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Discrete model: X = (Xv , v ∈ V ) ∈ I = ×v∈V Iv

pi := P(X = i) > 0, i ∈ I and #I <∞

marginal probability: for A ⊂ V denote X A = (Xv , v ∈ A),

pA
iA

:= P(X A = iA) =
∑

iAc∈IAc

p(i), iA ∈ IA := ×v∈A Iv ,

conditional probability: for A,B ⊂ V disjoint

pA|B
k |m :=

pA∪B
(k,m)

pB
m
, (k ,m) ∈ IA∪B.

for A,B,S ⊂ V disjoint X A ⊥⊥ X B | X S if

pA∪B|S
(k ,m)|n = pA|S

k |n pB|S
m|n , (k ,m,n) ∈ IA∪B∪S.

Notation: A ⊥⊥ B | S



Markov property wrt an undirected graph G = (V ,E)

Distribution p = (pi)i∈I , is Markov wrt G if anyone of 2
conditions holds (equivalent since pi > 0 ∀ i ∈ I)

v ⊥⊥ w | V \ {v ,w} if only v ∼ w 6∈ E ,
Hammersley-Clifford factorization

pi =
∏

A⊂V : GA is complete
ψA(iA) ∀ i ∈ I

for some functions ψA.
GA denotes the subgraph induced in G by A ⊂ V .



Markov property wrt a DAG

A DAG G = G(G, pa) with skeleton G = (V ,E) is defined by
parent function pa : V → 2V

pa(v) = {w ∈ V : w → v}, v ∈ V .

A distribution p = (pi)i∈I is Markov wrt G if any of 2 equivalent
conditions holds:

∀ v ∈ V
v ⊥⊥ nd(v) \ pa(v) | pa(v),

where nd(v) = {w ∈ V : ¬(v → u1 → . . . uk → w)};
recursive factorization:

pi =
∏
v∈V

pv |pa(v)
iv |ipa(v)

, i ∈ I.
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Who is moral?

Let G = (V ,E) be a decomposable (chordal) undirected
graph, i.e. any loop of size ≥ 4 has a chord.

A DAG G = G(G, pa) is moral if

∀ v ∈ V Gpa(v) is complete.

Example:

a→ b → c, a← b ← c, a← b → c

are moral DAGs.

a→ b ← c

is not.



Markov factorizations for chordal G = (V ,E)
C - set of cliques (maximal complete subgraphs);
S- set of separators (minimal complete subgraphs removal of
which makes the rest of G disconnected).

A distribution p = (pi , i ∈ I)

is Markov wrt undirected chordal graph G = (V ,E), i.e.

pi =

∏
C∈C pC

iC∏
S∈S pS

iS

, i ∈ I.

iff
it is Markov wrt a moral DAG G = G(G, pa), i.e.

pi =
∏
v∈V

pv |pa(v)
iv |ipa(v)

, i ∈ I;

iff
it is Markov wrt any moral DAG G = G(G, pa).
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Multinomial law for cell counts

Let X 1, . . . ,X n be iid with distribution p = (pi)i∈I . Let

Mi =
n∑

j=1

I(X j = i), i ∈ I.

Then M = (Mi , i ∈ I) has a multinomial distribution, mnI(n, p),
i.e.

P(M = m) =

(
n
m

)∏
i∈I

pmi
i ,

m = (mi , i ∈ I) ∈ N#I ,
∑
i∈I

mi = n.

In the Bayesian approach the parameter, p = (pi , i ∈ I),
becomes a random vector, p = (pi , i ∈ I).



Markov property wrt complete G means nothing!
The only restrictions on p are:

pi > 0, i ∈ I, and
∑
i∈I

pi = 1.

A standard prior law is Dirichlet DI(αi , i ∈ I) defined e.g. by
its moments

E
∏
i∈I

pri
i =

∏
i∈I (αi)

ri

(|α|)|r| ,

where (ri)i∈I ∈ N#I , |c| =
∑

i∈I ci and (c)k = Γ(c+k)
Γ(c) .

Conjugacy: If M|p is multinomial mnI(n,p) and
p ∼ DI(αi , i ∈ I), then

p|M ∼ DI(αi + Mi , i ∈ I).



