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Motivation (The Lane—Emden equation):

The equation
—Au = uP (1)

for v > 0 in a ball of radius R in R3, with Dirichlet boundary conditions, is
called, in physics, the Lane-Emden equation of index p. It was introduced in
1869 by Homer Lane, who was interested in computing both the temperature
and the density of mass on the surface of the Sun. Unfortunately Stefan’s law
was unknown at the time (Stefan published his law in 1879). Instead, Lane
used some experimental results of Dulong and Petit and Hopkins on the rate of
emission of radiant energy by a heated surface, and he got the value of 30,000
degrees Kelvin for the temperature of the Sun, which is too big by a factor of
5. Then he used his value of the temperature together with the solution of (1)
with p = 3/2, to estimate the density u near the surface.
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Motivation (The Lane-Emden equation):

After the Lane-Emden equation was introduced, it was soon realized that it only
had bounded solutions vanishing at R if the exponent is below 5. In fact, for
1 < p < 5 there are bounded solutions, which are decreasing with the distance
from the center. In 1883, Sir Arthur Schuster constructed a bounded solution of
the Lane-Emden equation in the whole R? vanishing at infinity. This equation
on the whole R?, with exponent p = 5 plays a major role in mathematics. It
is the Euler—Lagrange equation equation that one obtains when minimizing the

quotient
Jas (Vu)? dz

(fRB u® dx) Ve

This quotient is minimized if w(x) = 1/(|z|> + m?)*/2. The minimizer is unique
modulo multiplications by a constant, and translations. This function u(x), is
precisely the function determined by A. Schuster, up to a multiplicative con-
stant. Inserting this function u back in (1), gives the classical Sobolev inequality

(S. Sobolev 1938),

(1)

Jrs (Vu)? da
(Js u® da) v

for all functions in D!(R?).

3(3)"°, 2)
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The Brezis—Nirenberg problem on RY

In 1983 Brezis and Nirenberg considered the nonlinear eigenvalue problem,
—Au = A+ |[u "Dy,

with u € H}(Q), where Q is bounded smooth domain in R", with n > 3.
Among other results, they proved that if n > 4, there is a positive solution of
this problem for all A € (0, A1) where A1 (£2) is the first Dirichlet eigenvalue of 2.
They also proved that if n = 3, there is a u(£2) > 0 such that for any A € (u, A1),

the nonlinear eigenvalue problem has a positive solution. Moreover, if €2 is a
ball, u = A1 /4.

“Shape Optimization and Isoperimetric and Functional Inequalities”, CIRM, Nov. 21-25 (2016)




The Brezis—Nirenberg problem on RY

For positive radial solutions of this problem in a (unit) ball, one is led to an ODE
that still makes sense when n is a real number rather than a natural number.

Precisely this problem with 2 < n < 4, was considered by E. Jannelli, The role
played by space dimension in elliptic critical problems, J. Differential Equations,
156 (1999), pp. 407-426.

Among other things Jannelli proved that this problem has a positive solution if
and only if A is such that

J—(n-2)/2,1 < VA< J4(n—2)/2,15

where 7, . denotes the k—th positive zero of the Bessel function J,.
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The Brezis—Nirenberg problem on R
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Laplacian with a Singular Drift.

An interesting alternative to considering fractional dimension is to consider
the Laplacian with a drift instead of the standard Laplacian. During the past
decade there has been a growing interest in studying the spectral properties of
Laplacians with drift (see, e.g., H. Berestycki, F. Hamel, N. Nadirashvili, CMP
2005, K. Bogdan and T. Jakubowski, CMP 2007, F. Hamel, N. Nadirashvili,
and E. Russ, Annals of Math. 2011). Thus, instead of considering the Brezis-
Nirenberg problem for the standard Laplacian in R? for d > 2, one could consider
the analogous problem

