On Graphon Estimation

Nicolas Verzelen

INRA, Montpellier

(Based on Joint Work with Olga Klopp and Alexander Tsybakov)

Network analysis is ubiquitous in social sciences, genomics, ecology,...

East-river trophic network [Yoon et al.(04)]

Objectives :

- Graph Visualization
- Backbone estimation
- Node clustering

Approach

- The modeling of real networks as random graphs.
- Model-based statistical analysis.

1 Graphon Model

2 Towards Graphon Estimation
$3 \delta_{\square}$ and δ_{2} Estimation of sparse Graphons

A (simple, undirected graph) $\mathcal{G}=(\mathcal{E}, \mathcal{V})$ consists of

- a set of vertices $V=\{1, \ldots n\}$
- a set of edges $E \subset\{\{i, j\}: i, j \in V$ and $i \neq j\}$

A (simple, undirected graph) $\mathcal{G}=(\mathcal{E}, \mathcal{V})$ consists of

- a set of vertices $V=\{1, \ldots n\}$
- a set of edges $E \subset\{\{i, j\}: i, j \in V$ and $i \neq j\}$

$$
\mathbf{A}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right)
$$

The corresponding adjacency matrix is denoted $\mathbf{A}=\left(\mathbf{A}_{i, j}\right) \in\{0,1\}^{n \times n}$, where $\mathbf{A}_{i, j}=1 \Leftrightarrow(i, j) \in E$

Stochastic Block-Model (SBM)

A mixture model for random graphs: \mathbf{K} classes.
SBM popular for clustering applications : generate graphs with a community structure
Latent labels : each node i belongs to class k with probability π_{k} :

$$
\left\{\xi_{i}\right\}_{i} \text { IID }, \xi_{i} \sim \mathcal{M}(1 ; \pi),
$$

where $\pi=\left(\pi_{1}, \ldots, \pi_{K}\right)$.
Observed edges : $\left(\mathbf{A}_{i j}\right)$ are conditionally independent given the ξ_{i} 's :

$$
\left(\mathbf{A}_{i j} \mid \xi_{i}=k, \xi_{j}=l\right) \sim \mathcal{B}\left(\mathbf{Q}_{k, l}\right)
$$

The symmetric $K \times K$ matrix \mathbf{Q} is called the connectivity matrix.
(Basic approximation unit for more complex models)

Example

Example

Example

$$
\#
$$

Definition

- $\xi_{i}=$ unobserved position of node i in a latent space. e.g. $\xi_{i} \sim \mathcal{U}\left([0,1]^{2}\right)$
- Edges $\mathbf{A}_{i j}$ independent given ξ_{i},

$$
\mathbb{P}\left[\mathbf{A}_{i j}=1\right]=\gamma\left(\left\|\xi_{i}-\xi_{j}\right\|_{2}\right.
$$

with $\gamma: \mathbb{R}^{+} \rightarrow[0,1]$.

Definition

- $\xi_{i}=$ unobserved position of node i in a latent space. e.g. $\xi_{i} \sim \mathcal{U}\left([0,1]^{2}\right)$
- Edges $\mathbf{A}_{i j}$ independent given ξ_{i},

$$
\mathbb{P}\left[\mathbf{A}_{i j}=1\right]=\gamma\left(\left\|\xi_{i}-\xi_{j}\right\|_{2}\right.
$$

with $\gamma: \mathbb{R}^{+} \rightarrow[0,1]$.

SBM do not allow to analyze the fine structure of extremely large networks \rightsquigarrow Non-parametric models

Graphons

A graphon is a triplet (Ω, π, W) where :

- (Ω, π) is a Borel Probability space
- $W: \Omega \times \Omega \mapsto[0,1]$ measurable

SBM do not allow to analyze the fine structure of extremely large networks \rightsquigarrow Non-parametric models

Graphons

A graphon is a triplet (Ω, π, W) where :

- (Ω, π) is a Borel Probability space
- $W: \Omega \times \Omega \mapsto[0,1]$ measurable

W-Random graph

W-random graph model of size n associated to (Ω, π, W) :

- $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ are sampled on Ω according to π.
- For each $i<j, \mathbf{A}_{i j}=1$ with probability $W\left(\xi_{i}, \xi_{j}\right)$.

