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Let (M, g) be a complete Riemannian manifold and let Ω be a
compact domain of M with smooth boundary ∂Ω, if non empty (if
M is closed, we can choose Ω = M and ∂Ω = ∅).



Given a smooth real 1-form A on Ω we define a connection ∇A on
C∞(Ω,C) acting on the space of smooth complex valued functions
on Ω as follows:

∇A
Xu = ∇Xu − iA(X )u (1)

for all vector fields X on Ω and for all u ∈ C∞(Ω,C).
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on Ω as follows:

∇A
Xu = ∇Xu − iA(X )u (1)

for all vector fields X on Ω and for all u ∈ C∞(Ω,C).



The operator
∆A = (∇A)?∇A (2)

is called the magnetic Laplacian associated to the magnetic
potential A.

∆Au = ∆u + |A|2u + 2i〈du,A〉 − iuδA.

In particular:

∆Au = ∆u + |A|2u − 2i〈du,A〉 whenever δA = 0.

The 2-form
B = dA

being the associated magnetic field.

If φ is a function on Ω, ∆A and ∆A+dφ are unitarily equivalent and
will have the same spectrum. If A = 0, we recover the usual
Laplacian.
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Example

Let Ω ⊂ R2 a domain.

As potential, consider for b ∈ R,

A((x1, x2) =
−bx2

2
dx1 +

bx1

2
dx2.

We have B = bdx1 ∧ dx2. The magnetic field is constant.
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Example

Let Ω ⊂ R2 be a domain with a hole, say around a point
a = (a1, a2). As potential, consider

Aa,γ(x1, x2) = γ(
−(x2 − a2)

(x1 − a1)2 + (x2 − a2)2
dx1+

(x1 − a1)

(x1 − a1)2 + (x2 − a2)2
dx2).

with γ ∈ (0, 1).

Then, Aa,γ is a closed 1-form, and dAa,γ = B = 0.

The circulation of Aa,γ is γ. For a simple closed curve c around a,
the circulation of A is given by

ΦA
c =

1

2π

∫
c

A.
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If the boundary of Ω is non empty, we will consider Neumann
magnetic conditions, that is:

∇A
Nu = 0 on ∂Ω, (3)

where N denotes the inner unit normal. Then ∆A is self-adjoint,
and admits a discrete spectrum

0 ≤ λ1(∆A) ≤ λ2(∆A) ≤ ...→∞.



Note that there exist a lot of result with Dirichlet boundary
conditions. As example:

For a domain Ω ⊂ R2 with a constant magnetic field, there is a
Faber-Krahn inequality. The disc minimize the first eigenvalue (L.
Erdös, 1996).

Sharp upper bounds on starlike plane domains for some functionals
of the eigenvalues (Laugesen-Siudeja, 2015).

For a domain Ω ⊂ R2 with a hole around a point a = (a1, a2) and
circulation 1

2 , what does occur if a approach the boundary? (Noris,
Terracini, Bonnaillie, Felli, ...)
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With Neumann boundary conditions: Sharp upper bounds on
starlike plane domains for some functionals of the eigenvalues
(Laugesen-Siudeja, 2015).

(B. Helffer, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, M. P.
Owen 1990).
Let Ω ⊂ R2 be a region with smooth boundary, which is
homeomorphic to a disk with k holes. They look at a potential A
with dA = 0. Let ci a closed path which parametrise the boundary
of the i th hole, and ΦA

ci
= 1

2π

∫
ci

A.
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The first eigenvalue of the magnetic operator ∆A depends only on
the circulations (ΦA

c1
, ...,ΦA

ck
) of A.

λ1(∆A) = 0 if and only if ΦA
ci
∈ Z for all i . (See also Shikagawa

for compact manifolds).

Moreover, when k = 1, λ1(∆A,Ω) is maximal when ΦA
c = 1

2 .
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There are two recent very interesting results regarding lower bound
for λ1:

A Cheeger type inequality (by Carsten Lange, Shiping Liu, Norbert
Peyerimhoff, Olaf Post);

Lower bound thanks to Bochner methods (by Michela Egidi,
Shiping Liu, Florentin Münch, Norbert Peyerimhoff).
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Goal for today:

- upper bounds for all the spectrum using geometric methods;

- lower bounds for λ1 in a specific situation;

- highlighting the role of the circulation ΦA
ci
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Remark
On the sphere S2 (with its canonical metric), there exists a family
Ak of potentials, such that λ1(∆Ak

)→∞ as k →∞. If
Bk = dAk , we have ‖Bk‖2 →∞ as k →∞ (Besson-C-Courtois).

So, we need to take account of ‖B‖2 if we want to find upper
bounds.
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A remark about the potential A.

