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a Markov properties in graphical language



Discrete model: X = (X,, ve V) eI = xevZ,
pi=P(X=10)>0,iecZand #Z <

@ marginal probability: for A C V denote X4 = (X, v € A),

p,A =P(X4=1i4) = Z p(i), ia€Za:= xvealy,

[ac€Lpc
@ conditional probability: for A, B C V disjoint

A\B AkuB
m
Pgim = (I;F} L, (k,m) € Taup.

e for A,B,S C Vdisjoint X4 Il Xpg| Xgif

AUB|S AlS  B|S
p(K7m‘)‘n pk||n pml‘rﬂ (K7 m? Q) € IAUBUS

Notation:A 1L B |S



Markov property wrt an undirected graph G = (V, E)

Distribution p = (p;)iez, is Markov wrt G if anyone of 2
conditions holds (equivalent since p; > 0 Vi € 7)

oev il w|V\{v,w} ifonly v~w¢geE,
@ Hammersley-Clifford factorization

pi= I1 Valia) vieT

AcV:Gais complete

for some functions 4.



Markov property wrt a DAG

A DAG G = G(G, pa) with skeleton G = (V, E) is defined by
parent function pa : V — 2V

pa(v)={weV:w—v} vel.

A distribution p = (p;);cz is Markov wrt G if any of 2 equivalent
conditions holds:

evVveV
v L nd(v) \ pa(v) | pa(v),
wherend(v) ={weV: =a(vou —...ux —> w)}
@ recursive factorization:
H pv|pu V) ieT.

’V|’pa w’
veV



e Morality: decomposable models



Who is moral?
Let G = (V, E) be a decomposable undirected
graph, i.e. any loop of size > 4 has a chord.
A DAG G = G(G, pa) is moral if

vveV Gpa(v) is complete.

Example:
o
a—b—c, a+ b+ c, a+b—c
are moral DAGs.
°
a—>b+c

is not.



Markov factorizations for chordal G = (V, E)

C - set of cliques (maximal complete subgraphs);
S- set of separators (minimal complete subgraphs removal of
which makes the rest of G disconnected).
A distribution p = (p;, i € Z)
@ is Markov wrt undirected chordal graph G = (V,E), i.e.

Icee P,-c

— C [

pi = iel.
L Hses Pl -

iff
@ it is Markov wrt a moral DAG G = G(G, pa), i.e
=11 P:vvlﬁfnvvg iel
veV
iff
@ it is Markov wrt any moral DAG G = G(G, pa).



Q Bayesian perspective: hyper-Dirichlet and beyond



Multinomial law for cell counts
Let X4, ..., X,, be iid with distribution p = (p;);ez. Let
n
M= UX;=10), icT.
j=1
Then M = (M;, i € 7) has a multinomial distribution, mnz(n, p),
ie.
n m;
b =m) = (1) TT "

ieT

m=(m,icT)eN* N m=n
i€z
In the Bayesian approach the parameter, p = (p;, i € Z),
becomes a random vector, p = (p;, i € Z).



Markov property wrt complete G means nothing!

The only restrictions on p are:

p;>0, icZ, and 291:1-

i€z
A standard prior law is Dirichlet Dz(«;, i € 7) defined e.g. by
its moments )i
l_.[/ Qf
E]]pi = (€|§|>I'\ )
ieT

where (r)jez € N#Z, and
Conjugacy: If M|p is multinomial mnz(n, p) and
p ~ Dz(«aj, i € Z), then

PIM ~ Dz(ai+M;, i €1).



The easiest non-trivial case

LetG=1~2~3,7={0,1}2 and let

p=(pjk=P(Xs =i,Xo=j,X3=Kk), ijke{01}).

pis Markov wrt 1 ~ 2 ~ 3:

 P(Xi=iXe=)) P(Xe=j.Xa=k)
Pijk = P(Xo=))

iff it is Markovwrt1 — 2 — 3:
pik = P(Xs = )P(Xe = j|Xq = i) P(X5 = k| X2 =)
iff it is Markovwrt1 «— 2 — 3:

ik = P(Xy = i| X2 = /) P(Xa = J) P(Xs = k| X2 = j).



5-dimensional manifold in 8-dimensional space

By calculation it follows that p = (pjx) is Markov iff

— P100Poot — P110Po11
P101 = "oy and  pr1s Poto

One needs a probability measure on 5-dimensional manifold in
8-dimensional space defined by the conditions:

x; >0, i=0,...,7,

7
in:1’
i=0

X X
X5 = =T, X7 =

X6 X3
X2 :



Dawid & Lauritzen (AS’93) to the rescue!

