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Introduction

Q is a bounded Lipschitz domain and v is the outer normal.

Consider the parabolic problem with dynamical boundary
conditions

(PP) u—Au=0in QxRT,
O Uu+ou=00ndAxRT o eR,
u(x,0) = up(x).

J. Escher, J. v. Below, J.L. Vazquez and E. Vitillaro
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Separation of variables
u(x, t) = eMpx
leads to the following eigenvalue problem

(EP) Ap+ 29 =0inQ,
0y = Ao on ).
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Separation of variables
u(x, t) = eMpx
leads to the following eigenvalue problem

(EP) Ap+ 9o =0inQ,
0y = Ao on ).

Note that 1o = 0, ¢g =const. is always an eigenpair.
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The corresponding Rayleigh quotient is

J;, Vel dx

Rly] = .
el fQ e2adx +o ff};Q @2 ds
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The corresponding Rayleigh quotient is

J;, Vel dx

Rly] = .
el fQ e2adx +o ff};Q @2 ds

The cases o > 0 and o < 0 are essentially different.
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(@) 0> 0. (J.v. Below-G. Frangois)

There exist infinitely many eigenvalues

O0=2<A4 <A<, lim ;= c.

n—oo

The corresponding system of eigenfunctions {¢;}; is complete
in H'(Q).

Catherine Bandle and Alfred Wagner On an eigenvalue problem with infinitely many positive and negati



(C. B., J. v. Below and W. Reichel)

a(v,v) ::fv2dx+<rsg v2 ds
Q o

and define
Kij = {ve H'(Q) f IVVI2 dx = 1,a(p.k, V) = 0,+k € {0,1---j - 1}}
Q

Consequently, for v € K

Jg, IVVvIZ dx T
Jovidx+ogoveds alv.v)

Rlv] =
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The eigenvalues can be characterized by a variational principle.

1
— =supa(v, v).
A ®;

Taking into account their multiplicity we have 0 = 1g < A1 < ---.

Al = infa(v, v).
_j (K_/

Analogously we have 0 = 1g > A1 > ---.

Catherine Bandle and Alfred Wagner
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In particular

1
— =supa(v,v).
A %

and
L. infa(v, v)
A_q - K T
where

‘K:{veH1(Q):fQ|Vv|2dx:1,a(1,v):0}.
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We denote by {¢.;}7 the eigenfunctions which correspond to
/lij.
@ {p;}x is a complete orthogonal basis (a(y;, ¢;) = ¢j) in
H'(Q) .
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The case n =1 is special. Let Q = [0, L].
@ If o < —L/2, then there exists exactly one negative
eigenvalue 1_1 with a sign-changing eigenfunction.
@ If -L/2 < o < 0, then there exist exactly two negative
eigenvalues 1. » < 11 <0.
A_1 is simple.
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Principal frequencies

Q /fo < oo =—5g, then Ay is simple and

1 sup f§2v2dx+09%9v2ds
A H(Q) fQ|VV|2 ax

Q I/fog <o <0, then A_4 is simple and

1 . Jov2dx+o ¢, v2ds
— = in
A1 H(Q) Jg, V12 dx
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The role of oy

Observe that the condition a(v, 1) = 0 is not required because
it is automatically fulfilled.: Assume [|Vv|? dx = 1 for some
Q

ve H'(Q) and a(v, 1) # 0. Define ¢ := —%, this leads to

alv+c1)=a(v,1)+ca(1,1)=0
and

a(v,1)?

av+cv+ce)=...=alv,v)- al1)

Note: a(1,1) = |Q| + o109
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The role of oy

IIl“S, iI o< ()0 — __llaﬂll
/l ( ) = ) = s

andifog<o <0

IA

00 alv+c,v+c)<a(v,v).
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Alo)

A%(0)

A(Q,0)

A4Q,0)

Catherine Bai



Rayleigh-Faber-Krahn inequalities (c.B.and Aw,)

Definition
Q* = ball of the same volume as Q, (|| = |2]).

Theorem

@ Leto > 0. Then the ball is a critical domain. However it is
neither a local minimizer nor a local maximizer.

e Leto < og < 0 Then Aq (Q) > A4 (Q*)

Q Letog <o <0. Then 1_1(Q) > 1_1(Q*) for nearly spherical
domains Q.

V.
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Rayleigh-Faber-Krahn inequalities (c.B.and Aw,)

Principle Eigenvalue

RFK local RFK no RFK
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Proof (1), o >0

Recall

11(0) = A() Jo 4T ox
ag)= pr— 5
1 4 fﬂgozdx—ﬂfggmtpzds

where ¢ denotes the corresponding eigenfunction.
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Proof (1), o >0

Recall
Jo, IVel? dx
ngoz dX—HTg%Qth ds

where ¢ denotes the corresponding eigenfunction.

