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Implicit PDE {
Fi (Du) = 0 in Ω, i = 1, . . . ,m

u = ϕ on ∂Ω

I Ω is an open bounded subset of Rn

I u : Ω→ RN ,N ≥ 1

I Fi : RN×n → R, i = 1, ...,m and ϕ : Ω→ RN given

I {ξ : Fi (ξ) = 0} compact

The quasilinear problems are excluded!

1. scalar case (N = 1): viscosity solutions (Crandall-Lions),
pyramidal construction (Cellina)

2. vectorial case (N > 1): Baire category method
(Dacorogna-Marcellini), Gromov integration (Müller-Sverak)

Examples: eikonal equation, potential wells, singular value problems...



Scalar case (N = 1)

VISCOSITY APPROACH:

1.

{
|Du| = 1 a.e. in Ω

u = ϕ on ∂Ω
(EE )

If |Dϕ| ≤ 1 there exists a unique viscosity solution, given by

u(x) = inf
y∈∂Ω
{ϕ(y) + |x − y |}

2.


∣∣∣∣ ∂u∂x1

∣∣∣∣ =

∣∣∣∣ ∂u∂x2

∣∣∣∣ = 1 a.e. in Ω

u = 0 on ∂Ω

(SEE )

If Ω is a rectangle whose sides are parallel to x2 = ±x1, then
dl1(·, ∂Ω) is a viscosity solution.



PYRAMIDAL CONSTRUCTION:

Theorem (Cellina)

Let E = {ξ : Fi (ξ) = 0}. If Dϕ ∈ E ∪ intcoE , then there exists a
solution.

... but there exist infinitely many solutions! For example, for

(SEE )


∣∣∣∣ ∂u∂x1

∣∣∣∣ =

∣∣∣∣ ∂u∂x2

∣∣∣∣ = 1 a.e. in Ω

u = 0 on ∂Ω

here is a solution:

PROBLEM

Given Ω, (SEE ) has infinitely many Lipschitz solutions on Ω. Can
we select a class of solutions or, better, one solution on Ω?



Litterature

B. Dacorogna and P. Marcellini, 2004: they give an explicit
covering of Ω, made up of rectangles Ri

Ω

putting on each one the viscosity solution.
What are the global properties of such a solution?



S :=

{
v ∈W 1,∞

0 (Ω) :

∣∣∣∣ ∂v∂x1

∣∣∣∣ =

∣∣∣∣ ∂v∂x2

∣∣∣∣ = 1 a.e.

}
Define a good functional F over S

⇓

The functions v ∈ S minimizing F are selected solutions of (SEE ).

Warning: S is not convex!

EXAMPLE: F(v) =

∫
Ω
|v |p, has neither a minimizer nor a

maximizer over S.



Let v ∈ S. Then, for i = 1, 2

• ∂v

∂xi
is an L∞(Ω) function

• which takes just two values (a.e. in Ω): ±1

Minimize the measure of the discontinuity set of
∂v

∂xi
, i = 1, 2

Ω

E = {v ∈ S : Dv ∈ SBVloc(Ω)}



Can we minimize Ht

(
J ∂v
∂x1

∪ J ∂v
∂x2

)
over E , for t ≥ 1?

1. t = 1
Let Ω = (0, 1)2 and v ∈ E ; define, for t ∈ (0, 1/2)

wt : [0, 1] 7→ R
s 7→ v(s, t)

Since |v(·)| ≤ distl1(·, ∂Ω) then w ′t has at least
[

1
2t

]
jumps.

H1

(
J ∂v
∂x1

)
≥
∫ 1/2

0
H0(Jw ′

t
) dt ≥

∫ 1/2

0

[
1

2t

]
dt = +∞

2. t > 1
By the properties of the Hausdorff measures, since v ∈ E , one

has Ht

(
J ∂v
∂x1

∪ J ∂v
∂x2

)
= 0, for every t > 1.



IDEA: we measure J ∂v
∂xi

using a weight h ∈ C0(Ω). Assume that Ω

is admissible, i.e.:

I Ω is a bounded C 1
pw domain

I there exists a finite number of points ∂Ω such that the normal
ν satisfies |ν1| = |ν2| and a finite number of segments parallel
to x2 = ±x1.

THEOREM 2 (G. Pisante and G.C.)

Let Ω ⊂ R2 be a admissible domain. Then

inf


2∑

i=1

∫
Ω

d1(x , ∂Ω) d

∣∣∣∣D ∂v

∂xi

∣∣∣∣ (x) , v ∈ E(Ω)


has a solution.

N.B.: If ∂Ω is composed of a finite number of segments parallel to
x2 = ±x1, then one can consider h ≡ 1.



A vectorial problem:{
Du ∈ O(2) Ω
u = 0 ∂Ω

(OP)

N.B.: u : Ω ⊂ R2 → R2 satisfies |Du|2 = 2; |det(Du)| = 1

I Existence of solutions: Baire category approach, Gromov
integration approach...infinitely many solutions!!! Pyramidal
construction???

I In Ω = (−2, 2)2, Dacorogna, Marcellini and Paolini
constructed an explicit solution with a fractal behaviour at ∂Ω
of {

Du ∈ E Ω
u = 0 ∂Ω

where E ⊂ O(2) is the set of matrices ei , i = 1 . . . , 8{
±
(

1 0
0 1

)
,±
(

1 0
0 −1

)
,±
(

0 1
1 0

)
,±
(

0 1
−1 0

)}
.