The easiest non-trivial case

Let G = 1 ∼ 2 ∼ 3, I = {0,1}3 and let

p = (pijk = P(X1 = i ,X2 = j ,X3 = k), i , j , k ∈ {0,1}).

p is Markov wrt 1 ∼ 2 ∼ 3:

pijk = P(X1=i,X2=j)P(X2=j,X3=k)
P(X2=j)

iff it is Markov wrt 1→ 2→ 3:

pijk = P(X1 = i)P(X2 = j |X1 = i)P(X3 = k |X2 = j)

iff it is Markov wrt 1← 2→ 3:

pijk = P(X1 = i |X2 = j)P(X2 = j)P(X3 = k |X2 = j).



5-dimensional manifold in 8-dimensional space

By calculation it follows that p = (pijk ) is Markov iff

p101 = p100p001
p000

and p111 = p110p011
p010

.

One needs a probability measure on 5-dimensional manifold in
8-dimensional space defined by the conditions:

xi > 0, i = 0, . . . ,7,

7∑
i=0

xi = 1,

x5 = x4x1
x0
, x7 = x6x3

x2
.



Dawid & Lauritzen (AS’93) to the rescue!
Let G = (V ,E) be a chordal graph with cliques C and
separators S. Then p has a hyper-Dirichlet distribution
HDG(νC

iC
, iC ∈ IC , C ∈ C) if for any r = (ri , i ∈ I) ∈ N#I ,

E
∏
i∈I

pri
i =

∏
C∈C

∏
iC∈IC

(
νC

ic

)rC
iC

∏
S∈S

(
µS

iS

)rS
iS

,

where for any S ∈ S and m ∈ IS

µS
m =

∑
n∈IC\S

νC
(m,n) if only S ⊂ C ∈ C.

Here we assume that ∅ ∈ S, I∅ = {0} and thus

µ∅0 =
∑

m∈IC

νC
m ∀C ∈ C and r∅0 =

∑
i∈I

ri =: |r |.



HDG is conjugate in multinomial model

If P(X = i |p) = pi , i ∈ I, and p ∼ HDG then p, the
conditional distribution X |p, is Markov wrt to G.
If G is a complete then C = {G} and S = {∅}, Thus
moments formula imply: HDG = DI .
Let M|p ∼ mnI(n, p) and p ∼ HDG(νC

k , k ∈ IC , C ∈ C).
By the generalized Bayes rule

E

∏
i∈I

pri
i

∣∣∣∣∣∣M = m

 =
E
∏

i∈I p
mi +ri
i

E
∏

i∈I p
mi
i

=

∏
C∈C

∏
iC∈IC

(
νC

ic
+mC

iC

)rC
iC

∏
S∈S

(
µS

iS
+mS

iS

)rS
iS

since (a)i+j = (a)i (a + i)j. Thus

p|M ∼ HDG(νC
iC

+ MC
iC
, iC ∈ IC , C ∈ C),

where MC
iC

are marginal counts.



Directional properties of p ∼ HDG for any moral DAG

Parameters Independence (PI): Random conditional
probabilities

pv |pa(v)
ipa(v)

:=
(

pv |pa(v)
iv |ipa(v)

, iv ∈ Iv

)
, ipa(v) ∈ Ipa(v), v ∈ V

are independent. (global and local independence of
parameters - two in one!)
Dirichlet conditionals (DC): All random vectors

pv |pa(v)
ipa(v)

, ipa(v) ∈ Ipa(v), v ∈ V

have classical Dirichlet laws.

If p is Markov wrt to G and satisfies PI and DC for a given DAG
G = G(G, pa) we say that its law is G-Dirichlet.



Can one determine HDG through PI and DC?
Let G = (V ,E) be chordal. Let p, Markov wrt G, has a
G-Dirichlet law for any moral G = G(G, pa). Then PI implies

E
∏
i∈I

pri
i =

∏
v∈V

∏
k∈Ipa(v)

E
∏

m∈Iv

[
pv |pa(v)

m|k

]rq(v)
(k,m)

,

where q(v) = pa(v) ∪ {v}.

Since by DC

pv |pa(v)
k ∼ DIv (α

v |pa(v)
m|k , m ∈ Iv ), k ∈ Ipa(v), v ∈ V ,

it follows that

E
∏
i∈I

pri
i =

∏
v∈V

∏
k∈Ipa(v)

∏
m∈Iv

(
α

v|pa(v)
m|k

)rq(v)
(k,m)

(∣∣∣αv|pa(v)
k

∣∣∣)rpa(v)
k

. (1)



P-Dirchlet distribution

Let P be a family of moral DAGs with a chordal skeleton G.

