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Capacitary problem

Ω conductor
uΩ electrostatic potential
|DuΩ| intensity of the field; Ω

∆uΩ = 0
uΩ = 1

uΩ → 0

 An electrical conductor Ω while maintaining a given potential energy
has constant intensity of the electrostatic field on its boundary if and only
if it is an Euclidean ball.

[W. Reichel, Arch. Rational Mech. Anal. 1997]
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Capacity problem


∆u = 0 in RN \ Ω,

u = 1 on ∂Ω,

u → 0 if |x | → ∞.

 Cap(Ω) = min
v∈A

∫
RN

1
2
|Dv |2,

where A = {v ∈ C∞0 (RN), v ≥ 1 in Ω}.

Cap(Ω) measures the capacitance of Ω: the total charge Ω can hold
while maintaining a given potential energy,with respect to an idealized
ground at infinity.

 the Laplace operator reflects the the linearity of the electrical
conductivity law, determined by the isotropy of the dielectric.

 what happens in an anisotropic dielectic or for potential-type
conduction laws?
We can expect an anisotropic norm to play a crucial role!
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Anisotropic Capacity


???? = 0 in RN \ Ω,

u = 1 on ∂Ω,

u → 0 if |x | → ∞.

 CapH(Ω) = min
v∈A

∫
RN

1
2

H(Dv)2,

where A = {v ∈ C∞0 (RN), v ≥ 1 in Ω}.

CapH(Ω) measures the anisotropic capacitance of Ω: the total
charge Ω can hold while embedded in an anisotropic dielectric medium
and maintaining a given potential energy, with respect to an idealized
ground at infinity.

 the governing operator reflects the anisotropy of the dielectric:
 Finsler Laplacian ∆Hu = div(H(Du)∇ξH(Du))
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Anisotropic p-Capacity

Newtonian p-Capacity:

Capp(Ω) = min
v∈A

∫
RN

1
p
|Dv |p ,

where A = {v ∈ C∞0 (RN), v ≥ 1 in Ω}.

 


∆pu = 0 in RN \ Ω,

u = 1 on ∂Ω,

u → 0 if |x | → ∞.

Finsler p-Capacity:

CapH
p (Ω) = min

v∈A

∫
RN

1
p

H(Dv)p ,

where A = {v ∈ C∞0 (RN), v ≥ 1 in Ω}.

 


∆H

p u = 0 in RN \ Ω,

u = 1 on ∂Ω,

u → 0 if |x | → ∞.

 Finsler p-Laplacian ∆H
p u = div(Hp−1(Du)∇ξH(Du))
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Anisotropic spaces (i)

Euclidean balls: B = {|x | < t} anisotropic balls: BH = { H(x) < t}

NOT anisotropic balls:
Let H : RN → R be a regular norm in RN

∗ :

(i) H is convex;

(ii) H(ξ) ≥ 0 for ξ ∈ RN and H(ξ) = 0 if and only if ξ = 0;

(iii) H(tξ) = |t |H(ξ) for ξ ∈ RN and t ∈ R.  H is 1-homog.

(iv) H2(ξ) ∈ C2
+(RN

∗ ).

Chiara Bianchini Wulff shape characterizations



Anisotropic spaces (i)

Euclidean balls: B = {|x | < t} anisotropic balls: BH = { H(x) < t}

NOT anisotropic balls:
Let H : RN → R be a regular norm in RN

∗ :

(i) H is convex;

(ii) H(ξ) ≥ 0 for ξ ∈ RN and H(ξ) = 0 if and only if ξ = 0;

(iii) H(tξ) = |t |H(ξ) for ξ ∈ RN and t ∈ R.  H is 1-homog.

(iv) H2(ξ) ∈ C2
+(RN

∗ ).

Chiara Bianchini Wulff shape characterizations



Anisotropic spaces (i)

Euclidean balls: B = {|x | < t} anisotropic balls: BH = { H(x) < t}

NOT anisotropic balls:
Let H : RN → R be a regular norm in RN

∗ :

(i) H is convex;

(ii) H(ξ) ≥ 0 for ξ ∈ RN and H(ξ) = 0 if and only if ξ = 0;

(iii) H(tξ) = |t |H(ξ) for ξ ∈ RN and t ∈ R.  H is 1-homog.