Let G = (V, E) be a chordal graph with cliques C and
separators S. Then p has a hyper-Dirichlet distribution
HDG(Vg, ic €I¢, CeC)ifforany r = (r, i € T) € N#Z,

['.C:

. H pg _ [lcec Iigez, (Vig) ° 7

S

r:
X S
ieT [Tses (lﬁ's> s

where forany S € Sand m € Zg

pm= Y, Vi ifonlySccCec.

m,n)
n€lc\s

Here we assume that () € S, Zy = {0} and thus

ph=>" vh vCecC and = r=1r.

meZe €T



HDg is conjugate in multinomial model

o IfP(X =ip) =p;, i €Z, and p ~ HDg then p, the
conditional distribution X|p, is Markov wrt to G.

@ If Gis a complete then C = {G} and S = {0}, Thus
moments formula imply: HDg = D7.

@ Let M|p ~ mnz(n, p) and p ~ HDg(v{, k € Z¢, C € C).
By the generalized Bayes rule ;

c

mi+r; c c ’i'

e m| = Ellezp = Tleee [igez, (vE+me )
T E s P, " s . )i
i€z Pj HSGS (M15+mis) Is

since . Thus
p|M ~ HDg(v{ + ME, ic € I¢, C €C),

where M{ are marginal counts.



Directional properties of p ~ HDg for any moral DAG

@ Parameters Independence (Pl): Random conditional
probabilities

p,v\pa(v) " (vavlﬁa( ) i, e Iv), Ipa(v) € paqvy, VE V

“pa(v) pa(v)

are independent. (global and local independence of
parameters - )

@ Dirichlet conditionals (DC): All random vectors

PY'pa( ), Ipa(v) € Zpa(v): VEV

have classical Dirichlet laws.

If p is Markov wrt to G and satisfies Pl and DC for a given DAG
G = G(G, pa) we say that its law is G-Dirichlet.



Can one determine HDg through Pl and DC?

Let G = (V, E) be chordal. Let p, Markov wrt G, has a
G-Dirichlet law for any moral G = G(G, pa). Then Pl implies

q(V)

E]lef =11 IT =T [eoi]™"

€T veV KeZyaw meZy,

where q(v) = pa(v) U {v}.
Since by

px\pa(v DIv(arVrHKa(V)v mel,), ke IP“(V)’ vev,

it follows that

)
o) G

Hm v ®m
Ellei=11 II )

ieT veV kEIpa(v) V\pa(v )K




P-Dirchlet distribution

Let P be a family of moral DAGs with a chordal skeleton G.

If the law of p is G-Dirichlet for any G € P we call it P-Dirichlet
distribution.

To describe its properties we need to
@ define several new objects;
@ prove several new results!
No time ! See H. Massam & JW, AS’16.

Here we concentrate on HDg!



When P-Dirichlet is a hyper-Dirichlet?

Proposition

Let P be a family of moral DAGs, with a chordal skeleton
G = (V, E) with cliques C and separators S.

Let
o

() pa(V) =s;

GeP
@ P be a pairing family, i.e.

vSeS, CeC suchthat Sc C

(3GeP,IvelC\S): S=pa(v).

Then any P-Dirichlet distribution is a HD g distribution.



0 Global and local parameter independence: characterizations



Heckerman, Geiger, Chickering, ML’ 95,
Geiger, Heckerman, AS'97

G = (V,E) - complete graph, V ={1,...,d}.
G = G(G, pa) corresponds to permutation o € Sy:

pa(m)z(?), pa(ak):{m,...,akq}, k:2,...,d.

Theorem

G - complete, p has

a "smooth" density, which is strictly positive on the unit simplex.
If p satisfies the Pl condition for 2 DAGSs:

G=o=(1,2,....,d) and G =o=(d1,2....,d-1),

then its distribution is a classical Dirichlet.

Why "smooth" densities? Why densities at all? Why such
two DAGs G and G'? Why complete G?



When do PI conditions yield HDg distribution?

P - family of DAGs with skeleton G = (V, E)
Separating family if Vv € V

3G,6' e P pa(v) #pd(v).

Theorem

Let P be a family of moral DAGs, with a chordal skeleton
G = (V, E). Assume that P is pairing, separating and

(] pa(V)=S  (set of separtors).
Gep

If¥ G € P Pl holds for p then p has a HDg law.



How to extend GHC theorem for complete graphs?

Theorem

Let p be a vector of random probabilities. Let G be a complete
graph with vertices {1, ...,d}. Consider 2 DAGs G = o € Sy
andG' =o' € Sy:

o({1,... ) A0, j=1,...,d—1.

If p satisfies Pl conditions wrt to G and G’ then its law is
classical Dirichlet.

The case of GHC'95 and GH’97:

o{1,....J)={1,...,j} and o' ({1,...,j})={d,1,...,j—1}.



Moral DAGs on T-ree and Pl characterization of HDt

T =(V,E) -tree; L set of leaves of T.

A moral DAG G = G(T,pa) is determined by its source vertex
Vo € V - we write G = Gy,.

Theorem
Let p be a vector of random probabilities, Markov wrt a tree T.

If p satisfies the Pl condition wrtto G, for all vy € L, then its law
is a hyper-Dirichlet HDt -distiribution.

