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Network model

Network analysis is ubiquitous in social sciences, genomics, ecology,. . .

East-river trophic network [Yoon et al.(04)]

Objectives :

Graph Visualization

Backbone estimation

Node clustering

Approach

The modeling of real networks
as random graphs.

Model-based statistical analysis.
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Graph Notation

A (simple, undirected graph) G = (E,V) consists of

a set of vertices V = {1, . . . n}
a set of edges E ⊂ {{i, j} : i, j ∈ V and i 6= j}

2

3

4
5

1

A =


0 1 0 0 1
1 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0



The corresponding adjacency matrix is denoted A = (Ai,j) ∈ {0, 1}n×n, where
Ai,j = 1⇔ (i, j) ∈ E
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Stochastic Block-Model (SBM) Holland et al. ’80

A mixture model for random graphs : K classes.

SBM popular for clustering applications : generate graphs with a community structure

Latent labels : each node i belongs to class k with probability πk :

{ξi}i IID, ξi ∼M(1;π) ,

where π = (π1, . . . , πK).

Observed edges : (Aij) are conditionally independent given the ξi’s :

(Aij |ξi = k, ξj = l) ∼ B(Qk,l)

The symmetric K ×K matrix Q is called the connectivity matrix.

(Basic approximation unit for more complex models)
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Latent space models (Hoff et al.,’02)

Definition

ξi = unobserved position of node i in a
latent space. e.g. ξi ∼ U([0, 1]2)

Edges Aij independent given ξi,

P[Aij = 1] = γ(‖ξi − ξj‖2

with γ : R+ → [0, 1].
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W -random Graph Model Diaconis & Janson(’06)
SBM do not allow to analyze the fine structure of extremely large networks

 Non-parametric models

Graphons

A graphon is a triplet (Ω, π,W ) where :

(Ω, π) is a Borel Probability space

W : Ω× Ω 7→ [0, 1] measurable

W -Random graph

W -random graph model of size n associated to (Ω, π,W ) :

ξ = (ξ1, . . . , ξn) are sampled on Ω according to π.

For each i < j, Aij = 1 with probability W (ξi, ξj).

Notation : PnW xorresponding distribution (PW := P∞W )
Θ0 defined by Θij = W (ξi, ξj) for i 6= j

Remarks
E[A|ξ] = Θ0  cond. to ξ, inhomogeneous random graph with Matrix Θ0.

If W is a k step-function, A SBM with k blocks
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Universality of W -random graph model.

Let A : N× N→ {0, 1} symmetric = the adjacency function of an infinite graph
For τ permutation, Aτ defined by Aτ [i, j] = A[τ(i), τ(j)].

Joint Exchangeability

The distribution of A is jointly exchangeable if

A ∼ Aτ , for any permutation τ.

Theorem (Aldous-Hoover Representation Theorem(’79))

If the distribution of A is jointly exchangeable, then there exists µ such that

(Ω, π,W ) ∼ µ

[A|(Ω, π,W )] ∼ PW

 W -random graph distribution correspond to extremal points of the set of jointly
exchangeable distributions.
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Sparse Graphons

For W -random graph, EW [#E] � n2  Realized graphs are dense

Sparse Graphon Models

(Ω, π,W, ρn) with ρn →n→∞ 0.

1 Sample ξ according to π

2 For each i < j, draw an edge between i and j with probability ρnW (ξi, ξj)

Other methods :

Lp graphon (e.g Borgs et al.(’15))

Graphex (e.g.Veitch & Roy(’16))
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1 Graphon Model

2 Towards Graphon Estimation

3 δ� and δ2 Estimation of sparse Graphons
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Objective

Given an observation A, goal = infering the graphon (Ω, π,W ) in some sense...

Caveats :

Identifiability

Loss functions

Approximation class

Lemma

(Ω, π,W ) graphon
τ : (Ω′, π′) 7→ (Ω, π) measure-preserving
W τ be such that W τ (x, y) := W (τ(x), τ(y)). Then PW = PWτ .

Two Consequences :

Triplet (Ω, π,W ) is not identifiable

Sufficient to consider graphons on ([0, 1], λ) [but problematic]
 W : space of graphons on ([0, 1], λ).

12/24



Objective

Given an observation A, goal = infering the graphon (Ω, π,W ) in some sense...

Caveats :

Identifiability

Loss functions

Approximation class

Lemma

(Ω, π,W ) graphon
τ : (Ω′, π′) 7→ (Ω, π) measure-preserving
W τ be such that W τ (x, y) := W (τ(x), τ(y)). Then PW = PWτ .

