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Introduction

We are interested in analyzing the behavior of the solutions as the parameter
ε→ 0, of the following problem with Neumann boundary conditions:

(Pε)


−∆uε + uε = fε in Rε

∂uε

∂Nε
= 0 on ∂Rε

where Rε is a 2D-thin domain where the boundary presents oscillations.

For instance:

Rε = {(x , y) : 0 < x < 1; 0 < y < εg(x/ε)}, g(·) L−periodic.
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Introduction

We are trying to go beyond the purely periodic case:

We will deal with thin domains of the type:

Locally periodic oscillatory boundary

Rε = {(x , y) : 0 < x < 1; 0 < y < εG (x , x/ε)}

0 < G0 ≤ G (·, ·) ≤ G1, G (x , ·) is l(x)− periodic.

We will divide the analysis of this case in two:
• Locally periodic with constant period. That is l(x) = L

• Locally periodic with varying period
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Introduction

And also of the type:

Oscillations at both boundaries

Rε = {(x , y) : 0 < x < 1; −εh(x/εα) < y < εg(x/εβ)}

0 ≤ h0 ≤ h(·) ≤ h1, 0 < g0 ≤ g(·) ≤ g1

h(·) L1-perioidc and g(·) L2- periodic.
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Introduction Purely periodic case

Purely Periodic oscillations

Rε = {(x , y) : 0 < x < 1; 0 < y < εg(x/ε)}, g(·) L−periodic.
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Introduction Purely periodic case

Purely Periodic oscillations

Rε = {(x , y) : 0 < x < 1; 0 < y < εg(x/ε)}, g(·) L−periodic.

Y ∗ = {(y1, y2) : 0 < y1 < L, 0 < y2 < g(y1)}
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Introduction Purely periodic case

The limit problem is

(P0)

{
−q0uxx + u = f (x), x ∈ (0, 1)

u′(0) = u′(1) = 0

q0 =
1

|Y ∗|

∫
Y ∗

{
1− ∂X

∂y1
(y1, y2)

}
dy1dy2,

where X is the unique Y ∗-periodic solution in y1 (up to an additive constant) of:
−∆X = 0 in Y ∗

∂X

∂N
= 0 on B2

∂X

∂N
= N1 on B1

T.A. Mel’nyk, A.V. Popov Asymptotic Analysis of BVP’s in thin perforated domains with rapidly varying thickness, Nonlinear
Oscillations, Vol. 13, No. 1, (2010)

JA, A. Carvalho, M. Pereira, R. P. da Silva Semilinear parabolic problems in thin domains with a highly oscillatory boundary,
Nonlinear Analysis T.M.A., Vol 74, 15 (2011), 5111-5132.

JA, M. Villanueva-Pesqueira Thin domains with non-smooth oscillatory boundaries, Journal of Math Anal and Appl 446, pp.
130-164 (2017) .
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Compact Convergence

Convergence

In what sense is (P0) the limit problem of (Pε)?
Observe that

uε = (−∆ + I )−1fε ∈ L2(Rε)

u0 = (−q0∆ + I )−1f ∈ L2(0, 1)

We have the extension map:

E : L2(0, 1) → L2(Rε)
ϕ(·) → E ϕ(x , y) ≡ ϕ(x)

which trivially satisfies

c‖ϕ‖L2(0,1) ≤ ε−1/2‖ E ϕ‖L2(Rε) ≤ C‖ϕ‖L2(0,1)

We define “ E -convergence”

L2(Rε) 3 fε
E→ f0 ∈ L2(0, 1) if ε−1/2‖ E f0 − fε‖L2(Rε) → 0
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Compact Convergence

Convergence

Then, we can show the following convergence:

i) For any family fε ∈ L2(Rε) s.t. ∃ f0 ∈ L2(0, 1) with fε
E→ f0 then uε

E→ u0

ii) For any family of functions fε ∈ L2(Rε) with ε−1/2‖fε‖L2(Rε) ≤ M for some

M > 0, there exists a sequence fεn and f0 ∈ L2(0, 1) s.t. uεn
E→ u0.