Example: If T1 ~ ... ~ dis a chain, then Pl wrt 2 DAGs:
Gi=1—...—>d and Gg=1« ...« d

characterizes HD 1 law.



e Immoralities: from DAGs to essential graphs through CCC



Who is immoral?

G = (V, E) - undirected graph
I - family of all DAGs with skeleton G

@ Triplet of vertices (a; b, ¢) - immorality in G € T if

pa(a) D {b,c} ¢ E.

@ G, G’ €T are graphically (morally?) equivalent, G ~ &', iff
they have identical sets of immoralities.

ES(G) =T/ ~ - equivalence classes of ~.



Essential graph as Markov equivalence class

Any [G] € ES with skeleton G = (V, E) can be represented by a
mixed graph &£ with vertices V and edges:

@ directeda — b,ifa— be E'forany ¢’ = (V,E’) € [G].
@ undirected a ~ b, otherwise, ifonlya~ b e E

& = [G] is called an essential graph.

Proposition (Markov equivalence classes)

Let £ = [G] be an essential graph.
A probability p is Markov wrt to G iff it is Markov wrt to any DAG
in & = [d] (i.e. to any DAG sharing immoralities with G).

Essential graphs are special chain graphs.



Chain graph -G = (V, E,pa, T, D, pap):

Chain graph is a mixed graph with no (partially) directed
cycles.

@ pa - parent function:
pa(b)={acV:a—-becE}, beV,

@ v = w if there exists an undirected path in G connecting
v, weV;

@ (V/=)=:T > 1 -chain component (CC);
@ D - DAG of chain components with parent function pap:

pap(t)={oc €T : onpa(r) # 0}



Andersson, Madigan, Perlman AS'97

G - mixed graph
@ea—b~c-flagin Gif Ggpc =a— b~ c;
@ a — b - strongly protected in G if one of

@ a— b+« c, (immorality)

@ ¢ — a— b, (compelled arrow)

@ a— ¢ — band a— b, (compelled arrow)

@ a~c —b,i=1,2,and a — b (compelled arrow)

is an induced subgraph in G.

Theorem (AMP)

A mixed graph G is an essential graph iff G is a chain graph
with chordal CCs;

@ G has no flags;
@ all arrows of G are strongly protected.



A new characterization of essential graphs

Theorem

A mixed graph G is an essential graph iff it is a chain graph
G = (V,E,pa, T,D,pap) with chordal CCs;
foranyt e T
(1) pa(v) =pa(r), ver;
(IN) Yo € pap(1)

pa(o) =pa(t)\o = G,rpe(r) IS N0t complete.



Following Frydenberg’90

P - family of DAGs with skeleton G = (V, E)
G? = (V, Ep) - chain graph with Ep defined in two steps:
F1 e ifa— binany G e P then

a—be Ep:
@ otherwise, if a~ b € E then

a~be Ep.

F2 Ep inherits edges from Ep except:

if a— b e Ep is in a (partially) directed cycle, then

a~be Ep.



g(uasi)-essential graphs

Proposition

LetP C [G] = E. Then for G = (V,E,pa,T)
@ allits CCs are chordal;
Q pa(v)=vpa(r), vereT.

Definition
A chain graph G satisfying (1) and (2) is called quasi-essential.

Proposition

If G is a g-essential graph then there exists a family P of
Markov equivalent DAGs (with skeletons as G) such that

G=G".

Then quasi-essential G is Markov equivalentto £ = [G], G € P.



What is condition (II) responsible for ?

G=(V,E,pa,T,D,pap) - a chain graph
If (1) does not hold for o, 7 € T
{ OIS paD(T)¢

pa(o) = pa(r) \ o,
Gorpa(r) I8 COMplete,

then
Vo (G) =G = (V,E")

is a mixed graph with E’ defined as follows:
evVweocandVver

Vor(W— V) =W~ vV,

@ other edges of E’ are inherited from E.



V,..(G) for g-essential G

Proposition

Let G as above be a g-essential graph and G' = 1, -(G) for
o, € T satisfying (2).

Then G' = (V,E,pd', T', D', pay ) is a g-essential graph with

i) =00 = {0 VST

T =(T \{o,7})U{ocUr} and
pap(o), ifp=oUr,

pap(p) = ¢ (wap(p) \{7}) U{ocur}, ifpeT andt € pap(p),
pap(p), otherwise.

Moreover, G’ and G are in the same Markov equivalence class.



CCC algorithm ~ O(n®)
- alternative to AMP’97 ~ O(n®)

CCC algorithm: from DAG G to € = [G].

o GO - g - g(G7pa)’
fork=0,1,...
© Gk - g-essential graph with CCs set 7k;

choose o, T € T satisfying (2) and set
Gk+1 = Yo,(Gk);
Q if
k* = min{k : no chain components o, 7 € T satisfy (2)}.

then Gk, = £ = [G] and the algorithm stops.
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