ is a Caccioppoli partition of $B(x_0)$, that is, the sum of the perimeters of $\{Du = e_i\}$ in $B(x_0)$ is finite.

• Σ_{∞}^{u} : "bad" points in the sense that $\Sigma_{\infty}^{u} = \partial \Omega \cup (\Omega \setminus \Gamma_{u})$.

We will consider the set S of solutions u to (OP) such that H1) $\Sigma_{\infty}^{u} \cap \Omega_{\delta} \cup \partial \Omega_{\delta}$ is connected. H2) Σ_{∞}^{u} is locally of finite \mathcal{H}^{1} measure in Ω . H3) For c > 0, there exists a positive function $\phi : (0, \infty) \rightarrow (0, \infty)$ such that for any $\delta > 0$ and for any u, $\mathcal{H}^{1} - a.e. \ x \in \Sigma_{\infty}^{u} \cap \Omega_{\delta}$ we can find at least three indices $i_{1}, i_{2}, i_{3} \in \{1, \dots, 8\}$ with the property that for every $r < \phi(\delta)$ we have

$$\mathcal{L}^{2}(B(x,r) \cap \{Du = e_{i_{s}}\}) > cr^{2}, \ s \in \{1,2,3\}.$$

Example: construct a Vitali covering of Ω made up of squares in which you define the solution of Dacorogna, Marcellini and Paolini.

$$\mathcal{F}(u) = \int_{\Omega} dist(x, \partial \Omega) \chi_{\Sigma_{\infty}^{u}} d\mathcal{H}^{1} + \sum_{i,j=1}^{2} \int_{\Omega} \left[dist(x, \Sigma_{\infty}^{u}) \right]^{\alpha} d|Du_{x_{i}}^{j}|$$

► 1st term:
$$\lim_{\delta \to 0} \int_{\Omega_{\delta}} dist(x, \partial \Omega) \chi_{\Sigma_{\infty}^{u}} d\mathcal{H}^{1}$$

Similar to the functional for (SEE)!!

► 2nd term:
$$\lim_{\delta \to 0} \lim_{h \to 0} \sum_{i,j=1}^{2} \int_{\Omega_{\delta} \setminus (\Sigma_{\infty}^{u})_{h}} \left[dist(x, \Sigma_{\infty}^{u}) \right]^{\alpha} d|Du_{x_{i}}^{j}|$$

N.B.: α depends on the geometry of Ω .

Ω : compatible domain

α

 α -compatible triangular domains:

$$T_h := \left\{ (s,t) \in \mathbb{R}^2 : a \le s \le b, h(b) \le t \le h(s) \right\}$$

where $h : [a,b] \to \mathbb{R}$ is a $C^1([a,b])$ function with $h'(t) < 0$ and $\alpha > 0$ satisfies

$$2\left[\max\left\{\frac{1}{1+\frac{1}{c_1}}, \frac{1}{1+c_2}\right\}\right]^{\alpha+1} < 1,$$

with $-c_1 = \min_{x_1 \in [a,b]} h'$, $-c_2 = -\max_{x_1 \in [a,b]} h'$.

Theorem (G.C. and G. Pisante) There exists $u \in S$ which minimizes \mathcal{F} .

Thank you for your attention!