Because of the Gauge invariance and the Hodge decomposition, we
can suppose that A has the following expression

A = h + δψ

Here, ψ is a 2-form and h is a 1-form satisfing dh = δh = 0.
Moreover, if ∂Ω 6= ∅ and N is the normal derivative to the
boundary, we can choose ψ and h tangential (i.e. ψ(N, .) = 0 and
h(N) = 0).

We denote by Har1(Ω) the 1-forms satisfying dh = δh = 0 and
h(N) = 0 on ∂Ω.

In particular, we have B = dδψ, and B = 0 if and only if ψ = 0.

The 1- forms δψ and h are L2-orthogonal on Ω:∫
Ω
〈δψ, h〉dvolg = 0.
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Let Ω be a domain in (M, g). We choose a family of closed curves
(c1, ..., cm), basis of the homology of degree 1 of Ω and we consider
the dual basis of harmonic 1-forms A1, ...,Am ∈ Har1(Ω): we have

Φ
Aj
ci =

1

2π

∫
ci

Aj = δij .

Given A ∈ Har1(Ω), we write

ΦA = (ΦA
c1
, ...,ΦA

cm)

and we denote by d(ΦA,Zm) the Euclidean distance between ΦA

and the Euclidean lattice:

d(ΦA,Zm)2 = min{
m∑
j=1

(ΦA
cj
− kj)

2 : (k1, ..., km) ∈ Zm}.
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Example of a torus:

The curve c1 and c2 correspond to a and b.

In coordinates, if the length of ci is αi , A1 = 2π
α1

dx1, A2 = 2π
α2

dx2.

If A = β1A1 + β2A2,

d(ΦA,Z2)2 = min{(β1 − k1)2 + (β2 − k2)2 : (k1, k2) ∈ Z2}
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We also introduce the lattice generated by the dual basis
(A1, ...,Am):

LZ = {k1A1 + · · ·+ kmAm : kj ∈ Z}

which is an abelian subgroup of Har1(Ω). Given A ∈ Har1(Ω), we
define its minimum distance to the lattice LZ by the formula:

d(A,LZ)2 = min
{
‖ω − A‖2, ω ∈ LZ

}
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For the example of a torus:

If A is an harmonic form, A = β1dx1 + β2dx2,

d(A,LZ)2 = min
{
‖(k1

2π

α1
−β1)2 + (k2

2π

α2
−β2)2‖2, (k1, k2) ∈ Z2

}



Our results: Ω domain of (M , g).

Recall that we write
A = δψ + h

with dh = δh = 0 and d(δψ) = B.
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Upper bound for λ1:

We have

λ1(∆A) ≤ d(A,LZ)2

|Ω|
+

‖B‖2
2

λ1,1(Ω)|Ω|
,

where λ1,1 denotes the first nonzero eigenvalue of the Laplacian
on co-exact 1-forms and |Ω| denotes the volume of Ω.

In particular, if B = 0, we get

λ1(∆A) ≤ d(A,LZ)2

|Ω|
,

and this inequality is sharp (equality in the case of a flat
rectangular torus).
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Some comments

In the first inequality, we need to take account of B, but the
presence of ‖B‖2

2 is probably not optimal. L. Erdös obtains an
estimate with ‖B‖1 in the case of surfaces. The proof is much
more difficult.

The term λ1,1 reflects the presence of the geometry. In his
estimates for surfaces, L. Erdös has a term depending on the
curvature and injectivity radius of the surface. However, in
dimension 2, λ1,1 is equal to the first eigenvalue of the Laplacian
on functions, and this is no longer the case in higher dimensions.
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which is the same estimate as for functions (P. Buser for

closed Ω with c2 = (n−1)2

4 and C-Maerten for general
domains).

2. The term C1(Ω,A) contains all the contribution associated to
the presence of A.

3. The estimate is compatible with the Weyl law.
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Lower bounds for λ1.

We will give lower bounds for λ1 in the very specific situation where
A is a closed form (that is B = 0) and the manifold is a cylinder

A Riemannian cylinder is a domain (Ω, g) diffeomorphic to
[0, 1]× S1, endowed with a Riemannian metric g . We denote by
Σ1 and Σ2 the boundaries of the cylinder.
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We foliate the cylinder by the (regular) level curves of a smooth
function ψ.
Let FΩ, the family of smooth real-valued functions on Ω which
have no critical points in Ω and which are constant on each
component of the boundary of Ω.

If ψ ∈ FΩ, we set:

K = KΩ,ψ =
supΩ |∇ψ|
infΩ |∇ψ|

.