—

AU+ Vu=ut |4/ (d=2=9)q,, (1)
]2

which involves the Laplacian with a singular drift. For positive radial solutions
of (1) we are lead to our previous fractional dimension formulation provided we
set n = d — 0. Because of Hardy’s inequality, the Laplacian with the singular
drift one considers in the left side of (1) makes sense provided § < (d — 2)/2.
Notice that the critical Sobolev exponent on the right side of (1) depends on
the parameter o0 that characterizes the singular drift.
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The Brezis—Nirenberg problem on S"

We consider the nonlinear eigenvalue problem,
—Agnt = M+ |u]¥ Dy,

with u € H}(Q), where Q is a geodesic ball in S". In dimension 3, Bandle
and Benguria (JDE, 2002) proved that for A > —3/4 this problem has a unique

positive solution if and only if

2_492 2_6)2
1 21<>\<7T —
401 01

where 60, is the geodesic radius of the ball.
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The Brezis—Nirenberg problem on S"
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The Brezis—Nirenberg problem on S°
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The Brezis—Nirenberg problem on S"

For positive radial solutions of this problem one is led to an ODE that still
makes sense when n is a real number rather than a natural number.

Our main result is the following:

Theorem: For any 2 < n < 4,

) If A\ > —n(n —2)/4 and 0 < 6; < 7, the boundary value problem, in the
interval (0, 6;), with «’'(0) = u(f1) = 0 has a positive solution if and only if A is
such that

i[(% +1)°P—(n-1)% < X< i[(%l +1)% = (n — 1)

where /1 (respectively ¢5) is the first positive value of ¢ for which the associated

2—m)/2
Py

Legendre function cos 1) (respectively Pén_Q)/ *(cos 1)) vanishes.

i) If A < —n(n—2)/4 and 0 < 0; < 7/2, the boundary value problem, in the
interval (0, 67), with «/(0) = u(61) = 0 does not have a positive solution.
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The Brezis—Nirenberg problem on S"
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The Brezis—Nirenberg problem on S"

12 F
b =x/3
SF
~ S~
4 \\\\
0_ \\\\\\
] ] ] ] \I
2 2.5 3 3.5 4

“Shape Optimization and Isoperimetric and Functional Inequalities”, CIRM, Nov. 21-25 (2016)




The Brezis—Nirenberg problem on S"
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The Brezis—Nirenberg problem on S"

In the remaining sector, i.e., for A < —n(n —2)/4 and 7/2 < 6; < m, for any
2 < n < 4 one expects to have multiple solutions to this problem in a similar
vein as in the case n = 3 studied in:

C. BANDLE AND J.-C. WEIL, Non—radial clustered spike solutions for semilinear
elliptic problems on S*, Journal d’Analyse Mathematique, 102 (2007), pp. 181—
208.

C. BANDLE AND J.-C. WEI, Multiple clustered layer solutions for semilinear
elliptic problems on S™, Communications in Partial Differential Equations, 33
(2008), pp. 613-635.

H. BrREzis AND L. A. PELETIER, Elliptic equations with critical exponent on
S3: new non-minimising solutions, Comptes Rendus Mathematique, 339 (2004),
pp. 391-394.

H. BrREzIS AND L. A. PELETIER, FElliptic equations with critical exponent on
spherical caps of S, Journal d’Analyse Mathematique, 98 (2006), pp. 279-316.
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The Brezis—Nirenberg problem on S"

Strategy of the Proof:

For the nonexistence of solutions:

i) Use a Rellich—Pohozaev’s type argument for values of A below the lower bound.
ii) Multiply the ODE by the first eigenfunction of the Dirichlet problem to rule

out the values of A\ larger than the upper bound.

For the Existence part, use a variational characterization of A and a Brezis—Lieb
lemma (or, alternatively, a concentration compactness argument).
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Equation for the first Dirichlet Eigenvalue of a geodesic
cap:

The equation that determines the first Dirichlet eigenvalue is given by,

cos 6

u’(0)+ (n—1) u' () + Au =0, (1)

sin 6

with u(61) = 0, and u(f) > 01in 0 < 6 < 61 (here 6, is the radius of the geodesic
ball in S, and 0 < #; < m). For geodesic balls contained in a hemisphere,
0<b; < 7'('/2.