This is called “Compact Convergence of (−∆ + I )−1 in L2(Rε) to (q0∆ + I )−1 in
L2(0, 1)”. It is a kind of convergence in operator norm, when the operators are
defined in different functional spaces (F. Stummel, G. Vainikko)
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Compact Convergence

Convergence

The good news is that this “Compact Convergence” implies, among other things,
the convergence of the eigenvalues and the eigenprojections. So if we consider the
eigenvalue problems:{

−∆uε + uε = λεu
ε in Rε

∂Nu
ε = 0 on ∂Rε

{
−q0u

′′ + u = λu in (0, 1)

u′(0) = u′(1) = 0

then,

λεn
ε→0−→ λn

and similar statements for the eigenprojections.
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Domain perturbation method Locally periodic oscillations with constant period

Locally Periodic with constant period

Rε = {(x , y) ∈ R2 | 0 < x < 1, 0 < y < ε(a(x) + g(x/ε))}.

for a function a ∈ C (0, 1) and g(·) is L-periodic.

The most general case: Rε = {(x , y) ∈ R2 | 0 < x < 1, 0 < y < εG (x , x/ε)}.
where G (x , ·) is L-periodic is analyzed in:

JA, M. Pereira Homogenization in a thin domain with an oscillatory boundary,

J. Math. Pures et Appl. 96 (1), pp. 29-57 (2011).
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Domain perturbation method Locally periodic oscillations with constant period

M. Mascarenhas, D. Polisevski The warping, the torsion and the Neumann...,
Model. Math. Anal Numer. 28 (1994).

D. Chenais, M. Mascarenhas, L.Trabucho On the optimization of non-periodic...,
Model. Math. Anal Numer. 31 (1997).

G.A. Chechkin, L. Piatnitski Homogenization of boundary-value problems...,
Appl. Anal 71 (1999).
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Domain perturbation method Locally periodic oscillations with constant period

Piecewise constant amplitude

We approximate the function a(·) by piecewise constant functions aδ(·) so that
‖a− aδ‖L∞(0,1) ≤ δ. Then for aδ we get the domain:

(Eq)δ :

∫ 1

0

(qδ(x)|Y ∗δ (x)|u′0ϕ′ + |Y ∗δ (x)|u0ϕ) dx =

∫ 1

0

|Y ∗δ (x)|f ϕdx
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Domain perturbation method Locally periodic oscillations with constant period

Rδε Rε

Rδε = {(x , y) ∈ R2 | 0 < x < 1, 0 < y < ε(aδ(x) + g(x/ε))}.
Rε = {(x , y) ∈ R2 | 0 < x < 1, 0 < y < ε(a(x) + g(x/ε))}.

where aδ(x) is a piecewise constant function satisfying

‖aδ − a‖L∞(0,1) ≤ δ.
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Domain perturbation method Locally periodic oscillations with constant period

↓ (ε→ 0)
↓

(Equation)δ
δ→0−→ (Equation)0

(Eq)δ :

∫ 1

0

(qδ|Y ∗δ |u′0ϕ′ + |Y ∗δ |u0ϕ) dx =

∫ 1

0

|Y ∗δ |f ϕdx

(Eq)0 :

∫ 1

0

(q|Y ∗|u′0ϕ′ + |Y ∗|u0ϕ) dx =

∫ 1

0

|Y ∗|f ϕdx

q = q(x), Y ∗ = Y ∗(x) = {(y1, y2), 0 < y1 < L, 0 < y2 < a(x) + g(y1)}
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Domain perturbation method Locally periodic oscillations with constant period

↓ (ε→ 0) ↓?
↓ ↓?