If the law of p is G-Dirichlet for any G ∈ P we call it P-Dirichlet
distribution.

To describe its properties we need to
define several new objects;
prove several new results!

No time ! See H. Massam & JW, AS’16.

Here we concentrate on HDG!



When P-Dirichlet is a hyper-Dirichlet?

Proposition
Let P be a family of moral DAGs, with a chordal skeleton
G = (V ,E) with cliques C and separators S.

Let ⋂
G∈P

pa(V ) = S;

P be a pairing family, i.e.

∀S ∈ S, C ∈ C such that S ⊂ C

(∃G ∈ P, ∃ v ∈ C \ S) : S = pa(v).

Then any P-Dirichlet distribution is a HDG distribution.
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Heckerman, Geiger, Chickering, ML’95,
Geiger, Heckerman, AS’97

G = (V ,E) - complete graph, V = {1, . . . ,d}.
G = G(G, pa) corresponds to permutation σ ∈ Sd :

pa(σ1) = ∅, pa(σk ) = {σ1, . . . , σk−1}, k = 2, . . . ,d .

Theorem
G - complete, p has
a "smooth" density, which is strictly positive on the unit simplex.
If p satisfies the PI condition for 2 DAGs:

G ≡ σ = (1,2, . . . ,d) and G′ ≡ σ′ = (d ,1,2 . . . ,d − 1),

then its distribution is a classical Dirichlet.

Why "smooth" densities? Why densities at all? Why such
two DAGs G and G′? Why complete G?



When do PI conditions yield HDG distribution?

P - family of DAGs with skeleton G = (V ,E)

Separating family if ∀ v ∈ V

∃G,G′ ∈ P : pa(v) 6= pa′(v).

Theorem
Let P be a family of moral DAGs, with a chordal skeleton
G = (V ,E). Assume that P is pairing, separating and⋂

G∈P
pa(V ) = S (set of separtors).

If ∀G ∈ P PI holds for p then p has a HDG law.



How to extend GHC theorem for complete graphs?

Theorem
Let p be a vector of random probabilities. Let G be a complete
graph with vertices {1, . . . ,d}. Consider 2 DAGs G ≡ σ ∈ Sd
and G′ ≡ σ′ ∈ Sd :

σ({1, . . . , j}) 6= σ′({1, . . . , j}), j = 1, . . . ,d − 1.

If p satisfies PI conditions wrt to G and G′ then its law is
classical Dirichlet.

The case of GHC’95 and GH’97:

σ({1, . . . , j}) = {1, . . . , j} and σ′({1, . . . , j}) = {d ,1, . . . , j−1}.



Moral DAGs on T -ree and PI characterization of HDT

T = (V ,E) - tree; L set of leaves of T .

A moral DAG G = G(T , pa) is determined by its source vertex
v0 ∈ V - we write G = Gv0 .

Theorem
Let p be a vector of random probabilities, Markov wrt a tree T .

If p satisfies the PI condition wrt to Gv0 for all v0 ∈ L, then its law
is a hyper-Dirichlet HDT -distiribution.

Example: If T 1 ∼ . . . ∼ d is a chain, then PI wrt 2 DAGs:

G1 = 1→ . . .→ d and Gd = 1← . . .← d

characterizes HDT law.
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Who is immoral?

G = (V ,E) - undirected graph

Γ - family of all DAGs with skeleton G

Triplet of vertices (a; b, c) - immorality in G ∈ Γ if

pa(a) ⊃ {b, c} 6∈ E .

G, G′ ∈ Γ are graphically (morally?) equivalent, G ∼ G′, iff
they have identical sets of immoralities.

ES(G) = Γ/ ∼ - equivalence classes of ∼.



Essential graph as Markov equivalence class

Any [G] ∈ ES with skeleton G = (V ,E) can be represented by a
mixed graph E with vertices V and edges:

directed a→ b, if a→ b ∈ E ′ for any G′ = (V ,E ′) ∈ [G].
undirected a ∼ b, otherwise, if only a ∼ b ∈ E

E ≡ [G] is called an essential graph.

Proposition (Markov equivalence classes)
Let E ≡ [G] be an essential graph.
A probability p is Markov wrt to G iff it is Markov wrt to any DAG
in E ≡ [G] (i.e. to any DAG sharing immoralities with G).

Essential graphs are special chain graphs.