Two Consequences :

Triplet (Ω, π,W ) is not identifiable

Sufficient to consider graphons on ([0, 1], λ) [but problematic]
 W : space of graphons on ([0, 1], λ).

12/24



Identifiability (fd)

Even Restricting to ([0, 1], λ), the topology of a network invariant wrt node labeling
change :

Weak isomorphism

Two graphons U and W are weakly isomorphic if there exist measure preserving
maps φ, ψ : [0, 1]→ [0, 1] such that Uφ = Wψ almost everywhere.

Proposition (Lovász(’12))

PU = PW if and only if U and W are weakly isomorphic.

 one can only perform inference in W̃ (equivalence classes of W wrt weak
isomorphism)
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Metrics/Loss functions on W̃

Distance betw. graphs  Distance betw.graphons  Distance bet. equivalence
classes

Distance on Graphs :
‖A−B‖2 := 1

n

√∑
ij(Aij −Bij)2  Frobenius distance

‖A−B‖� := 1
n2 max
S,T⊂[n]

∣∣∣ ∑
i∈S,j∈T

Aij −Bij

∣∣∣  Cut Distance

Norms on Graphons :
‖W‖2 := [

∫
[0,1]2 W

2(x, y)dxdy]1/2  Frobenius norm

‖W‖� := sup
S,T⊂[0,1]

∣∣∣ ∫S×T W (x, y)dxdy
∣∣∣  Cut norm (cornerstone of graph limits)

Distances on W̃.
M : Measure-preserving bijections τ : [0, 1]→ [0, 1]
l2 distance δ2(W,W1) := inf

τ∈M
‖W −W τ

1 ‖2
Cut distance δ�(W,W1) := inf

τ∈M
‖W −W τ

1 ‖�

These metrics are not equivalent : δ�(W, Ŵ ) ≤ δ2(W, Ŵ )
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14/24



Metrics/Loss functions on W̃

Distance betw. graphs  Distance betw.graphons  Distance bet. equivalence
classes

Distance on Graphs :
‖A−B‖2 := 1

n

√∑
ij(Aij −Bij)2  Frobenius distance

‖A−B‖� := 1
n2 max
S,T⊂[n]

∣∣∣ ∑
i∈S,j∈T

Aij −Bij

∣∣∣  Cut Distance

Norms on Graphons :
‖W‖2 := [

∫
[0,1]2 W

2(x, y)dxdy]1/2  Frobenius norm

‖W‖� := sup
S,T⊂[0,1]

∣∣∣ ∫S×T W (x, y)dxdy
∣∣∣  Cut norm (cornerstone of graph limits)

Distances on W̃.
M : Measure-preserving bijections τ : [0, 1]→ [0, 1]
l2 distance δ2(W,W1) := inf

τ∈M
‖W −W τ

1 ‖2
Cut distance δ�(W,W1) := inf

τ∈M
‖W −W τ

1 ‖�

These metrics are not equivalent : δ�(W, Ŵ ) ≤ δ2(W, Ŵ )
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Regularity Lemma and approximation by SBMs

Proposition (Szemerédi (’75), Frieze and Kannan (’99))

For any W ∈ W and any k, there exists a k-step graphon Wk such that

‖W −Wk‖� .
1√

log(k)

This rate is universal !

SBM as basic stones for approximating graphons

Obviously false for δ2 : similar to histograms in classical Nonparametric Estimation
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Estimating f0 = ρnW0

ρnW0 −→ Θ0 −→ A

General Scheme :
1 Estimating the matrix Θ0 := E[A|ξ] by Θ̂.
2 From matrix to graphon. Given Θ, define the empirical graphon f̃Θ as the n

piecewise constant function :

f̃Θ(x, y) = Θdnxe,dnye, x, y ∈ [0, 1]

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lemma

For any estimator Θ̂ and any norm N ,

E
[
δN (f̃

Θ̂
, f0)

]
≤ E

[
‖Θ̂−Θ0‖N

]
+ E

[
δN

(
f̃Θ0

, f0
)]

︸ ︷︷ ︸
agnostic error

17/24



Estimating f0 = ρnW0

ρnW0 −→ Θ0 −→ A

General Scheme :
1 Estimating the matrix Θ0 := E[A|ξ] by Θ̂.
2 From matrix to graphon. Given Θ, define the empirical graphon f̃Θ as the n

piecewise constant function :

f̃Θ(x, y) = Θdnxe,dnye, x, y ∈ [0, 1]