Let « = —(n — 2)/2, and set
u(0) = (sin6)“ v(0). (2)
Then v(#0) satisfies the equation,

cosf ,

v(¢9)—|—()\+a(a—1)— : )v:(). (3)

1)
vi(0) + sin 6
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Equation for the first Dirichlet Eigenvalue of a geodesic
cap:

In the particular case when n = 3, @« = —1/2 and this equation becomes,
cos 6 3 1
(0 "(0 A+ - — = 0. 1
U()—i_sin@v()—i_( T3 4sin20>v 1)

whose positive regular solution is given by,

sin (\/1 + A 9)
Vsin 0

v(d) =C

hence, in this case,

u(8) = C sin (vV1+ A6) | (3)

sin 6

Imposing the boundary condition u(f;) = 0, in the case n = 3, we find that,

2 — 63
0,°

A(61) =
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Equation for the first Dirichlet Eigenvalue of a geodesic
cap:

The regular solution of the ODE for the first Dirichlet eigenvalue (for general

n) is given by
v(0) = F;"(cos0), (1)

where P;"(z) is an associated Legendre function, with indices,
m=a=(2-n)2 (2)

and

(= (\/1+4)\—4oz—|—4a2—1). (3)

1
2
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Existence of solutions (stereographic projection):

0

T = tan(§)

0 = 2arctan(x)

df = q(x) dx
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Existence of solutions:

Let D be a geodesic ball on S™. The solutions of

-Agnt = A+ uP  on D
u>0 on D
u=~20 on 0D,

where p = Z—fg correspond to minimizers of

[(Vu)*q"?dz — X [u?q" dx 1)

(fu%q” dx) !

so that the line element of S™ is proportional to the line

Qa(u) =

Here ¢(z) = 135,

1+|]
element of the Euclidean space, i.e., ds = q(x)dx through the standard stereo-
graphic projection.
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Existence of solutions:

In 1999 Bandle and Peletier (Math. Annalen) proved that for domains contained
in the hemisphere the infimum of the Rayleigh quotient of the Sobolev inequality
on S™ is not attained, and the value of the sharp constant is precisely the same
as in the Euclidean Space of the same dimension.

Thus, one can use the Brezis—Lieb classical lemma (1983) or alternatively a
concentration compactness argument to show that if there is a function on the
right space that satisfies @ (u) < S, then the minimizer for @, is attained. The
minimiser is positive and satisfies the Brezis—Nirenberg equation.

To construct the desired function we use the Schuster function centred at the
North Pole, multiplied by a cutoff function introduced to satisfy the Dirichlet
boundary condition.
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Existence of solutions:

Let ¢ be a smooth function such that ¢(0) = 1, ¢'(0) = 0 and (1) = 0. For
e > 0, let

w) = Pl ()

We claim that for e small enough, Qx(ue) < S. In the next three claims we
compute ||Vue|[3, [[ue|l54 1 and ||uell3.

R R
/ (Vue)?q" ™ do = wy / @' (r)*r® """ dr — wy(n — 2)? / p(r)>r* gt dr
0 0

+wan(n —2)2" 2Dpe T + O ),
(2)

where
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Existence of solutions:

R
/ufqn dr = wy / 3% dr 4+ O(e) 2 ).
0

where




Existence of solutions:

R
Qa(ue) =n(n—2)(wy D) + €77 C, l/ ro T (VTP = (n = 2)20" e = AqM?) dr| 4 O(e),
0

2 2—n
where C,, = w222~ "D, .

Notice that

n(n — 2)(wnDn)% = mn(n — 2) (F <%)> ’ ,

which is precisely the Sobolev critical constant S.
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Existence of solutions:

Let

R
T(QO) — /O 7,,3—71 (qn—2gp/2 L (TL . 2)2qn—1902 . >\an02) dr.