(Equation)δ
δ→0−→ (Equation)0

(Eq)δ :
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Domain perturbation method Locally periodic oscillations with constant period

We were able to show that the solutions depend continuously on the function
a(x) uniformly in ε:

Rε R̂ε

Rε = {(x , y) ∈ R2 | 0 < x < 1, 0 < y < ε(a(x) + g(x/ε))}.
R̂ε = {(x , y) ∈ R2 | 0 < x < 1, 0 < y < ε(â(x) + g(x/ε))}.

with α0 ≤ a(x), â(x) ≤ β0 and ‖a− â‖L∞(0,1) ≤ δ . Then, there exists

ρ(δ)
δ→0−→ 0

‖uε − ûε‖2
H1(Rε∩R̂ε)

+ ‖uε‖2
H1(Rε\R̂ε)

+ ‖ûε‖2
H1(R̂ε\Rε)

≤ ρ(δ)‖fε‖2, ∀ε > 0
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Domain perturbation method Locally periodic oscillations with constant period

The homogenized limit problem−
1

|Y ∗(x)|
(
r(x)ux

)
x

+ u = f , x ∈ (0, 1)

u′(0) = u′(1) = 0

where

r(x) =

∫
Y ∗(x)

{
1− ∂X (x)

∂y1
(y1, y2)

}
dy1dy2.

where X (x) is the unique solution (up to an additive constant) which is
L-periodic in the first variable, of the problem

−∆X (x) = 0 in Y ∗(x)

∂X (x)

∂N
= 0 on B2(x)

∂X (x)

∂N
= N1(x) on B1(x)

Y ∗(x) = {(y1, y2) ∈ R2 : 0 < y1 < L, 0 < y2 < a(x) + g(y1)}.
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Unfolding method Locally periodic oscillations with varying period

Locally periodic oscillations with varying period

J.A, M. Villanueva-Pesqueira Locally periodic thin domains with varying period”,
C. R. Acad. Sci. Paris. Serie I, 352, (2014) 397-403

J.A., M. Villanueva-Pesqueira Unfolding operator method for thin domains with
a locally periodic highly oscillatory boundary,

SIAM J. Math. Anal. 48 - 3 (2016) pp 1634-1671
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Unfolding method Locally periodic oscillations with varying period

Rε = {(x , y) : 0 < x < 1; 0 < y < εG (x , x/ε)}

Hypothesis

G : (0, 1)×R −→ (0,+∞) is a smooth function, there exist G0 and G1 such
that 0 < G0 ≤ G (x , y) ≤ G1 and G (x , ·) is l(x)-periodic.

l(·) is a smooth function such that 0 < l0 ≤ l(x) < l1 and

xl ′(x) < l(x) ∀x ∈ I .

Example:

G (x , y) = 2 + cos(
2πy

l(x)
), so that G (x , x/ε) = 2 + cos(

2πx

εl(x)
)
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Unfolding Method Purely periodic case

Unfolding operator method

T. Arbogast, J. Douglas, U. Hornung Derivation of the double porosity model....,
SIAM J. Math. Anal., 21 (1990), 823-836.

J. Casado-D́ıaz Two scale convergence for nonlinear Dirichlet problems in ...,
Proc. Roy. Soc. Edinburgh 130 A (2000), 249-276.

D. Cioranescu, A. Damlamian, G. Griso Periodic unfolding and homogenization,
C. R. Acad. Sci. Paris, Série 1, 335 (2002), 99-104.

D. Cioranescu, A. Damlamian, G. Griso The periodic unfolding method in hom...,
SIAM J. Math. Anal. Vol. 40, 4 (2008), 1585-1620

A. Damlamian and K. Pettersson Homogenization of oscillating boundaries,
Discrete and Continuous Dynamical Systems 23, (2009), 197-219.

D. Blanchard, A. Gaudiello and G. Griso , Junction of a periodic family of elastic
rods with a 3d plate, Part I, J. Math. Pures Appl., 88 (2007), 1-33.
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Unfolding Method Purely periodic case

Rε = {(x , y) : 0 < x < 1; 0 < y < εg(x/ε)}
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Unfolding Method Purely periodic case
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Unfolding Method Purely periodic case
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Unfolding Method Purely periodic case
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Unfolding Method Purely periodic case

Main Property of Unfolding Operator

Unfolding criterion for integrals (u.c.i.) :

1

L

∫
(0,1)×Y ∗

Tε(ϕ)(x1, y1, y2)dx1dy1dy2 =
1

ε

∫
Rε

ϕ(x1, x2)dx1dx2,

∀ϕ ∈ L1(Rε).