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lemma

For any estimator Θ̂ and any norm N ,

E
[
δN (f̃

Θ̂
, f0)

]
≤ E

[
‖Θ̂−Θ0‖N

]
+ E

[
δN

(
f̃Θ0

, f0
)]

︸ ︷︷ ︸
agnostic error

17/24



Estimating Θ0

Raw data : A

Restricted Least Squares estimator : (RLS) Wolfe & Olhlede (’13), Borgs et
al.(’15), Klopp, Tsybakov, V.(’17), Gao et al.(’17)

Θ̃λ ∈ arg min
Θ∈SBM(k): ‖Θ‖∞≤r

‖A−Θ‖22,

where r ∈ (0, 1) and SBM(k) space of k block-constant matrix.
(Θ̂

r
k is not polynomial-time computable)

Singular Value Thresholding : Θ̃λ e.g. Chatterjee(’12), Klopp & V.(’17)

Θ̃λ := Σ
j:σj(A)≥λ

σj(A)uj(A)vj(A)T ,
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Probability Matrix Estimation in ‖.‖2
Theorem (Oracle inequalityKlopp, Tsybakov, V.(’17))

For any Θ0 such that ‖Θ0‖∞ ≤ r,

E
[
‖Θ̂r

k −Θ0‖22
]
. min

Θ∈SBM(k)
‖Θ0 −Θ‖22 + r

(
log k

n
+
k2

n2

)
(Minimax optimal over SBM(k) ∩ B∞(r)) (Gao et al. (’15))

Two terms :
k2

n2  parametric rate (k(k + 1)/2 parameter to estimate)
n log(k)

n2  clustering rate (of order kn possible partitions)

SVT estimator

Fix λ = c
√
n‖Θ0‖∞. For all k,

E[‖Θ̃λ −Θ0‖22] . min
Θ∈SBM(k)

‖Θ0 −Θ‖22 +
‖Θ0‖∞k

n
,

Loss of order
k

log(k)
∧
n

k
wrt RLS estimators

Best known polynomial time bound
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δ2 Graphon Estimation for k-step functions

W[k] : Collection of k-Step function graphons
Here f0 = ρnW0 with W ∈ W[k]

Proposition

E
[
δ2
(
f̃Θ0

, f0
)]
. ρ2n

√
k

n

If ρn ≤ r then for RLS

E
[
δ2
(
f
Θ̂
r
k
, f0
)]
. ρn

(
k2

n2
+

log(k)

n

)
+ ρ2n

√
k

n

For SVT

E
[
δ2
(
f
Θ̃λ

, f0
)]
. ρn

k

n
+ ρ2n

√
k

n

(RLS is Minimax optimal (up to possible log(k) term)) Klopp et al. (’17)

(i) Weakly sparse graphs : =⇒ the agnostic error dominates.

(ii) Moderately sparse graphs : =⇒ the Probability matrix estimation error
dominates

(iii) Highly sparse graphs : The null estimator f̃ ≡ 0 is of smaller order
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Probability Matrix Estimation in cut norm

Proposition

For any probability matrix Θ0 such that ‖Θ0‖∞ ≥ 1/n,

E [‖A−Θ0‖�] ≤ 12

√
‖Θ0‖∞

n

Valid for all matrices Θ0. Optimal convergence rate (even for simple classes
such as two-block matrices)

More refined estimators (SVT) do not decrease the performances but RLS may
be biased.
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Graphon Estimation in Cut distance

Theorem ((Consequence of Szemeredi’s Lemma) Lovász, ’12)

For all W0 with ρn = 1, one has whp

δ�

(
f̃A,W0

)
.

1√
log(n)

.

Valid for all graphons !

Theorem (Klopp and V., ’17)

For all W0 ∈ W[k] and ρn > 0, we have

EW0

[
δ�

(
f̃A, f0

)]
. ρn min

(√
k

n log(k)
,

1√
log(n)

)
+

√
ρn

n

Similar bound for the SVT estimator f̃
Θ̃λ

This convergence rate is optimal

(i) Weakly sparse graphs Agnostic error dominates.

(ii) Moderately sparse graphs Probability Matrix Estimation error dominates.
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Discussion

Non-parametric viewpoint on network analysis

Identifiability Caveats

Importance of the metric choice

Good behavior of universal Singular Value Thresholding estimator.

Computational barriers for estimation in δ2 ?

Less results for Lp graphons (Borgs et al.’16) and graphex

Incorporating some geometry into estimation
 Functional Estimation (e.g. Issartel’17+)
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Thank You !
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