It suffices to show that T'(p) is positive. The associated Euler equation is

+ (-2 20T 4 (0 9)20(r)(r) + a(r)p(r) =0

Setting = tan6/2, and
. 0

p=sin’ o sin® O v,

where b = 2n — 4 and a = %(6 — 3n), and multiplying the equation through by

in~? 2gi

sin”" 5 n_ %60 we obtain

5(8) + cot 0 9(8) + ()\+ w - %) v =0.
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Existence of Positive Solutions:

From here it follows that T'(p) < 0 provided

A > i[(zzg +1)? — (n —1)%],

where /5 is the first positive value of £ for which the associated Legendre function
p(2—m)/2 (cos 1) ish
’ 1) vanishes.

This concludes the proof of the existence of positive solutions.
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Nonexistence of solutions (a Rellich-Pohozaev’s argument):

For radial solutions, the original nonlinear eigenvalue problem,
—Agnu = \u + uP (1)
where u > 0 on D, and u = 0 on 9D can be written as

. n—1 I\/
sin 0 u
_( sin”~1 g ) = u” + Au, (2)

with initial conditions «'(0) = 0, and u(61) = 0.
Here D denotes a geodesic cap of geodesic radius 67, and ' denotes derivative
with respect to 6.
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Nonexistence of solutions (a Rellich—Pohozaev’s argument):

Multiplying equation (1) by ¢(6)u’(#) sin®"~2 6 we obtain

o1 01 7+l 0 /2\/
- / (sin ! Gu')'u gsin™ " 0 df = / gsin®" ™24 d@—i—)\/ — ) g¢sin®""?0db
0 0 p + 1 0 2

Integrating by parts we have that

01 g/ 01, pt1
/ u’ (— sin®" 2 9) do + / (¢'sin®* =20 + g(2n — 2) sin®"* > O cos 0) df
0 2 o p+1

6, , 2
1 1
n )\/ % (¢'sin®* 720 + g(2n — 2) sin®" 2 O cos 0) df = 3 sin®" =2 0y’ (61)%g(61).
0
(1)
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Nonexistence of solutions (a Rellich—-Pohozaev’s argument):

On the other hand, setting h = % g’ sin” ' 0 and multiplying equation (1) by
h(6) u () sin™* () we obtain

04 01 01
— / (sin” ! 0u') hudh = / huPttsin™ 1 0 do + )\/ hu?sin ! 0 db.
0 0 0

Integrating by parts we obtain

91 01
/ u?hsin” t0do = / uPT R sin™ 1 6. do
0 0

1

0
! 1
—|—/ u? <)\h sin™ 1 60 + 5 A" sin™ g + ih’(n — 1) sin" %6 cos 9) db.
0
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Nonexistence of solutions (a Rellich-Pohozaev’s argument):

1 91 91
5 sin™ "2 014’ (01)% g(61) = / BuPthdg + / Au?de, (1)
0 0

by hypothesis g(f1) > 0, it follows that the left hand side is nonnegative. We
will show that there exist a choice of g so that for appropriate values of A, A = 0,
and B is negative, thus obtaining a contradiction.

Here,
117 3
A=sin® 20| ¢ —g"(n —1)cotb
4 4
—1)(n —2) cot* 6 —1
+g'<(n )(n4 ) co _n4 +)\>+)\g(n—1)cot9 :
and
1 /°2n—29 M — 2 °2n—39 0
B=Lysun2e g’ sin (2n — 2)gsin COS (2)
2 p+1 p+1
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Nonexistence of solutions (a Rellich—Pohozaev’s argument):

Setting f = g sin” @ and writing m = n — 3, the equation A = 0 is equivalent to,

4 4 4 4
+f (m(l — m) cot® @ 4+ 2m cot § + Am cot 9)} —0

" 21, — 4 —m
sin?™*2 ¢ [f + mcot@f”—l—f (m(m 5)0029+——|—)\) )

An appropriate solution is given by,

£(0) = sin' =™ O P} (cos §) P, ¥ (cos §),

where v = 2L and ¢ = 3 (\/4)\+(m—|—2)2 — 1)

Using the raising and lowering relations for the Associated Legendre functions
and some work!, one can show that B < 0 for this choice of f, provided

A\ < i[(% +1)2 — (n —1)%],

where /5 is the first positive value of £ for which the associated Legendre function

PEQ_n)/ ?(cos §y) vanishes.
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The Brezis—Nirenberg problem on S%
20

16 -

12
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The analogous problem on H":

For N = 3, this was treated by Silke Stapelkamp on her Ph. D. Thesis (U.
Basel, 2001).