An explicit solution u = (u1, u2) in T = {(x , y) ∈ R2 : x ≥ y ≥ 0}:

a(x , y) = min{1± x , 1± y}, b(x , y) = max{1− |x |, 1− |y |},

c(x , y) =


1− |x |, if |x | ≤ y
1− y , if |y | ≤ −x
1− x , if |x | ≤ −y
1− |y |, if |y | ≤ x

d(x , y) =


1− x , if |x | ≤ y
1 + y , if |y | ≤ −x
1− |x |, if |x | ≤ −y
1− |y |, if |y | ≤ x

|

Figure 5: The component v

We now write explicitly the function

u (x; y) =

!
v (x; y)
w (x; y)

"
: (9)

As explained above it is enough to deÖne the map only on Qk;i\T: Our construc-
tion privileges the Örst component (see Figure 5) which takes the very simple

form

v (x; y) := ak

 
x"

xk!1 + xk
2

; y "
yik + y

i+1
k

2

!
; if (x; y) 2 Qk;i \ T:

Because we are interested in describing the construction of the second compo-

nent (see Figure 6) only in ' \ T; we only need the pyramids b; c; d: For every
(x; y) 2 Qk;i \ T; we set

w (x; y) :=

8
>>>>>>><

>>>>>>>:

dk

)
x" xk!1+xk

2 ; y " yik+y
i+1
k

2

* if i is even
and i 2

+
0; $ $ $ ; 2k " 4

,

ck

)
x" xk!1+xk

2 ; y " yik+y
i+1
k

2

* if i is odd
and i 2

+
1; $ $ $ ; 2k " 3

,

bk

)
x" xk!1+xk

2 ; y " yik+y
i+1
k

2

*
if i = 2k " 2 :

We Önally extend u by symmetry from ' \ T to ' and up to the boundary of
' by continuity.

8
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Figure 6: The component w

For the sake of illustration we write the function u in [0; 3=2]% [0; 3=2] \ T:
Recall that x0 = y0 = 0 and

(
x1 = 1 and y01 = 0; y

1
1 = 1

Q1;0 = (x0; x1)%
.
y01 ; y

1
1

/
= (0; 1)% (0; 1)

(
x2 = 3=2 and y02 = 0; y

1
2 = 1=2; y

2
2 = 2=2; y

3
2 = 3=2

Q2;0 = (x1; x2)%
.
y02 ; y

1
2

/
; Q2;1 = (x1; x2)%

.
y12 ; y

2
2

/
; Q2;2 = (x1; x2)%

.
y22 ; y

3
2

/
:

We therefore have in [0; 1]% [0; 1]

v (x; y) = a1

!
x"

x0 + x1
2

; y "
y01 + y

1
1

2

"

= a1

!
x"

1

2
; y "

1

2

"
=
1

2
a (2x" 1; 2y " 1)

w (x; y) = b1

!
x"

x0 + x1
2

; y "
y01 + y

1
1

2

"

= b1

!
x"

1

2
; y "

1

2

"
=
1

2
b (2x" 1; 2y " 1)
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We have to deal with possible fractalisations in Ω!!

I Γu: ”good” points in the sense that x0 ∈ Γu if there exists a
ball B(x0) ⊂ Ω centered at x0 such that
{x : Du = ei} ∩B(x0) is a Caccioppoli partition of B(x0), that
is, the sum of the perimeters of {Du = ei} in B(x0) is finite.

I Σu
∞: ”bad” points in the sense that Σu

∞ = ∂Ω ∪ (Ω \ Γu).

We will consider the set S of solutions u to (OP) such that

H1) Σu
∞ ∩ Ωδ ∪ ∂Ωδ is connected.

H2) Σu
∞ is locally of finite H1 measure in Ω.

H3) For c > 0, there exists a positive function φ : (0,∞)→ (0,∞)
such that for any δ > 0 and for any u, H1 − a.e. x ∈ Σu

∞ ∩Ωδ

we can find at least three indices i1, i2, i3 ∈ {1, . . . , 8} with
the property that for every r < φ(δ) we have

L2(B(x , r) ∩ {Du = eis}) > cr2 , s ∈ {1, 2, 3}.

Example: construct a Vitali covering of Ω made up of squares in which

you define the solution of Dacorogna, Marcellini and Paolini.



F(u) =

∫
Ω
dist(x , ∂Ω)χΣu

∞dH1 +
2∑

i ,j=1

∫
Ω

[
dist(x ,Σu

∞)
]α
d |Dujxi |

I 1st term: lim
δ→0

∫
Ωδ

dist(x , ∂Ω)χΣu
∞dH1

Similar to the functional for (SEE)!!

I 2nd term: lim
δ→0

lim
h→0

2∑
i ,j=1

∫
Ωδ\(Σu

∞)h

[
dist(x ,Σu

∞)
]α
d |Dujxi |

N.B.: α depends on the geometry of Ω.



Ω : compatible domain

α-compatible triangular domains:

Th :=
{

(s, t) ∈ R2 : a ≤ s ≤ b, h(b) ≤ t ≤ h(s)
}

where h : [a, b]→ R is a C 1([a, b]) function with h′(t) < 0 and
α > 0 satisfies

2

[
max

{
1

1 + 1
c1

,
1

1 + c2

}]α+1

< 1,

with −c1 = min
x1∈[a,b]

h′ , −c2 = − max
x1∈[a,b]

h′.

Theorem (G.C. and G. Pisante)

There exists u ∈ S which minimizes F .



Thank you for your attention!