It is clear that, in the definition of the constant K , we can assume
that the range of ψ is the interval [0, 1], and that ψ = 0 on Σ1 and
ψ = 1 on Σ2.
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Theorem
Let (Ω, g) be a Riemannian cylinder, and let A be a closed 1-form
on Ω. Assume that Ω is K -foliated by the level curves of the
smooth function ψ ∈ FΩ. Then:

λ1(Ω,A) ≥ 4π2

KL2
· d(ΦA,Z)2,

where L is the maximum length of a level curve of ψ and ΦA is
the flux of A across any of the boundary components of Ω.

Equality holds if and only if the cylinder Ω is a Riemannian
product.

Note that K ≥ 1; we will see that in many interesting situations
(for example, for revolution cylinders) one has in fact K = 1.
However, in full generallity, it is difficult to estimate K .
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A case where we can get a good estimate of K :

Let Ω be a topological annulus in R2 bounded by the inner curve
Σ1 and the outer curve Σ2, both convex. Let ΦA = 1

2π

∫
c A, where

c is the closed curve around the hole. Then, we have

λ1(Ω,A) ≥ 4π2β2

B2L2
d(ΦA,Z)2

where β denotes the minimum of the distance between Σ1 and
Σ2, B the maximum of the distance between Σ1 and Σ2 and L the
length of the outer boundary.
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It is clear that need to take account of L and B.

We also need to take account of β.

Figure : λ1 → 0 as ε→ 0
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We need the convexity

Figure : A local deformation implying λ1 → 0



Sketch of the proofs.

Upper bounds for λ1:



Case 1: if A = h with dh = δh = 0 and, moreover, 1
2π

∫
c h ∈ Z for

all closed curved c , we have

A = h = n1A1 + ...+ nkAk

where (A1, ...,Ak) is the dual basis of harmonic forms and
n1, ..., nk ∈ Z.

It is known that λ1(∆A) = 0, and it is easy to exhibit the
eigenfunction:

If x0 is a given point of Ω, let

φ(x) =

∫ x

x0

h.

Then, φ(x) does depend on the path between x0 and x only up to
a factor 2π, and

u(x) = e iφ(x)

is an eigenfunction.
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Case 2: A = h + δψ.

Recall that
λ1(∆A) = min{R(u) : u 6= 0},

where

R(u) =

∫
Ω |∇

Au|2dvolg∫
Ω |u|2dvolg

.

We have to choose a good test function:

In general, h 6∈ LZ. We choose ω ∈ LZ minimizing d(A,LZ), and
consider the same function as in case 1:
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We take

u(x) = e iφ(x) with φ(x) =

∫ x

x0

ω.

We get

∇A(u) = du − iAu = iωu − ihu − iδψu = iu((ω − h)− δψ).

We have, using |u| = 1,

R(u) =
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=
‖(ω − h)− δψ‖2
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|Ω|
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By the choice of ω, we have ‖w − h‖2 = d2(h,LZ).

By the min-max,
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+
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λ1,1(Ω)|Ω|
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Case 3: the other eigenvalues.

We use the same strategy as in the second step. We choose
ω ∈ LZ minimizing d(A,LZ), and consider the function

u(x) = e iφ(x) with φ(x) =

∫ x

x0

ω.

The test functions will be of the type fu where f is a real smooth
function on Ω.
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We have

(d − iA)(fu) = udf + fdu − ihuf − iuf δψ

= udf + iuf (ω − h − δψ).

Since |u| = 1:

|(d − iA)(fu)|2 ≤ 2
(
|df |2 + f 2|ω − h − δψ|2

)
.

We have to control the Rayleigh quotient

R(fu) ≤ 2

(∫
Ω |df |2∫

Ω f 2
+

∫
Ω f 2|ω − h − δψ|2∫

Ω f 2

)
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So, we are lead to control the Rayleigh quotient

R(f ) = 2

∫
Ω |df |2 + Vf 2∫

Ω f 2
, where V = |ω − h − δψ|2.

Thus, the problem is now to find an upper bound for the spectrum
of the operator ∆ + V , where ∆ is the usual Laplacian acting on
functions and V = |ω − h − δψ|2 is a nonnegative potential.
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The proof follows word for word what is done in the case where the
potential is equal to 0.

The idea is to construct disjointly supported domains Ω1, ...,Ωk on
Ω and to associate a test function for the Rayleigh quotient to
each of these domains.
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The fact that the potential V is positif implies that we can choose
the domains Ωi with ∫

Ωi

Vdvolg ≤ c

∫
Ω V

k
.



Lower bound on Riemannian cylinders.

The proof are technical, in particular the equality case.

We use the foliation as follow: we restrict the potential A on the
cylinder to each circle of the foliation, and this allows us to
estimate the spectrum of the Riemannian cylinder in comparison
with the spectrum of circles.

The presence of K reflects the complexity of the geometry of the
cylinder.
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Thank you!