Notation : \mathbb{P}_{W}^{n} xorresponding distribution $\left(\mathbb{P}_{W}:=\mathbb{P}_{W}^{\infty}\right)$
$\boldsymbol{\Theta}_{0}$ defined by $\boldsymbol{\Theta}_{i j}=W\left(\xi_{i}, \xi_{j}\right)$ for $i \neq j$

Remarks

■ $\mathbb{E}[\mathbf{A} \mid \xi]=\boldsymbol{\Theta}_{0} \rightsquigarrow$ cond. to ξ, inhomogeneous random graph with Matrix $\boldsymbol{\Theta}_{0}$.

- If W is a k step-function, A SBM with k blocks

Let $\underline{\mathbf{A}}: \mathbb{N} \times \mathbb{N} \rightarrow\{0,1\}$ symmetric $=$ the adjacency function of an infinite graph For τ permutation, $\underline{\mathbf{A}}^{\tau}$ defined by $\underline{\mathbf{A}}^{\tau}[i, j]=\underline{\mathbf{A}}[\tau(i), \tau(j)]$.

Joint Exchangeability

The distribution of $\underline{\mathbf{A}}$ is jointly exchangeable if

$$
\underline{\mathbf{A}} \sim \underline{\mathbf{A}}^{\tau}, \quad \text { for any permutation } \tau
$$

Theorem (

If the distribution of $\underline{\mathbf{A}}$ is jointly exchangeable, then there exists μ such that

$$
\begin{gathered}
(\Omega, \pi, W) \sim \mu \\
{[\underline{\mathbf{A}} \mid(\Omega, \pi, W)] \sim \mathbb{P}_{W}}
\end{gathered}
$$

$\rightsquigarrow W$-random graph distribution correspond to extremal points of the set of jointly exchangeable distributions.

For W-random graph, $\mathbb{E}_{W}[\# E] \asymp n^{2} \rightsquigarrow$ Realized graphs are dense

Sparse Graphon Models

$\left(\Omega, \pi, W, \rho_{n}\right)$ with $\rho_{n} \rightarrow_{n \rightarrow \infty} 0$.
1 Sample ξ according to π
2 For each $i<j$, draw an edge between i and j with probability $\rho_{n} W\left(\xi_{i}, \xi_{j}\right)$

Other methods :

- L_{p} graphon (e.g Borgs et al.('15))
- Graphex (e.g.Veitch \& Roy('16))

1 Graphon Model

2 Towards Graphon Estimation

```
3. \delta}\square\mathrm{ and }\mp@subsup{\delta}{2}{}\mathrm{ Estimation of sparse Graphons
```

Given an observation \mathbf{A}, goal $=$ infering the graphon (Ω, π, W) in some sense...

Caveats :

- Identifiability
- Loss functions
- Approximation class

Given an observation A, goal $=$ infering the graphon (Ω, π, W) in some sense...

Caveats :

- Identifiability
- Loss functions
- Approximation class

Lemma

(Ω, π, W) graphon
$\tau:\left(\Omega^{\prime}, \pi^{\prime}\right) \mapsto(\Omega, \pi)$ measure-preserving
W^{τ} be such that $W^{\tau}(x, y):=W(\tau(x), \tau(y))$. Then $\mathbb{P}_{W}=\mathbb{P}_{W^{\tau}}$.

Two Consequences :

- Triplet (Ω, π, W) is not identifiable
- Sufficient to consider graphons on ([0, 1], λ) [but problematic]
$\rightsquigarrow \mathcal{W}$: space of graphons on $([0,1], \lambda)$.

Identifiability (fd)

Even Restricting to $([0,1], \lambda)$, the topology of a network invariant wrt node labeling change :

Weak isomorphism

Two graphons U and W are weakly isomorphic if there exist measure preserving maps $\phi, \psi:[0,1] \rightarrow[0,1]$ such that $U^{\phi}=W^{\psi}$ almost everywhere.