1) = Rlg) ==

Let (2¢): be a family of smoothly perturbed domains such that
Qo = Q*. Set

fQ V()2 dx
fﬂ 2dx+0'9§mcp 2 ds

where §(t) = ¢(t; yt) denotes the corresponding eigenfunction
for Q; and y; € Q.

R(&(1)) =

’
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Proof (1), o >0

Then
d _. .
SRl =0
and
a? _ - 1 Ao¢(R)
L (M. — 2 .22(__ _)
a2 (‘P( ))|t—0 I_Z;C//“‘/ ,u2+ k(Fr’)

~10¢*(R)S(0) ~ k(R)¢(R) V(0).

Any sign can occur.

Catherine Bandle and Alfred Wagner
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Proofs (2) 11(Q2) > 41(2%), o < 09

Consider the Robin eigenvalue problem

Ay +uir=0inQ, oW =apond, a<0.

The first eigenvalue @ — uy() is concave. 24(o) is the intersection of
(@) with the line a/o. ( ) By the RFK inequality of Bossel

(@) 2 p ().
= For all o < o9 we have 11(Q2) > 41(Q2*).

(2]
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Proofs (3) 1_1(Q) > 1_1(Q")

We consider the Robin problem
Ay +uy=0inQ, oY =apond, a>0.

In this case a RFK type inequality is not valid in general, s.
Bareket, Ferone, Nitsch and Trombetti, Freitas and Krejcirik.

C. B. and A. W. For nearly spherical domains

12(@) < 1 (@),
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Proofs (3) 1_1(Q) > 1_1(Q")

The same arguments as before apply.
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Global Lower bound for 2_1(Q) if oo < o < 0.

The lower bound given in the previous theorem holds only
locally for domains near the ball. By means of the harmonic
fransplantation it is possible to construct global lower bounds.

Notation

G(x.y) = sn(Ix = yI) + h(x,y) : Green’s function

Axh(-,y) =0and su(t) = { 2 10g(1) if n

1 2— ;
mt n if n>2

h(y,y) == ifn>2.

rq := maxqr(y) : harmonic radius.

e~hyy) ifn=2,
r(y) =
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Global Lower bound for 2_1(Q) if oo < o < 0.

Isoperimetric inequality:
1Br,| < I€2I.

Note that Gg,(x, 0) is a monotone function in r = |x|. Consider
any radial function ¢ : B, — R thus ¢(x) = ¢(r). Then there
exists a function w : R — R such that

o(x) = w(Gg, (x.0)).

To ¢ we associate the transplanted function U : Q — R defined
by U(x) = w(Ga(x, yn)). Then for any positive monotone
function f(s), the following inequalities hold true.
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Global Lower bound for 2_1(Q) if oo < o < 0.

2 o 2
L|VU| dx_fEer V|« dx (1)
f (Uydxs [ (o) . )
Q Bry
f f(U) dx <" f f(#) dx, (3)
Q Bf'Q
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Global Lower bound for 2_1(Q) if oo < o < 0.

2 o 2
L|VU| dx_fEer V|« dx (1)
f (Uydxs [ (o) . )
Q Bry
f f(U) dx <" f f(#) dx, (3)
Q Bf'Q

1
where y = 'Q' |) . Moreover since U is constant on 69

(U=U( 69 and since ¢ is radial we deduce

f U2dS = UP(09) 1090 = ¢?(rq) 10B,|

o0
1ol f
= as.
0B ) ©

1082
0B |
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Global Lower bound for 2_1(Q) if oo < o < 0.

Let u be a positive normalized radial eigenfunction for A_¢ in By,
. . , QlB;

corresponding to the eigenvalue A7 (By,), where o’ := a'fQ””B Qll.

Q

Let U be the transplanted function of u in Q. Then we get

1 2 2
&(Q)sfu dx—lo-lfU ds.
Q 15191

We apply (3) to the first integral on the right -hand side and (4)
to the second one. Thus

1 nf 2 0% 2
uc dx - uc ds
Y |orl FEN

IA
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Global Lower bound for 2_1(Q) if oo < o < 0.

Thus
1 i
0>27,(Q) > )7 A74(Br,)

We may rewrite this inequality as

Q1 27,(Q) > |Bry| 271 (Bry).
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Global Lower bound for 2_1(Q) if oo < o < 0.

Letog <o <0andleto’ := I?élllllgrﬂ Then

11 27,(Q) > |Bry| 271 (Bry).

Equality holds if and only ifQ = By,.
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