(iv) H2(ξ) ∈ C2
+(RN

∗ ).

Chiara Bianchini Wulff shape characterizations



Anisotropic spaces (i)

Euclidean balls: B = {|x | < t} anisotropic balls: BH = { H(x) < t}

NOT anisotropic balls:
Let H : RN → R be a regular norm in RN

∗ :

(i) H is convex;

(ii) H(ξ) ≥ 0 for ξ ∈ RN and H(ξ) = 0 if and only if ξ = 0;

(iii) H(tξ) = |t |H(ξ) for ξ ∈ RN and t ∈ R.  H is 1-homog.

(iv) H2(ξ) ∈ C2
+(RN

∗ ).

Chiara Bianchini Wulff shape characterizations



Anisotropic spaces (i)

Euclidean balls: B = {|x | < t} anisotropic balls: BH = { H(x) < t}

NOT anisotropic balls:
Let H : RN → R be a regular norm in RN

∗ :

(i) H is convex;

(ii) H(ξ) ≥ 0 for ξ ∈ RN and H(ξ) = 0 if and only if ξ = 0;

(iii) H(tξ) = |t |H(ξ) for ξ ∈ RN and t ∈ R.  H is 1-homog.

(iv) H2(ξ) ∈ C2
+(RN

∗ ).

Chiara Bianchini Wulff shape characterizations



Anisotropic spaces (i)

Euclidean balls: B = {|x | < t} anisotropic balls: BH = { H(x) < t}
Dual balls: B = {|x | < 1

t } anisotropic BH0 = { H0(x) < 1
t }

NOTICE: BH0 is still uniformly convex.

Let H : RN → R be a regular norm in RN
∗ its dual norm is

H0(x) = supξ,0
x · ξ
H(ξ)

, for x ∈ RN .

Notice: x ∈ Ω ⊆ RN f H0 norm of RN .
Du(x) ∈ dual space of RN f H norm of RN (dual space).
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Wulff shapes:

Def. Ω is Wulff shape of H if Ω = rBH0 for some r > 0.

that is Ω is an anisotropic ball for the dual norm H0.

Main results: looking at the anisotropic capacity problem
 find conditions on the electrostatic potential u which guarantee
the Wulff shape of the domain Ω
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Ingredients

Newton’s inequality: If W = BC, with B ,C ∈ RN×N symmetric, B
positive definite, then

S2(W) ≤
N − 1

2N
tr(W)2.

Moreover, if tr(W) , 0 and equality holds, then W = γ I,.
[A. Cianchi, P. Salani, Math. Ann. 2009]

where S2(A) is the elementary symmetric function of A of order 2.

Anisotropic Aleksandrov Theorem: If MH(Ω) is constant then Ω
is Wulff shape.

[He, Li, Ma, Ge, Indiana Univ, 2009]
where MH(x) = Hijν

j
i is the anisotropic mean curvature.
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Wulff shape characterizations

Theorem. Let H be a regular strictly convex norm of RN
∗ ; assume

Ω to be convex and let u be a solution to:

(Pb) :


∆H

p u = 0 in RN \ Ω

u = 1 on ∂Ω,

u → 0 if |x | → ∞,

for p < N. The following are equivalent:
H(Du) = C on ∂Ω,⇔ equality holds in Newton’s inequality for ∇2

Hv
⇔ Ω is Wulff shape of H.
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Idea of the proof:

 same spirit of:
[Brandolini, Nitsch, Salani, Trombetti, 08] for classical interior Serrin pb;
[Cianchi Salani, 09] for interior anisotropic Serrin pb ;
[Colesanti, Reichel, Salani, in progress] for classical exterior Serrin pb.

AIM:H(Du) = C on ∂Ω,⇒ equality holds in Newton⇒ Ω Wulff shape.