Identifiability (fd)

Even Restricting to $([0,1], \lambda)$, the topology of a network invariant wrt node labeling change :

Weak isomorphism

Two graphons U and W are weakly isomorphic if there exist measure preserving maps $\phi, \psi:[0,1] \rightarrow[0,1]$ such that $U^{\phi}=W^{\psi}$ almost everywhere.

Proposition (Lovasz('12))

$\mathbb{P}_{U}=\mathbb{P}_{W}$ if and only if U and W are weakly isomorphic.
\rightsquigarrow one can only perform inference in $\widetilde{\mathcal{W}}$ (equivalence classes of \mathcal{W} wrt weak isomorphism)

Metrics/Loss functions on \mathcal{W}

Distance betw. graphs \rightsquigarrow Distance betw.graphons \rightsquigarrow Distance bet. equivalence classes

Distance on Graphs :
$\|\mathbf{A}-\mathbf{B}\|_{2}:=\frac{1}{n} \sqrt{\sum_{i j}\left(\mathbf{A}_{i j}-\mathbf{B}_{i j}\right)^{2}} \rightsquigarrow$ Frobenius distance
$\|\mathbf{A}-\mathbf{B}\|_{\square}:=\frac{1}{n^{2}} \max _{S, T \subset[n]}\left|\sum_{i \in S, j \in T} \mathbf{A}_{i j}-\mathbf{B}_{i j}\right| \rightsquigarrow$ Cut Distance

Metrics/Loss functions on \mathcal{W}

Distance betw. graphs \rightsquigarrow Distance betw.graphons \rightsquigarrow Distance bet. equivalence classes

Distance on Graphs :
$\|\mathbf{A}-\mathbf{B}\|_{2}:=\frac{1}{n} \sqrt{\sum_{i j}\left(\mathbf{A}_{i j}-\mathbf{B}_{i j}\right)^{2}} \rightsquigarrow$ Frobenius distance
$\|\mathbf{A}-\mathbf{B}\|_{\square}:=\frac{1}{n^{2}} \max _{S, T \subset[n]}\left|\sum_{i \in S, j \in T} \mathbf{A}_{i j}-\mathbf{B}_{i j}\right| \rightsquigarrow$ Cut Distance
Norms on Graphons:
$\|W\|_{2}:=\left[\int_{[0,1]^{2}} W^{2}(x, y) d x d y\right]^{1 / 2} \rightsquigarrow$ Frobenius norm
$\|W\|_{\square}:=\sup _{S, T \subset[0,1]}\left|\int_{S \times T} W(x, y) d x d y\right| \rightsquigarrow$ Cut norm (cornerstone of graph limits)

Metrics/Loss functions on \mathcal{W}

Distance betw. graphs \rightsquigarrow Distance betw.graphons \rightsquigarrow Distance bet. equivalence classes

Distance on Graphs :
$\|\mathbf{A}-\mathbf{B}\|_{2}:=\frac{1}{n} \sqrt{\sum_{i j}\left(\mathbf{A}_{i j}-\mathbf{B}_{i j}\right)^{2}} \rightsquigarrow$ Frobenius distance
$\|\mathbf{A}-\mathbf{B}\|_{\square}:=\frac{1}{n^{2}} \max _{S, T \subset[n]}\left|\sum_{i \in S, j \in T} \mathbf{A}_{i j}-\mathbf{B}_{i j}\right| \rightsquigarrow$ Cut Distance
Norms on Graphons:
$\|W\|_{2}:=\left[\int_{[0,1]^{2}} W^{2}(x, y) d x d y\right]^{1 / 2} \rightsquigarrow$ Frobenius norm
$\|W\|_{\square}:=\sup _{S, T \subset[0,1]}\left|\int_{S \times T} W(x, y) d x d y\right| \rightsquigarrow$ Cut norm (cornerstone of graph limits)
Distances on $\widetilde{\mathcal{W}}$.
\mathcal{M} : Measure-preserving bijections $\tau:[0,1] \rightarrow[0,1]$
l_{2} distance $\delta_{2}\left(W, W_{1}\right):=\inf _{\tau \in \mathcal{M}}\left\|W-W_{1}^{\tau}\right\|_{2}$
Cut distance $\delta_{\square}\left(W, W_{1}\right):=\inf _{\tau \in \mathcal{M}}\left\|W-W_{1}^{\tau}\right\|_{\square}$

