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Ω is a bounded Lipschitz domain and ν is the outer normal.

Consider the parabolic problem with dynamical boundary
conditions

(PP) ut −∆u = 0 in Ω × R+,

∂νu + σut = 0 on ∂Ω × R+ σ ∈ R,

u(x ,0) = u0(x).

J. Escher, J. v. Below, J.L. Vazquez and E. Vitillaro
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Separation of variables

u(x , t) = e−λtϕx

leads to the following eigenvalue problem

(EP) ∆ϕ+ λϕ = 0 in Ω,

∂νϕ = λσϕ on ∂Ω.

Note that λ0 = 0, ϕ0 =const. is always an eigenpair.
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The corresponding Rayleigh quotient is

R[ϕ] =

∫
Ω
|∇ϕ|2 dx∫

Ω
ϕ2 dx + σ

∮
∂Ω
ϕ2 ds

.

The cases σ > 0 and σ < 0 are essentially different.
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(a) σ > 0. (J. v. Below-G. François)

Theorem
There exist infinitely many eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ · · · , lim
n→∞

λn = ∞.

The corresponding system of eigenfunctions {ϕj }
∞
0 is complete

in H1(Ω).
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(b) σ < 0, σ , σ0 := − |Ω|
|∂Ω| (C. B., J. v. Below and W. Reichel)

Set

a(v , v) :=
∫
Ω

v2 dx + σ

∮
∂Ω

v2 ds

and define

K±j :=

{
v ∈ H1(Ω) :

∫
Ω
|∇v |2 dx = 1,a(ϕ±k , v) = 0,±k ∈ {0,1 · · · j − 1}

}
.

Consequently, for v ∈ K±j

R[v ] =

∫
Ω
|∇v |2 dx∫

Ω
v2 dx + σ

∮
∂Ω

v2 ds
=

1
a(v , v)

.
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Theorem
The eigenvalues can be characterized by a variational principle.

1
λj

= sup
Kj

a(v , v).

Taking into account their multiplicity we have 0 = λ0 < λ1 ≤ · · · .

1
λ−j

= inf
K−j

a(v , v).

Analogously we have 0 = λ0 > λ−1 ≥ · · · .
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In particular

1
λ1

= sup
K

a(v , v).

and

1
λ−1

= inf
K

a(v , v).

where

K =

{
v ∈ H1(Ω) :

∫
Ω
|∇v |2 dx = 1,a(1, v) = 0

}
.
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We denote by {ϕ±j }
∞
0 the eigenfunctions which correspond to

λ±j .
{ϕj }

∞
∞ is a complete orthogonal basis (a(ϕj , ϕi) = δij) in

H1(Ω) .
If n > 1, then limm→∞ λ±m = ±∞.
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Remark:

The case n = 1 is special. Let Ω = [0,L].
If σ < −L/2, then there exists exactly one negative
eigenvalue λ−1 with a sign-changing eigenfunction.
If −L/2 < σ < 0, then there exist exactly two negative
eigenvalues λ−2 < λ−1 < 0.
λ−1 is simple.
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Principal frequencies

Theorem
1 If σ < σ0 = − |Ω|

|∂Ω| , then λ1 is simple and

1
λ1

= sup
H1(Ω)

∫
Ω

v2 dx + σ
∮
∂Ω

v2 ds∫
Ω
|∇v |2 dx

.

2 If σ0 < σ < 0, then λ−1 is simple and

1
λ−1

= inf
H1(Ω)

∫
Ω

v2 dx + σ
∮
∂Ω

v2 ds∫
Ω
|∇v |2 dx

.
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The role of σ0

Observe that the condition a(v ,1) = 0 is not required because
it is automatically fulfilled.: Assume

∫
Ω

|∇v |2 dx = 1 for some

v ∈ H1(Ω) and a(v ,1) , 0. Define c := −
a(v ,1)
a(1,1) , this leads to

a(v + c,1) = a(v ,1) + c a(1,1) = 0

and

a(v + c, v + c) = . . . = a(v , v) −
a(v ,1)2

a(1,1)
.

Note: a(1,1) = |Ω|+ σ|∂Ω|
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The role of σ0

Thus, if σ < σ0 = − |Ω|
|∂Ω|

1
λ1(σ)

≥ a(v + c, v + c) ≥ a(v , v)

and if σ0 < σ < 0

1
λ−1(σ)

≤ a(v + c, v + c) ≤ a(v , v).
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λ±1(σ)
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Rayleigh-Faber-Krahn inequalities (C.B. and A.W.)

Definition
Ω∗ = ball of the same volume as Ω, (|Ω∗| = |Ω|).

Theorem
1 Let σ > 0. Then the ball is a critical domain. However it is

neither a local minimizer nor a local maximizer.
2 Let σ < σ0 < 0 Then λ1(Ω) > λ1(Ω

∗).
3 Let σ0 < σ < 0. Then λ−1(Ω) > λ−1(Ω

∗) for nearly spherical
domains Ω.
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Rayleigh-Faber-Krahn inequalities (C.B. and A.W.)
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Proof (1), σ > 0

Recall

λ1(σ) = R(ϕ) ==

∫
Ω
|∇ϕ|2 dx∫

Ω
ϕ2 dx + σ

∮
∂Ω
ϕ2 ds

,

where ϕ denotes the corresponding eigenfunction.