Tε is a continuous operator from L2(Rε) to L2
(
(0, 1)× Y ∗

)
.

1

L
‖Tε(ϕ)‖2

L2
(

(0,1)×Y ∗
) =

1

ε
||ϕ||2L2(Rε).

∇(y1,y2)Tε(ϕ)(x1, y1, y2) = εTε(∇(x1,x2)ϕ)(x1, y1, y2), ∀ϕ ∈ L2(Rε).
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Unfolding Method Purely periodic case

Compactness Theorem

Let ϕε ∈ H1(Rε), with 1
ε ||ϕ

ε||2H1(Rε) uniformly bounded. Then,

1 There exists ϕ in H1(0, 1) such that, up to subsequences:
Tε(ϕε) ⇀ ϕ, w− L2

(
(0, 1);H1(Y ∗)

)
.

2 There exists ϕ1 in L2
(
(0, 1);H1(Y ∗)

)
L-periodic in the second variable, such

that, up to subsequences:

Tε
(∂ϕε
∂x1

)
⇀

∂ϕ

∂x1
(x1) +

∂ϕ1

∂y1
(x1, y1, y2) w− L2

(
(0, 1)× Y ∗

)
.

Tε
(∂ϕε
∂x2

)
⇀

∂ϕ1

∂y2
(x1, y1, y2) w− L2

(
(0, 1)× Y ∗

)
.
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Unfolding Method Purely periodic case

How to obtain the limit problem
The variational formulation: find uε ∈ H1(Rε) such that∫

Rε

{∂uε
∂x1

∂ϕ

∂x1
+
∂uε

∂x2

∂ϕ

∂x2
+ uεϕ

}
dx1dx2 =

∫
Rε

f ϕdx1dx2, ∀ϕ ∈ H1(Rε).

By the unfolding criterion for integrals we have:∫
(0,1)×Y ∗

{
Tε
(∂uε
∂x1

)
Tε
( ∂ϕ
∂x1

)
+ Tε

(∂uε
∂x2

)
Tε
( ∂ϕ
∂x2

)
+ Tε(uε)Tε(ϕ)

}
dx1dy1dy2

=

∫
(0,1)×Y ∗

Tε(f )Tε(ϕ)dx1dy1dy2, ∀ϕ ∈ H1(Rε).

Taking ϕ = uε:

‖Tε(uε)‖L2((0,1)×Y ∗),
∥∥∥Tε(∂uε

∂x1

)∥∥∥
L2((0,1)×Y ∗)

,
∥∥∥Tε(∂uε

∂x2

)∥∥∥
L2((0,1)×Y ∗))

≤ C ∀ε > 0.
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Unfolding Method Purely periodic case

Hence, there exist u ∈ H1(0, 1) and u1 ∈ L2((0, 1);H1(Y ∗) such that

Tε(uε) ⇀ u w- L2
(
(0, 1)× Y ∗

)
,

Tε
(∂uε
∂x1

)
⇀

∂u

∂x1
+
∂u1

∂y1
w- L2((0, 1)× Y ∗),

Tε
(∂uε
∂x2

)
⇀

∂u1

∂y2
w- L2((0, 1)× Y ∗).

Passing to the limit we obtain:

∫
(0,1)×Y ∗

{( ∂u
∂x1

(x1) +
∂u1

∂y1
(x1, y1, y2)

) ∂φ
∂x1

(x1) + u(x1)φ(x1)

}
dx1dy1dy2

=

∫
(0,1)×Y ∗

f (x1)φ(x1)dx1dy1dy2 ∀φ ∈ H1(0, 1).
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Unfolding Method Purely periodic case

Using suitable test functions in the variational formulation we get:
u1(x1, y1, y2) = −X (y1, y2) ∂u∂x1

(x1), ∀(x1, y1, y2) ∈ (0, 1)× Y ∗.{
−q0wxx + w = f (x), x ∈ (0, 1)

w ′(0) = w ′(1) = 0

q0 =
1

|Y ∗|

∫
Y ∗

{
1− ∂X

∂y1
(y1, y2)