Metrics/Loss functions on \mathcal{W}

Distance betw. graphs \rightsquigarrow Distance betw.graphons \rightsquigarrow Distance bet. equivalence classes

Distance on Graphs :
$\|\mathbf{A}-\mathbf{B}\|_{2}:=\frac{1}{n} \sqrt{\sum_{i j}\left(\mathbf{A}_{i j}-\mathbf{B}_{i j}\right)^{2}} \rightsquigarrow$ Frobenius distance
$\|\mathbf{A}-\mathbf{B}\|_{\square}:=\frac{1}{n^{2}} \max _{S, T \subset[n]}\left|\sum_{i \in S, j \in T} \mathbf{A}_{i j}-\mathbf{B}_{i j}\right| \rightsquigarrow$ Cut Distance
Norms on Graphons :
$\|W\|_{2}:=\left[\int_{[0,1]^{2}} W^{2}(x, y) d x d y\right]^{1 / 2} \rightsquigarrow$ Frobenius norm
$\|W\|_{\square}:=\sup _{S, T \subset[0,1]}\left|\int_{S \times T} W(x, y) d x d y\right| \rightsquigarrow$ Cut norm (cornerstone of graph limits)
Distances on $\widetilde{\mathcal{W}}$.
\mathcal{M} : Measure-preserving bijections $\tau:[0,1] \rightarrow[0,1]$
l_{2} distance $\delta_{2}\left(W, W_{1}\right):=\inf _{\tau \in \mathcal{M}}\left\|W-W_{1}^{\tau}\right\|_{2}$
Cut distance $\delta_{\square}\left(W, W_{1}\right):=\inf _{\tau \in \mathcal{M}}\left\|W-W_{1}^{\tau}\right\|_{\square}$
These metrics are not equivalent : $\delta_{\square}(W, \widehat{W}) \leq \delta_{2}(W, \widehat{W})$

Proposition (Szemerédi ('75), Frieze and Kannan ('99))
For any $W \in \mathcal{W}$ and any k, there exists a k-step graphon W_{k} such that

$$
\left\|W-W_{k}\right\|_{\square} \lesssim \frac{1}{\sqrt{\log (k)}}
$$

This rate is universal !

Proposition (Szemerédi ('75), Frieze and Kannan ('99))

For any $W \in \mathcal{W}$ and any k, there exists a k-step graphon W_{k} such that

$$
\left\|W-W_{k}\right\|_{\square} \lesssim \frac{1}{\sqrt{\log (k)}}
$$

This rate is universal !

SBM as basic stones for approximating graphons

Proposition

For any $W \in \mathcal{W}$ and any k, there exists a k-step graphon W_{k} such that

$$
\left\|W-W_{k}\right\|_{\square} \lesssim \frac{1}{\sqrt{\log (k)}}
$$

This rate is universal !

SBM as basic stones for approximating graphons
Obviously false for δ_{2} : similar to histograms in classical Nonparametric Estimation

1 Graphon Model

2 Towards Graphon Estimation

$3 \delta_{\square}$ and δ_{2} Estimation of sparse Graphons

$$
\rho_{n} W_{0} \longrightarrow \boldsymbol{\Theta}_{0} \longrightarrow \mathbf{A}
$$

General Scheme :

1 Estimating the matrix $\Theta_{0}:=\mathbb{E}[\mathbf{A} \mid \xi]$ by $\widehat{\boldsymbol{\Theta}}$.
2 From matrix to graphon. Given Θ, define the empirical graphon \widetilde{f}_{Θ} as the n piecewise constant function :

$$
\widetilde{f}_{\boldsymbol{\Theta}}(x, y)=\boldsymbol{\Theta}_{\lceil n x\rceil,\lceil n y\rceil}, \quad x, y \in[0,1]
$$

$$
\rho_{n} W_{0} \longrightarrow \mathbf{\Theta}_{0} \longrightarrow \mathbf{A}
$$