I auxiliary pb for v = u
p

p−N ;
I W = ∇2VpD2v, anisotropic Hessian where Vp(ξ) = 1

p Hp(ξ)

so that ∆Hv = tr(W);
I via some integral inequalities the equality sign in the

generalized Newton’s ineq: S2(W) ≤ N−1
2N tr(W)2 holds

 W = λId
I hence D2v = λ(∇2

ξV(Dv))−1 MH(Ω) is constant
 Ω is Wulff shape (by the anisotropic Alexsandrov Theorem).
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Proof (i) H(Du)|∂Ω = C⇒ “=” Newton⇒ Ω Wulff

(1) Original problem: solution u
∆H

p u = 0 in RN \ Ω

u = 1 on ∂Ω,

H(Du) = C on ∂Ω,

u → 0 if |x | → ∞.

Auxiliary problem: for v(x) = u
p

p−N
∆H

p v = N
p − 1

p
Hp(Dv)

v
in RN \ Ω

v = 1 on ∂Ω

H(Dv) = p
N−p C on ∂Ω,

v → +∞ if |x | → ∞

let V(ξ) = 1
p Hp(ξ). W = ∇2

ξV(Dv) D2v  ∆H
p v = Tr(W).

I Step I: C =
N − p

N(p − 1)

PH(Ω)

|Ω|
;
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Proof (ii) H(Du)|∂Ω = C ⇒ “=” Newton⇒ Ω Wulff

Step II: Newton’s Inequality for W : 2 S2(W) ≤ N−1
N (Tr(W))2, where

2S2(W) = S2
ij (W)Vξiξk vkj and S2

ij W =

−Vξjξk vki if i , j
−Vξjξk vki + ∆H

p v if i = j.

recall: tr(W) = ∆H
p v  by Newton ineq:

0 ≥2vγS2(W) − N−1
N vγ(∆H

p v)2 = div(∗) − vγ−2H2p(Dv)(P(γ)).

 for γ = 1 − N we have P(γ) = 0 and hence div(∗) ≤ 0 that is

div(v1−NS2
ij (W)Vξi − (N − 1)(p − 1)v−NV(Dv)∇ξV(Dv)) ≤ 0,

∀x ∈ RN \ Ω.
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Proof (iii) H(Du)|∂Ω = C ⇒ “=” Newton⇒ Ω Wulff

Step III: By the Divergence Theorem, the fact that ν = Dv
|Dv | on ∂Ω,

the definition of S2
ij (W), the homogeneity of H(ξ) and the fact that

∆H
p v = (p − 1)Hp−2Hξk Hξi vki + Hp−1MH ,

it holds
∫
∂Ω

H(ν)H2(p−1)(Dv)
(

MH(∂Ω)
N−1 −

p−1
p

H(Dv)
v

)
dσ ≥ 0.

 NOTICE: with H(Du) = C on ∂Ω and Step I, we have∫
∂Ω

H(ν)
MH(∂Ω)

N − 1
≥

P2
H(Ω)

N|Ω|
.

This is the reverse of Minkowski inequality equality holds.

Step IV: equality holds in Newton’s inequality for
W = ∇2

ξV(Dv(x)) D2v(x) that is W = γ(x)I.
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Proof (iv) H(Du)|∂Ω = C ⇒ “=” Newton⇒ Ω Wulff

Step V: ∃λ ∈ R+: W = λI D2v = λ(∇2
ξV)−1

Step VI: by the definition of the anisotropic mean curvature we
obtain:

MH(∂Ω) = Hξiξj (Dv)vij = λHξiξj [(∇
2
ξV)−1]ij = c̃H2−p(Dv)

 MH(x)= constant Ω is Wulff shape, Ω = rBH0 . q.e.d.
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Anisotropic overdetermined capacitary problem:

Ω conductor
uΩ electrostatic potential
H(DuΩ) norm of the field; Ω

∆HuΩ = 0
uΩ = 1

uΩ → 0

 An electrical conductor Ω while embedded in an anisotropic dielectric
and maintaining a given potential energy has constant intensity of the
electrostatic field on its boundary if and only if it is an anisotropic ball..
The same holds in the case of power-type conductivity laws.

[W. Reichel 1997 H(·) = | · |]
[CB, G. Ciraolo, P. Salani, 2016 p = 2]

[CB, L. Brasco, G. Ciraolo preprintp < N]
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Further investigations

This technique has been adapted to other situations:
I in the case of other integral constraints

(involving geometric quantities as MH, the capacity...);
I for Serrin interior problem for the Finsler p-Laplacian.
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