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Eigenvalue Problem

Ω ⊂ Rn bounded open.
Eigenvalue problem for clamped plate under compression κ > 0

∆2u + κ∆u = λu in Ω

u = |∇u| = 0 on ∂Ω

 (2.1)

We take κ < λbuckling where

λbuckling = inf

{∫
Ω
|∆ϕ|2 dx∫

Ω
|∇ϕ|2 dx

: ϕ ∈ H2
0 (Ω) \ {0}

}
(2.2)

whereby, the operator ∆2 + κ∆ is uniformly elliptic and self-adjoint.
First eigenvalue λ = λ(Ω, κ) given by the variational characterization

λ(Ω, κ) := inf

{∫
Ω

(
|∆ϕ|2 − κ|∇ϕ|2

)
dx∫

Ω
|ϕ|2 dx

: ϕ ∈ H2
0 (Ω) \ {0}

}
. (2.3)
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Shape Optimization Problem

Do we have
λ(Ω, κ) ≥ λ(Ω∗, κ) ,

where Ω∗ is a ball of the same volume as Ω?
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History

For the clamped plate problem (κ = 0) this is one of Rayleigh’s
conjectures.

Szegő [6, 7] showed the conjecture under the assumption that first
eigenfunction u keeps same sign. Essentially by rearranging ∆u in Ω.
But this hypothesis is not true as follows from the works of Duffin,
Shaffer, Coffman.
For any n, Talenti [9] showed λ(Ω, κ = 0) ≥ cnλ(Ω∗, κ = 0) for some
constant cn ∈ (0, 1]. cn depends on the dimension.
For n = 2, Nadirashvili [5] shows the optimal result with c2 = 1.
For n = 3 (and n = 2), Ashbaugh and Benguria [1] showed the
optimal result with c3 = 1.

For clamped plate and buckling problem in higher dimensions with
better constants, see Ashbaugh, Benguria, and Laugesen [2, 3].

Free plate problem under tension - see Weinstein and Chien [10],
Chasman [4].
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Szegő [6, 7] showed the conjecture under the assumption that first
eigenfunction u keeps same sign. Essentially by rearranging ∆u in Ω.
But this hypothesis is not true as follows from the works of Duffin,
Shaffer, Coffman.
For any n, Talenti [9] showed λ(Ω, κ = 0) ≥ cnλ(Ω∗, κ = 0) for some
constant cn ∈ (0, 1]. cn depends on the dimension.
For n = 2, Nadirashvili [5] shows the optimal result with c2 = 1.
For n = 3 (and n = 2), Ashbaugh and Benguria [1] showed the
optimal result with c3 = 1.

For clamped plate and buckling problem in higher dimensions with
better constants, see Ashbaugh, Benguria, and Laugesen [2, 3].

Free plate problem under tension - see Weinstein and Chien [10],
Chasman [4].

Mark S. Ashbaugh Dept. of Mathematics, Univ. of Missouri, Columbia, Missouri, USA November, 2016A Sharp Lower Bound for the First Eigenvalue of the Vibrating Clamped Plate Problem under Compression



Outline Statement Statement History Result Sketch of the proof

History

For the clamped plate problem (κ = 0) this is one of Rayleigh’s
conjectures.
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Result

Theorem (M. S. A.; R. Benguria; R. Mahadevan)

For n = 2, we have λ(Ω, κ) ≥ λ(Ω∗, κ) for κ ∈ [0, a] for some
a < λbuckling .
Ω∗ is a ball of the same volume as Ω (and whose radius we denote by L).

Note: The value of a is calculable but not optimal.
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Idea

The idea of the proof is much the same as that in Ashbaugh and
Benguria [1].

Reduce to a two-ball optimization problem [1, 2, 3, 5, 9] using a
rearrangement result of Talenti [8].

Then study the two-ball optimization problem carefully using
properties of Bessel functions.

For n = 2, the analysis shows us that the solution of the two-ball
problem corresponds to the situation where one ball degenerates to a
point for κ ∈ [0, a] for some value of a < λbuckling .
Note: We don’t obtain the result for n = 3 unlike the clamped plate
problem [1].
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Reduction to the two ball problem

We shall use the following theorem, a slight variant of a result of Talenti.