General Scheme :

1 Estimating the matrix $\Theta_{0}:=\mathbb{E}[\mathbf{A} \mid \xi]$ by $\widehat{\boldsymbol{\Theta}}$.
2 From matrix to graphon. Given Θ, define the empirical graphon $\widetilde{f_{\Theta}}$ as the n piecewise constant function :

$$
\widetilde{f}_{\boldsymbol{\Theta}}(x, y)=\boldsymbol{\Theta}_{\lceil n x\rceil,\lceil n y\rceil}, \quad x, y \in[0,1]
$$

Lemma

For any estimator $\widehat{\boldsymbol{\Theta}}$ and any norm N,

$$
\mathbf{E}\left[\delta_{N}\left(\tilde{f}_{\widehat{\boldsymbol{\Theta}}}, f_{0}\right)\right] \leq \mathbf{E}\left[\left\|\widehat{\boldsymbol{\Theta}}-\mathbf{\Theta}_{0}\right\|_{N}\right]+\underbrace{\mathbf{E}\left[\delta_{N}\left(\tilde{f}_{\boldsymbol{\Theta}_{0}}, f_{0}\right)\right]}_{\text {agnostic error }}
$$

- Raw data : A
- Restricted Least Squares estimator: (RLS) Wolfe \& Olhlede ('13), Borgs et al.('15), Klopp, Tsybakov, V.('17), Gao et al.('17)

$$
\widetilde{\boldsymbol{\Theta}}_{\lambda} \in \arg \min _{\boldsymbol{\Theta} \in \operatorname{SBM}(k):\|\boldsymbol{\Theta}\| \infty \leq \mathbf{r}}\|\mathbf{A}-\boldsymbol{\Theta}\|_{2}^{2},
$$

where $r \in(0,1)$ and $\operatorname{SBM}(k)$ space of k block-constant matrix. ($\widehat{\boldsymbol{\Theta}}_{k}^{r}$ is not polynomial-time computable)

- Singular Value Thresholding : $\widetilde{\boldsymbol{\Theta}}_{\lambda}$ e.g. Chatterjee('12), Klopp \& V.('17)

$$
\widetilde{\boldsymbol{\Theta}}_{\lambda}:=\sum_{j: \sigma_{j}(\mathbf{A}) \geq \lambda} \sigma_{j}(\mathbf{A}) u_{j}(\mathbf{A}) v_{j}(\mathbf{A})^{T}
$$

Theorem

For any $\boldsymbol{\Theta}_{0}$ such that $\left\|\Theta_{0}\right\|_{\infty} \leq r$,

$$
\mathbb{E}\left[\left\|\widehat{\boldsymbol{\Theta}}_{k}^{r}-\mathbf{\Theta}_{0}\right\|_{2}^{2}\right] \lesssim \min _{\boldsymbol{\Theta} \in \mathrm{SBM}(k)}\left\|\boldsymbol{\Theta}_{0}-\boldsymbol{\Theta}\right\|_{2}^{2}+r\left(\frac{\log k}{n}+\frac{k^{2}}{n^{2}}\right)
$$

(Minimax optimal over $\operatorname{SBM}(k) \cap \mathcal{B}_{\infty}(r)$) (Gao et al. ('15))

Two terms :

- $\frac{k^{2}}{n^{2}} \rightsquigarrow$ parametric rate $(k(k+1) / 2$ parameter to estimate $)$
- $\frac{n \log (k)}{n^{2}} \rightsquigarrow$ clustering rate (of order k^{n} possible partitions)

Theorem (

For any $\boldsymbol{\Theta}_{0}$ such that $\left\|\Theta_{0}\right\|_{\infty} \leq r$,

$$
\mathbb{E}\left[\left\|\widehat{\boldsymbol{\Theta}}_{k}^{r}-\mathbf{\Theta}_{0}\right\|_{2}^{2}\right] \lesssim \min _{\boldsymbol{\Theta} \in \operatorname{SBM}(k)}\left\|\boldsymbol{\Theta}_{0}-\boldsymbol{\Theta}\right\|_{2}^{2}+r\left(\frac{\log k}{n}+\frac{k^{2}}{n^{2}}\right)
$$