Chain graph -G = (V ,E , pa, T ,D, paD):

Chain graph is a mixed graph with no (partially) directed
cycles.

pa - parent function:

pa(b) = {a ∈ V : a→ b ∈ E}, b ∈ V ;

v ≡ w if there exists an undirected path in G connecting
v , w ∈ V ;
(V/ ≡) =: T 3 τ - chain component (CC);
D - DAG of chain components with parent function paD:

paD(τ) = {σ ∈ T : σ ∩ pa(τ) 6= ∅}

(
pa(τ) =

⋃
v∈τ

pa(v)

)
.



Andersson, Madigan, Perlman AS’97

G - mixed graph
a→ b ∼ c - flag in G if Gabc = a→ b ∼ c;
a→ b - strongly protected in G if one of

a→ b ← c, (immorality)
c → a→ b, (compelled arrow)
a→ c → b and a→ b, (compelled arrow)
a ∼ ci → b, i = 1,2, and a→ b (compelled arrow)

is an induced subgraph in G.

Theorem (AMP)
A mixed graph G is an essential graph iff G is a chain graph
with chordal CCs;

G has no flags;
all arrows of G are strongly protected.



A new characterization of essential graphs

Theorem
A mixed graph G is an essential graph iff it is a chain graph
G = (V ,E , pa, T ,D, paD) with chordal CCs;
for any τ ∈ T

(I) pa(v) = pa(τ), v ∈ τ ;
(II) ∀σ ∈ paD(τ)

pa(σ) = pa(τ) \ σ ⇒ Gσ∩pa(τ) is not complete.



Following Frydenberg’90

P - family of DAGs with skeleton G = (V ,E)
GP = (V ,EP) - chain graph with EP defined in two steps:
F1 if a→ b in any G ∈ P then

a→ b ∈ ẼP ;

otherwise, if a ∼ b ∈ E then

a ∼ b ∈ ẼP .

(V , ẼP) may not be a chain graph
F2 EP inherits edges from ẼP except:

if a→ b ∈ ẼP is in a (partially) directed cycle, then

a ∼ b ∈ EP .



q(uasi)-essential graphs

Proposition
Let P ⊂ [G] ≡ E . Then for GP = (V ,E , pa, T )

1 all its CCs are chordal;
2 pa(v) = pa(τ), v ∈ τ ∈ T . i.e. (I) or "no flags"

Definition
A chain graph G satisfying (1) and (2) is called quasi-essential.

Proposition
If G is a q-essential graph then there exists a family P of
Markov equivalent DAGs (with skeletons as G) such that

G = GP .

Then quasi-essential G is Markov equivalent to E ≡ [G], G ∈ P.



What is condition (II) responsible for ?

G = (V ,E , pa, T ,D, paD) - a chain graph

If (II) does not hold for σ, τ ∈ T :
σ ∈ paD(τ),
pa(σ) = pa(τ) \ σ,
Gσ∩pa(τ) is complete,

(2)

then
ψσ,τ (G) = G′ = (V ,E ′)

is a mixed graph with E ′ defined as follows:
∀w ∈ σ and ∀ v ∈ τ

ψσ,τ (w → v) = w ∼ v ;

other edges of E ′ are inherited from E .



ψσ,τ(G) for q-essential G

Proposition
Let G as above be a q-essential graph and G′ = ψσ,τ (G) for
σ, τ ∈ T satisfying (2).

Then G′ = (V ,E , pa′, T ′,D′, paD′) is a q-essential graph with

pa′(v) = pa′(ρ) =

{
pa(ρ), v ∈ ρ 6= τ,
pa(τ) \ σ, v ∈ ρ = τ,

T ′ = (T \ {σ, τ}) ∪ {σ ∪ τ} and

paD′(ρ) =


paD(σ), if ρ = σ ∪ τ,
(paD(ρ) \ {τ}) ∪ {σ ∪ τ}, if ρ ∈ T and τ ∈ paD(ρ),
paD(ρ), otherwise.

Moreover, G′ and G are in the same Markov equivalence class.



CCC algorithm ∼ O(n3)
- alternative to AMP’97 ∼ O(n6)

CCC algorithm: from DAG G to E ≡ [G].

1 G0 = G = G(G, pa);

for k = 0,1, . . .
2 Gk - q-essential graph with CCs set Tk ;

choose σ, τ ∈ Tk satisfying (2) and set

Gk+1 = ψσ,τ (Gk );

3 if

k∗ = min{k : no chain components σ, τ ∈ Tk satisfy (2)}.

then Gk∗ = E ≡ [G] and the algorithm stops.
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