Let (Ωt)t be a family of smoothly perturbed domains such that
Ω0 = Ω∗. Set

R(ϕ̃(t)) =

∫
Ωt
|∇ϕ̃(t)|2 dx∫

Ωt
ϕ̃(t)2 dx + σ

∮
∂Ωt

ϕ̃(t)2 ds
,

where ϕ̃(t) = ϕ(t ; yt) denotes the corresponding eigenfunction
for Ωt and yt ∈ Ωt .
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Proof (1), σ > 0

Then

d
dt

R(ϕ̃(t))|t=0 = 0

and

d2

dt2
R(ϕ̃(t))|t=0 = 2

∞∑
i=2

c2
i µ

2
i

(
−

1
µ2

+
λ1σϕ(R)

k(R)

)
−λ1σϕ

2(R)S̈(0) − k(R)ϕ(R)V̈ (0).

Any sign can occur.
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Proofs (2) λ1(Ω) > λ1(Ω
∗), σ < σ0

Consider the Robin eigenvalue problem

∆ψ+ µ1ψ = 0 in Ω, ∂νψ = αψ on ∂Ω, α < 0.

The first eigenvalue α→ µ1(α) is concave. λ1(σ) is the intersection of
µ(α) with the line α/σ. (σ < σ0 !) By the RFK inequality of Bossel
µΩ(α) ≥ µΩ

∗

(α).
=⇒ For all σ < σ0 we have λ1(Ω) ≥ λ1(Ω

∗).
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Proofs (3) λ−1(Ω) > λ−1(Ω
∗)

We consider the Robin problem

∆ψ+ µ1ψ = 0 in Ω, ∂νψ = αψ on ∂Ω, α > 0.

In this case a RFK type inequality is not valid in general, s.
Bareket, Ferone, Nitsch and Trombetti, Freitas and Krejcirik.

Lemma
C. B. and A. W. For nearly spherical domains

µΩ1 (α) ≤ µ
Ω∗(α).
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Proofs (3) λ−1(Ω) > λ−1(Ω
∗)

The same arguments as before apply.
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Global Lower bound for λ−1(Ω) if σ0 < σ < 0.

The lower bound given in the previous theorem holds only
locally for domains near the ball. By means of the harmonic
transplantation it is possible to construct global lower bounds.

Notation

G(x , y) = sn(|x − y |) + h(x , y) : Green’s function

∆xh(·, y) = 0 and sn(t) =

− 1
2π log(t) if n = 2 ,

1
(n−2)|∂B1 |

t2−n if n > 2

r(y) =

e−h(y ,y) if n = 2 ,
h(y , y)−

1
n−2 if n > 2 .

rΩ := maxΩr(y) : harmonic radius.
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Global Lower bound for λ−1(Ω) if σ0 < σ < 0.

Isoperimetric inequality:

|Br0 | ≤ |Ω|.

Note that GBR (x ,0) is a monotone function in r = |x |. Consider
any radial function φ : BrΩ → R thus φ(x) = φ(r). Then there
exists a function ω : R→ R such that

φ(x) = ω(GBrΩ
(x ,0)).

To φ we associate the transplanted function U : Ω→ R defined
by U(x) = ω(GΩ(x , yh)). Then for any positive monotone
function f (s), the following inequalities hold true.
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Global Lower bound for λ−1(Ω) if σ0 < σ < 0.

∫
Ω
|∇U |2 dx =

∫
BrΩ

|∇φ|2 dx (1)∫
Ω

f (U) dx ≥
∫

BrΩ

f (φ) dx . (2)∫
Ω

f (U) dx ≤ γn
∫

BrΩ

f (φ) dx , (3)

where γ =
(
|Ω|
|BrΩ |

) 1
n
. Moreover since U is constant on ∂Ω

(U = U(∂Ω)) and since φ is radial we deduce∫
∂Ω

U2 dS = U2(∂Ω) |∂Ω| = φ2(rΩ) |∂BrΩ |
|∂Ω|

|∂BrΩ |
(4)

=
|∂Ω|

|∂BrΩ |

∫
∂BrΩ

φ2 dS.
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Global Lower bound for λ−1(Ω) if σ0 < σ < 0.

Let u be a positive normalized radial eigenfunction for λ−1 in BrΩ

corresponding to the eigenvalue λσ
′

1 (BrΩ), where σ′ := σ
|∂Ω||BrΩ |

|Ω||BrΩ |
.

Let U be the transplanted function of u in Ω. Then we get

1
λσ
−1(Ω)

≤

∫
Ω

U2 dx − |σ|
∫
∂Ω

U2 dS.

We apply (3) to the first integral on the right -hand side and (4)
to the second one. Thus

1
λσ
−1(Ω)

≤ γn
∫

BrΩ

u2 dx − |σ|
|∂Ω|

|∂BrΩ |

∫
∂BrΩ

u2 dS

= γn


∫

BrΩ

u2 dx + σ′
∫

∂BrΩ

u2 dS

 .
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Global Lower bound for λ−1(Ω) if σ0 < σ < 0.

Thus

0 > λσ
−1(Ω) ≥

1
γn λ

σ′

−1(BrΩ)

We may rewrite this inequality as

|Ω| λσ
−1(Ω) ≥ |BrΩ | λ

σ′

−1(BrΩ).
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Global Lower bound for λ−1(Ω) if σ0 < σ < 0.

Theorem

Let σ0 < σ < 0 and let σ′ := σ
|∂Ω||BrΩ |

|Ω||BrΩ |
. Then

|Ω| λσ
−1(Ω) ≥ |BrΩ | λ

σ′

−1(BrΩ).

Equality holds if and only if Ω = BrΩ .
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