(Minimax optimal over $\operatorname{SBM}(k) \cap \mathcal{B}_{\infty}(r)$) (Gao et al. ('15))
Two terms :

- $\frac{k^{2}}{n^{2}} \rightsquigarrow$ parametric rate $(k(k+1) / 2$ parameter to estimate $)$
- $\frac{n \log (k)}{n^{2}} \rightsquigarrow$ clustering rate (of order k^{n} possible partitions)

SVT estimator

Fix $\lambda=c \sqrt{n\left\|\boldsymbol{\Theta}_{0}\right\|_{\infty}}$. For all k,

$$
\mathbb{E}\left[\left\|\widetilde{\boldsymbol{\Theta}}_{\lambda}-\boldsymbol{\Theta}_{0}\right\|_{2}^{2}\right] \lesssim \min _{\boldsymbol{\Theta} \in \operatorname{SBM}(k)}\left\|\boldsymbol{\Theta}_{0}-\boldsymbol{\Theta}\right\|_{2}^{2}+\frac{\left\|\boldsymbol{\Theta}_{0}\right\|_{\infty} k}{n},
$$

Loss of order $\frac{k}{\log (k)} \wedge \frac{n}{k}$ wrt RLS estimators
Best known polynomial time bound
$\mathcal{W}[k]$: Collection of k-Step function graphons
Here $f_{0}=\rho_{n} W_{0}$ with $W \in \mathcal{W}[k]$
Proposition

$$
\mathbb{E}\left[\delta^{2}\left(\tilde{f}_{\boldsymbol{\Theta}_{0}}, f_{0}\right)\right] \lesssim \rho_{n}^{2} \sqrt{\frac{k}{n}}
$$

If $\rho_{n} \leq r$ then for RLS

$$
\mathbb{E}\left[\delta^{2}\left(f_{\widehat{\boldsymbol{\Theta}}_{k}^{r}}, f_{0}\right)\right] \lesssim \rho_{n}\left(\frac{k^{2}}{n^{2}}+\frac{\log (k)}{n}\right)+\rho_{n}^{2} \sqrt{\frac{k}{n}}
$$

$\mathcal{W}[k]$: Collection of k-Step function graphons
Here $f_{0}=\rho_{n} W_{0}$ with $W \in \mathcal{W}[k]$
Proposition

$$
\mathbb{E}\left[\delta^{2}\left(\tilde{f}_{\Theta_{0}}, f_{0}\right)\right] \lesssim \rho_{n}^{2} \sqrt{\frac{k}{n}}
$$

If $\rho_{n} \leq r$ then for RLS

$$
\mathbb{E}\left[\delta^{2}\left(f_{\widehat{\boldsymbol{\Theta}}_{k}^{r}}, f_{0}\right)\right] \lesssim \rho_{n}\left(\frac{k^{2}}{n^{2}}+\frac{\log (k)}{n}\right)+\rho_{n}^{2} \sqrt{\frac{k}{n}}
$$

For SVT

$$
\mathbb{E}\left[\delta^{2}\left(f_{\widetilde{\boldsymbol{\Theta}}_{\lambda}}, f_{0}\right)\right] \lesssim \rho_{n} \frac{k}{n}+\rho_{n}^{2} \sqrt{\frac{k}{n}}
$$

(RLS is Minimax optimal (up to possible $\log (k)$ term)) Klopp et al. ('17)
$\mathcal{W}[k]$: Collection of k-Step function graphons
Here $f_{0}=\rho_{n} W_{0}$ with $W \in \mathcal{W}[k]$

Proposition

$$
\mathbb{E}\left[\delta^{2}\left(\widetilde{f}_{\boldsymbol{\Theta}_{0}}, f_{0}\right)\right] \lesssim \rho_{n}^{2} \sqrt{\frac{k}{n}}
$$

If $\rho_{n} \leq r$ then for RLS

$$
\mathbb{E}\left[\delta^{2}\left(f_{\widehat{\boldsymbol{\Theta}}_{k}^{r}}, f_{0}\right)\right] \lesssim \rho_{n}\left(\frac{k^{2}}{n^{2}}+\frac{\log (k)}{n}\right)+\rho_{n}^{2} \sqrt{\frac{k}{n}}
$$