}
dy1dy2,

where X is the unique solution (up to additive constants) which is L-periodic in
the first variable, of the problem:

−∆X = 0 in Y ∗

∂X

∂N
= 0 on B2

∂X

∂N
= N1 on B1

José M. Arrieta Thin domains with oscillatory boundaries 30 / 48



Unfolding method Locally periodic oscillations with varying period

Locally periodic oscillations with varying period

Rε = {(x , y) : 0 < x < 1; 0 < y < εG (x , x/ε)}

Y ∗(x1) = {(y1, y2) ∈ R2 : 0 < y1 < l(x1), 0 < y2 < G (x1, y1)}

W = {(x1, y1, y2) ∈ R3 : x1 ∈ (0, 1), (y1, y2) ∈ Y ∗(x1)}.
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Unfolding method Locally periodic oscillations with varying period
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Unfolding method Locally periodic oscillations with varying period
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Unfolding method Locally periodic oscillations with varying period

We consider the following partition for the interval [0, 1]

xε0 = 0 < xε1 = εl(xε1) < xε2 = 2εl(xε2) < · · · < xεNε = Nεεl(xεNε) = 1.
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Unfolding method Locally periodic oscillations with varying period

The homogenized limit problem−
l(x)

|Y ∗(x)|
(
r(x)ux

)
x

+ u = f , x ∈ (0, 1)

u′(0) = u′(1) = 0

where

r(x) =
1

l(x)

∫
Y ∗(x)

{
1− ∂X (x)

∂y1
(y1, y2)

}
dy1dy2.

and X (x) is the unique solution (up to an additive constant) which is
l(x)-periodic in the first variable, of the problem −∆X (x) = 0 in Y ∗(x)

∂NX (x) = 0 on B2(x) ( lower boundary)
∂NX (x) = N1(x) on B1(x) ( upper boundary)

in the representative cell Y ∗(x) given by

Y ∗(x) = {(y1, y2) ∈ R2 : 0 < y1 < l(x), 0 < y2 < G (x , y1)}.
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Unfolding method Locally periodic oscillations with varying period

We also obtain the corrector result:

ε−1‖uε − u‖2
L2(Rε) + ε−1‖uε − u + ε

∂u

∂x
X ε‖2

H1(Rε)
ε→0−→ 0

where X ε(x , y) ≡ X (x)(x/ε, y/ε).

José M. Arrieta Thin domains with oscillatory boundaries 35 / 48



Unfolding method Remarks

Remarks about the unfolding method

• The Unfolding method allows us to treat thin domains for more general
functions g . In particular,

where the basic cell Y ∗ looks like

JA, M. Villanueva-Pesqueira Thin domains with non-smooth periodic oscillatory
boundaries, J. Math. Anal Appl. 446 (2017) 130-164.
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Unfolding method Remarks

As a matter of fact, if we consider a thin domain:

Rε = {(x , y) : 0 < x < 1; 0 < y < εg(x/ε)}

we just need that g : [0, 1]→ R+ to be L-periodic, be defined at all points and
satisfy

∃ g0, g1 > 0 such that g0 ≤ g(x) ≤ g1

g is lowersemicontinuous, that is g(x0) ≤ lim inf
x→x0

g(x), ∀x0 ∈ R.

The fact that g is lower-semicont implies that the basic cell

Y ∗ = {(y1, y2) : 0 < y1 < L, 0 < y2 < g(y1)}

is an open set.
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Unfolding method Remarks

We may also consider the situation:

Rε = {(x , y) : 0 < x < 1; 0 < y < εg(x/εα)}

where g(·) L−periodic and the parameter α > 0.

Observe that

• If 0 < α < 1 we have a weak oscillatory boundary.