For 2 < N < 4, this was considered by Soledad Benguria, “The solution gap
of the Brezis—Nirenberg problem on the hyperbolic space”, Monatshefte fir
Mathematik 181 (2016) 537-559.
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GENERAL HYPERBOLIC CASE

1. a € C3]0, o0];

3. d’(x) > 0 for all z > 0; and

4. lim @ = 1.
z—0 X

Given n € (2,4), we study the existence of positive solutions u € Hj(Q) of

—u"(z) — (n—1) ‘;’((;C)) o () = Mu(z) + u(z)P (1)

with boundary condition u'(0) = u(R) = 0. Here, as in the original problem,
p=(n-+2)/(n— 2) is the critical Sobolev exponent.
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GENERAL HYPERBOLIC CASE (Existence)

For any 2 <n <4 and 0 < R < oo the boundary value problem

a,/ n-+2

—u"(z) — (n — 1)Eu’(a:) = A\u(x) + u(xz)»-2 (1)

with v € H}(Q), v/(0) = u(R) = 0, and = € [0, R] has a positive solution if
A E (,Lbl, )\1)

Here, \; is the first positive eigenvalue of

a’ al 2 a!
y”+ay’+<Aa2 (;) +aa>y—0 (2)

with boundary conditions lim,_,q y(x)x® = 1. And p; is the first positive eigen-
value of (1) with boundary conditions lim,_,¢ y(x)z=¢ = 1.
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GENERAL HYPERBOLIC CASE (nonexistence)

There is no positive solution to problem (1) if A > Ay, or if N* < X < py, where
2 1"
« aa
* — . 12 . 1 T .
N™ = sup { @ —1)—— }

Moreover, then problem (1) has no solution if A < M*, where

) 17/ !/
M =infla?t (T ¢ :
a 2\ a a

Notice that in the cases that have already been studied, NV* and M™ coincide.
In fact, in the Euclidean case, N* = M* = 0, in the spherical case N* = M* =
—n(n — 2)/4, and in the hyperbolic case, N* = M* = n(n — 2)/4,
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An improved bound on the nonexistence of solutions in the Hyper-
bolic case

Consider the Brezis—Nirenberg problem
—Agnu = Au + |u|P (1)

on 2 C H", where {2 is smooth and bounded, with Dirichlet boundary condi-
tions, i.e., u = 0 in 0f). After expressing the Laplace Beltrami operator Ay~ in
terms of the conformal Laplacian, Stapelkamp (2001) proved that (1) does not
admit any regular solution for star-shaped domains €2 provided

A< ”(”T_z) (2)

Here, we consider the BN problem (1) for radial solutions on geodesic balls of
H"™. We can prove a different bound, namely the problem for radial solutions
on a geodesic ball 2* does not admit a solution if

n?(n —1)
~ 4(n+2)

(3)

for n > 2. Our bound is better than (2) in the radial case, if 2 < n < 4. Both
bounds coincide when n = 4.
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An improved bound on the nonexistence of solutions in the Hyper-
bolic case

R. D. Benguria, and S. Benguria, An improved bound for the non—existence of
radial solutions of the Brezis-Nirenberg problem in H"™ to appear in the book
J. Dittrich, H. Kovarik, A. Laptev (Eds.): Functional Analysis and Operator
Theory for Quantum Physics. A Festschrift in Honor of Pavel Exner (Europ.
Math. Soc. Publ. House, 2016).
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