For SVT

$$
\mathbb{E}\left[\delta^{2}\left(f_{\widetilde{\boldsymbol{\Theta}}_{\lambda}}, f_{0}\right)\right] \lesssim \rho_{n} \frac{k}{n}+\rho_{n}^{2} \sqrt{\frac{k}{n}}
$$

(RLS is Minimax optimal (up to possible $\log (k)$ term)) Klopp et al. ('17)
(i) Weakly sparse graphs $: \Longrightarrow$ the agnostic error dominates.
(ii) Moderately sparse graphs $: \Longrightarrow$ the Probability matrix estimation error dominates
(iii) Highly sparse graphs : The null estimator $\tilde{f} \equiv 0$ is of smaller order

Proposition

For any probability matrix Θ_{0} such that $\left\|\Theta_{0}\right\|_{\infty} \geq 1 / n$,

$$
\mathbf{E}\left[\left\|\mathbf{A}-\boldsymbol{\Theta}_{0}\right\|_{\square}\right] \leq 12 \sqrt{\frac{\left\|\boldsymbol{\Theta}_{0}\right\|_{\infty}}{n}}
$$

- Valid for all matrices Θ_{0}. Optimal convergence rate (even for simple classes such as two-block matrices)
- More refined estimators (SVT) do not decrease the performances but RLS may be biased.

Theorem ((Consequence of Szemeredi's Lemma)

For all W_{0} with $\rho_{n}=1$, one has whp

$$
\delta_{\square}\left(\tilde{f}_{\mathbf{A}}, W_{0}\right) \lesssim \frac{1}{\sqrt{\log (n)}} .
$$

Valid for all graphons!

Theorem (Klopp and $V_{\text {.. '17 }}$)

For all $W_{0} \in \mathcal{W}[k]$ and $\rho_{n}>0$, we have

$$
\mathbf{E}_{W_{0}}\left[\delta_{\square}\left(\widetilde{f}_{\mathbf{A}}, f_{0}\right)\right] \lesssim \rho_{n} \min \left(\sqrt{\frac{k}{n \log (k)}}, \frac{1}{\sqrt{\log (n)}}\right)+\sqrt{\frac{\rho_{n}}{n}}
$$

- Similar bound for the SVT estimator $\widetilde{f}_{\widetilde{\boldsymbol{\Theta}}_{\lambda}}$
- This convergence rate is optimal

Theorem ((Consequence of Szemeredi's Lemma)

For all W_{0} with $\rho_{n}=1$, one has whp

$$
\delta_{\square}\left(\tilde{f}_{\mathbf{A}}, W_{0}\right) \lesssim \frac{1}{\sqrt{\log (n)}} .
$$

Valid for all graphons!

Theorem (Klopp and $V_{\text {.. '17 }}$)

For all $W_{0} \in \mathcal{W}[k]$ and $\rho_{n}>0$, we have

$$
\mathbf{E}_{W_{0}}\left[\delta_{\square}\left(\widetilde{f}_{\mathbf{A}}, f_{0}\right)\right] \lesssim \rho_{n} \min \left(\sqrt{\frac{k}{n \log (k)}}, \frac{1}{\sqrt{\log (n)}}\right)+\sqrt{\frac{\rho_{n}}{n}}
$$

- Similar bound for the SVT estimator $\widetilde{f}_{\widetilde{\Theta}_{\lambda}}$
- This convergence rate is optimal
(i) Weakly sparse graphs Agnostic error dominates.
(ii) Moderately sparse graphs Probability Matrix Estimation error dominates.
- Non-parametric viewpoint on network analysis
- Identifiability Caveats
- Importance of the metric choice
- Good behavior of universal Singular Value Thresholding estimator.
- Computational barriers for estimation in δ_{2} ?
- Less results for L_{p} graphons (Borgs et al. '16) and graphex
- Incorporating some geometry into estimation
\rightsquigarrow Functional Estimation (e.g. Issartel'17+)

Thank You!