• If α > 1 we have a highly oscillatory boundary.

and the homogenized limit is different.
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Unfolding method Remarks

• If 0 < α < 1: 
− 1

M(g)M
(

1
g

)uxx + u = f (x), x ∈ (0, 1),

u′(0) = u′(1) = 0.
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Unfolding method Remarks

• If α > 1: −
g0

M(g)
uxx + u = f , x ∈ (0, 1),

u′(0) = u′(1) = 0,

where g0 = minx∈[0,L] g(x). As a matter of fact:
g0

M(g)
=
|Y ∗−|
|Y ∗|

where

Y ∗− = {(y1, y2) ∈ R2 : y1 ∈ (0, L), 0 < y2 < g0}
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Unfolding method Remarks

Example

Then the limit equation is −duxx + u = f , where

• For 0 < α < 1, d = 1. The limit equation does not see the crack.

• For α > 1, d =
g0

g1

• For α = 1 d = 1
|Y ∗|

∫
Y ∗

{
1− ∂X

∂y1
(y1, y2)

}
dy1dy2, where X is the solution ....
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Oscillations in both boundaries

Oscillations in both boundaries

Let us consider now a domain of the type

Rε = {(x , y) : 0 < x < 1; −εh(x/εα) < y < εg(x/εβ)}

h(·) L1-periodic and g(·) L2- periodic.

0 ≤ h(·) ≤ h1, 0 < g0 ≤ g(·) ≤ g1

where
min

x∈[0,L1]
h(x) = 0, min

x∈[0,L2]
g(x) = g0
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Oscillations in both boundaries

FF α > 1, β > 1

FR α > 1, β = 1

FW α > 1, β < 1

WW α < 1, β < 1

WR α < 1, β = 1

RR α = β = 1
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Oscillations in both boundaries

Cases FF , FR, FW

Whenever there is a “fast” oscillatory boundary (α > 1) we can obtain the limit
equation, since we can control the behavior of the solution in the “fast” boundary
“independently” of the shape of other part of the thin domain.

As a matter of fact, we get the following limit problem:{
−q0uxx + u = f (x), x ∈ (0, 1)

u′(0) = u′(1) = 0

José M. Arrieta Thin domains with oscillatory boundaries 44 / 48



Oscillations in both boundaries

where

q0 =



g0

M(g) +M(h)
if α > 1, β > 1

q̂

M(g) +M(h)
if α > 1, β = 1

1
M(1/g)

M(g) +M(h)
if α > 1, β < 1

where

q̂ =
1

|Y ∗|

∫
Y ∗

{
1− ∂X

∂y1
(y1, y2)

}
dy1dy2

and

Y ∗ = {(y1, y2) : 0 < y1 < L2, 0 ≤ y2 ≤ g(y1)}
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Oscillations in both boundaries

Case WW
The domain is given by

Rε{(x , y) : 0 < x < 1, −εh(x/εα) < y < εg(x/εβ)}

with α, β < 1. Since the function x → εh(x/εα) and x → εg(x/εβ) are C 1

functions, we can transform the domain in a rectangular one and after passing to
the limit, we get −

p

M(g) +M(h)
uxx + u = f (x), x ∈ (0, 1)

u′(0) = u′(1) = 0

with

1

p
=


lim

T→+∞

1

T

∫ T

0

1

g(s) + h(s)
ds, α = β

1

L1L2

∫ L1

0

∫ L2

0

1

g(y) + h(z)
dydz , α 6= β
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Oscillations in both boundaries

Case WW
The domain is given by

Rε{(x , y) : 0 < x < 1, −εh(x/εα) < y < εg(x/εβ)}

with α, β < 1. Since the function x → εh(x/εα) and x → εg(x/εβ) are C 1

functions, we can transform the domain in a rectangular one and after passing to
the limit, we get −

p

M(g) +M(h)
uxx + u = f (x), x ∈ (0, 1)

u′(0) = u′(1) = 0

with

1

p
=


lim

T→+∞

1

T

∫ T

0

1

g(s) + h(s)
ds, α = β

1

L1L2

∫ L1

0

∫ L2

0

1

g(y) + h(z)
dydz , α 6= β
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Oscillations in both boundaries

Cases WR and RR. (Work in progress).

Observe that the RR case contains the “quasiperiodic” resonant case:

Rε = {(x , y) : 0 < x < 1,−εh(
x

ε
) < y < εg(

x

ε
)}

and such that L1, L2 are rationally independent.
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THANKS
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