Theorem (cf. Talenti [8], Theorem 1)

Let G be a domain in R2, F ∈ Lp(Ω) for some p > 1 if n = 2. Let U be
the solution of

−∆U = F in G

U = 0 on ∂G

}
(6.4)

and let Z be the solution of

−∆Z = F ∗ in G∗

Z = 0 on ∂G∗

}
(6.5)

where F ∗ is radially symmetric decreasing and equimeasurable with F on
G∗. Then, if U ≥ 0 on G , we have:

Z ≥ U∗ ≥ 0 on G∗ and therefore,
∫
G∗ |Z |2 dx ≥

∫
G
|U|2 dx.∫

G∗ |∇Z |2 dx ≥
∫
G
|∇U|2 dx

Note: If n > 2, the same result is true when F ∈ L
2n
n+2 (Ω).
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Reduction to the two ball problem

Ω∗ ball centered at the origin of radius L with volume |Ω|.
u any first eigenfunction for (2.1) in Ω. Since u may not keep the
same sign, we take
Ω+ = {x ∈ Ω : u(x) > 0} and Ω− = {x ∈ Ω : u(x) < 0}
Ω∗± balls with the same volume as Ω+ and Ω− centered at the
origin, with a and b their radii.
We have a2 + b2 = L2.

f (x) = (−∆u)∗(x), x ∈ Ω∗+; g(x) = (∆u)∗(x), x ∈ Ω∗−. Let v and
w solve

−∆v = f in Ω∗+
v = 0 on ∂Ω∗+

}
(6.6)

and
−∆w = g in Ω∗−

w = 0 on ∂Ω∗− .

}
(6.7)
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Reduction to the two-ball problem

We have∫
Ω

|∆u|2 dx =

∫
Ω+

| −∆u|2 dx +

∫
Ω−

|∆u|2 dx

=

∫
Ω∗

+

f 2 dx +

∫
Ω∗

−

g2 dx

=

∫
Ω∗

+

|∆v |2 dx +

∫
Ω∗

−

|∆w |2 dx . (6.8)

By Talenti’s theorem, we also have∫
Ω∗

+

|v |2 dx ≥
∫

Ω∗
+

|u∗+|2 dx and

∫
Ω∗

−

|w |2 dx ≥
∫

Ω∗
−

|u∗−|2 dx (6.9)

and∫
Ω∗

+

|∇v |2 dx ≥
∫

Ω∗
+

|∇u∗+|2 dx and

∫
Ω∗

−

|∇w |2 dx ≥
∫

Ω∗
−

|∇u∗−|2 dx .

(6.10)
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Reduction to the two-ball problem

So, we conclude∫
Ω

(
|∆u|2 − κ|∇u|2

)
dx∫

Ω
|u|2 dx

≥

∫
Ω∗

+

(
|∆v |2 − κ|∇v |2

)
dx +

∫
Ω∗

−

(
|∆w |2 − κ|∇w |2

)
dx∫

Ω∗
+
|v |2 dx +

∫
Ω∗

−
|w |2 dx

.

This gives
λ(Ω, κ) ≥ Ja,b (6.11)

for some a, b with a2 + b2 = 1 where

Ja,b = min
v ,w

∫
|x|≤a

(
|∆v |2 − κ|∇v |2

)
dx +

∫
|x|≤b

(
|∆w |2 − κ|∇w |2

)
dx∫

|x|≤a |v |2 dx +
∫
|x|≤b |w |2 dx

(6.12)
minimum over v ∈ H2(Ba), w ∈ H2(Bb) radial and a ∂v

∂r

∣∣
∂Ba

= b ∂w
∂r

∣∣
∂Bb

.

Consequently,
λ(Ω, κ) ≥ min

Ω
λ(Ω, κ) ≥ min

a,b
Ja,b . (6.13)

We will be done if we can show

min
a,b

Ja,b ≥ JL,0 = λ(Ω∗, κ) (6.14)
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Variational equations for the two-ball problem

Before we analyze mina,b Ja,b, let us write the variational equations at the
minimum for Ja,b for fixed a, b.

∆2v + κ∆v = λv in Ba

v = 0 on ∂Ba

}
(6.15)

and
∆2w + κ∆w = λw in Bb

w = 0 on ∂Bb .

}
(6.16)

In addition,

a
∂v

∂r

∣∣∣∣
∂Ba

= b
∂w

∂r

∣∣∣∣
∂Bb

(6.17)

and
∆v |∂Ba + ∆w |∂Bb

= 0 . (6.18)
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Solution of the variational equations for the two-ball
problem

For given a, b, want to obtain radial solutions v ,w in the two-balls to

(∆2 + κ∆)U = λU .

Writing this as
(∆− α2)(∆ + β2)U = 0

with (α, β > 0)

α2 =
√
λ+ κ2/4− κ/2 , β2 =

√
λ+ κ2/4 + κ/2

we get v ,w to be of the form

v(r) = AJ0(βr) + BI0(αr) , w(r) = CJ0(βr) + DI0(αr) . (6.19)

v(a) = 0 = w(b), av ′(a) = bw ′(b) and ∆v |∂Ba + ∆w |∂Bb
= 0 lead to a

system of 4 homogeneous equations in A,B,C ,D.
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Solution of the variational equations for the two-ball
problem

The above has a non-trivial solution iff λ is a zero of

F (α, β, a) = f (α, β, a) + f (α, β, b) , (a2 + b2 = L2) (6.20)

with

f (α, β, a) = aβ
J1(βa)

J0(βa)
+ aα

I1(αa)

I0(αa)
. (6.21)
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