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Problem description

Data: 30 day readmissions due to chronic obstructive pulmonary
disease in VA hospitals (downloaded from Medicare website)

Random effects model

• Hospital index i = 1 · · · 129

• ni number of at risk patients on Hospital i

• xi number of readmitted patients

Xi ∼ Binomial(ni, pi)

• pi iid sample from distribution π

Goal: use “noisy” sample x = (x1 · · · x129) to construct point-wise
CI’s for CDF and quantiles of π



Estimated readmission rates as a function of sample sizes
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Ordered estimated readmission rate with 95% CI’s
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How do we construct CI’s for π?

e.g. 95% CI for CDFπ(0.16) of the form [q̂, 1]:

1. For q = 0.000, 0.0001, 0.0002, 0.0003, . . . , 1

Ω0(p) = {π : CDFπ(0.16) ≤ q}

2. Run level 0.05 test

H0(q) : π ∈ Ω0(q) vs. H1(q) : π /∈ Ω0(q)

3. 95% CI is

{ p : H0(q) has been accepted in level α test}



The count statistic used for eCDF
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Est. rate <= 0.16 in 69/129 hosptials 



95% CI for CDFπ(0.16) based on count statistic

e.g. let’s test the null H0 : CDFπ(0.16) ≤ 0.40 where we reject H0 for
large T(0.16) = #{i : xi/ni ≤ 0.16}

• In the no-noise case (pi ≡ xi/ni) for any null π we have

T(0.16) ≤ Binom(129, 0.40)

therefore 69 is a very LARGE count (p-value = 0.0013)

• For the noisy case consider null π for which pi = 0 wprob 0.40
and pi = 0.1601 wprob 0.60 for which

T(0.16) ≈ 0.40 · 129 + Binom(0.60 · 129, 0.5)

69 is actually a small count (p-value > 0.50)



95% CI for CDFπ(0.16) based on count statistic (cont.)

Now, let’s test the null H0 : CDFπ(0.16) = 0

• In the noisy case for null π that assigns all the mass to
pi = 0.1601 we get

T(0.16) ∼ Binom(129, 0.5)

so 69 is greater than the mean but insignificant (p-value = 0.241)

• i.e. for the noisy case the 95% for CDFπ(0.16) based on the
count statistic is [0, 1]



“Bayesian” tests for composite hypotheses

General framework for testing composite null and alternative
hypotheses presented in Yekutieli (2014) for testing Simpson’s
Paradox

• The parameter is π ∈ Ω with prior distribution is D(π)

• the data is X = (X1 · · ·Xk) and the likelihood is Pr(x| π)

• The null hypothesis is H1 : π ∈ Ω0 for Ω0 ⊆ Ω

• The alternative hypothesis is H1 : π ∈ Ω1 for Ω1 = Ω− Ω0

• For rejection region S, test T (S) := I(x ∈ S) is a mapping
T (S) : Ω→ {0, 1}, with T = 1 corresponding to rejecting H0



Bayesian generalization of Neyman-Pearson tests

Testing is viewed as a classification problem with loss:

L(S;λ1, λ2) = λ1 · I(X ∈ S, π ∈ Ω0) + λ2 · I(X /∈ S, π ∈ Ω1).

Classifier S that minimizes the average risk is

SBayes(λ1, λ2) = {x :
λ1

λ1 + λ2
≤ Pr(π ∈ Ω1| x)}

Method: order data sample space according to Pr(π ∈ Ω1| x); use this
ordering to sequentially enter data points in to S; set rejection
threshold according to the significance level supπ0∈Ω0

Pr(x ∈ S|π0)

⇒ SBayes(α) is Bayes classifier with significance level α



Mean Most Powerful tests

Properties

• The mean significance level of T (S) is Pr(N ∈ S| p ∈ P0)

• The mean power of T (S) is Pr(N ∈ S| p ∈ P1)

• T (S) is a mean most powerful test if all tests with less or equal
mean significance level have less or equal mean power.

• Per construction, SBayes(α) is a mean most powerful test.

Relation to other approaches

• A generalization of likelihood ratio tests...

• The MMP statistic is equal to one minus the local FDR

• Proportional to a Bayes factor between models H1 and H0.



MMP test statistic for step functions

1. Partition [0, 1] = [a0, a1] ∪ · · · ∪ [aI−1, aI] where ∃aip = p

2. We consider distributions that are step function in this partition

ΩS = {π1 ·
I(θ ∈ [a0, a1])

a1 − a0
+ · · ·+ πI ·

I(θ ∈ [aI−1, aI])

aI − aI−1
:
∑

πi = 1}

3. We use the one-to-one correspondence between π ∈ ΩS and
~π = (π1 · · ·πI) to define D(π) as the Dirichlet(~α) density

4. Note CDFπ(p) is πp = π1 + · · ·+ πip

Idea: derive MMP statistic for the step function sample space ΩS and
then use it to test the hypotheses regarding Ω



5-interval step function CDF for tests on CDFπ(0.60)
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The MMP test in the no-noise case

Suppose we get to observe p1 · · · pK

• Then we have ni = #{k : pk ∈ [ai−1, ai]}, for which

~π| ~n ∼ Dirichlet(~α+~n)

• Thus for np = n1 + · · ·+ nip ,

πp|~n ∼ Beta(αp + np, (α+ − αp) + (I − np))

i.e. for any choice of step intervals and ~α the MMP test is the binomial
test that sorts the data sample space according to the count statistic



The MMP test in the general noisy case

• For δK = i iff pk ∈ [ai−1, ai], conditional on ~δ = (δ1 · · · δK)

~π| ~δ ∼ Dirichlet(~α+~n(~δ))

and the conditional statistic value T(~δ) is the the CDF of a Beta

• The (unconditional) test statistic value is

T(x) =

∑
~δ

T(~δ) · Pr(x|~δ) · Pr(~δ)∑
~δ

Pr(x|~δ) · Pr(~δ)

• and we also show that the statistic distribution is increasing in π

⇒ Therefore πmax
0 that assigns mass q at p and mass 1− q at 1 yields

largest test statistic distribution of all π0 in Ω0 = {π : q ≤ CDFπ(p)}



CI’s for quantiles and the CDF of π

Algorithm:

1. Compute test statistic values for testing H0 : CDFπ(p) ≤ q and
H0 : CDFπ(p) ≥ q for a grid of q ∈ [0, 1] and p ∈ [0, 1] values.

2. At each grid point, compute statistic values for N null data
samples from πmax

0

3. Assess significance by proportion of null samples with test
statistic values greater than observed test statistic values

4. point-wise CI’s are 0.05 or 0.025 contours of the significance
level surface



CI’s for VA COPD readmission data
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CI’s for VA COPD readmission data (overlay)
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Discussion

I It is very difficult to come up with good statistics for messy high
dimensional tests

I The MMP approach produces automatic likelihood-based
weighing of information from different hospitals

I Choice of Intervals and concentration parameter (and more
generally the prior) is very important

I Are these good CI’s? optimality for CI’s? Consistency?



Thank you!
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