On Graphon Estimation

Nicolas Verzelen

INRA, Montpellier

(Based on Joint Work with Olga Klopp and Alexander Tsybakov)

CIRM Luminy - July 10th

Network analysis is ubiquitous in social sciences, genomics, ecology,...

East-river trophic network [Yoon et al.(04)]

Objectives :

- Graph Visualization
- Backbone estimation
- Node clustering

Approach

- The modeling of real networks as random graphs.
- Model-based statistical analysis.

3 δ_{\Box} and δ_2 Estimation of sparse Graphons

Graph Notation

A (simple, undirected graph) $\mathcal{G} = (\mathcal{E}, \mathcal{V})$ consists of

Graph Notation

A (simple, undirected graph) $\mathcal{G} = (\mathcal{E}, \mathcal{V})$ consists of

The corresponding adjacency matrix is denoted $\mathbf{A} = (\mathbf{A}_{i,j}) \in \{0,1\}^{n \times n}$, where $\mathbf{A}_{i,j} = 1 \Leftrightarrow (i,j) \in E$

A mixture model for random graphs : K classes.

SBM popular for clustering applications : generate graphs with a community structure **Latent labels :** each node *i* belongs to class *k* with probability π_k :

 $\{\xi_i\}_i \text{ IID}, \ \xi_i \sim \mathcal{M}(1;\pi) \ ,$

where $\pi = (\pi_1, ..., \pi_K)$.

Observed edges : (\mathbf{A}_{ij}) are conditionally independent given the ξ_i 's :

$$(\mathbf{A}_{ij}|\xi_i = k, \ \xi_j = l) \sim \mathcal{B}(\mathbf{Q}_{k,l})$$

The symmetric $K \times K$ matrix \mathbf{Q} is called the connectivity matrix.

(Basic approximation unit for more complex models)

Latent space models (Hoff et al., '02)

Definition

- ξ_i = unobserved position of node i in a latent space. e.g. $\xi_i \sim \mathcal{U}([0,1]^2)$
- Edges A_{ij} independent given ξ_i ,

$$\mathbb{P}[\mathbf{A}_{ij}=1] = \gamma(\|\xi_i - \xi_j\|_2)$$

with $\gamma : \mathbb{R}^+ \to [0, 1]$.

Latent space models (Hoff et al., '02).

Definition

- ξ_i = unobserved position of node i in a latent space. e.g. $\xi_i \sim \mathcal{U}([0,1]^2)$
- Edges A_{ij} independent given ξ_i ,

$$\mathbb{P}[\mathbf{A}_{ij}=1] = \gamma(\|\xi_i - \xi_j\|_2)$$

with $\gamma : \mathbb{R}^+ \to [0, 1]$.

W-random Graph Model Diaconis & Janson('06)

SBM do not allow to analyze the fine structure of extremely large networks \rightsquigarrow Non-parametric models

Graphons

A graphon is a triplet (Ω, π, W) where :

- (Ω, π) is a Borel Probability space
- $W: \Omega \times \Omega \mapsto [0,1]$ measurable

W-random Graph Model Diaconis & Janson('06)

SBM do not allow to analyze the fine structure of extremely large networks \rightsquigarrow Non-parametric models

Graphons

A graphon is a triplet (Ω, π, W) where :

- (Ω, π) is a Borel Probability space
- $W: \Omega \times \Omega \mapsto [0,1]$ measurable

W-Random graph

W-random graph model of size n associated to (Ω, π, W) :

- $\xi = (\xi_1, \dots, \xi_n)$ are sampled on Ω according to π .
- For each i < j, $\mathbf{A}_{ij} = 1$ with probability $W(\xi_i, \xi_j)$.

Notation :
$$\mathbb{P}_W^n$$
 xorresponding distribution ($\mathbb{P}_W := \mathbb{P}_W^\infty$)
 Θ_0 defined by $\Theta_{ij} = W(\xi_i, \xi_j)$ for $i \neq j$

Remarks

- $\mathbb{E}[\mathbf{A}|\boldsymbol{\xi}] = \boldsymbol{\Theta}_0 \rightsquigarrow \text{ cond. to } \boldsymbol{\xi}, \text{ inhomogeneous random graph with Matrix } \boldsymbol{\Theta}_0.$
- If W is a k step-function, A SBM with k blocks

Universality of *W*-random graph model.

Let $\underline{\mathbf{A}}: \mathbb{N} \times \mathbb{N} \to \{0, 1\}$ symmetric = the adjacency function of an infinite graph For τ permutation, $\underline{\mathbf{A}}^{\tau}$ defined by $\underline{\mathbf{A}}^{\tau}[i, j] = \underline{\mathbf{A}}[\tau(i), \tau(j)].$

Joint Exchangeability

The distribution of $\underline{\mathbf{A}}$ is jointly exchangeable if

 $\underline{\mathbf{A}} \sim \underline{\mathbf{A}}^{\tau} \ , \qquad \text{for any permutation } \tau.$

Theorem (Aldous-Hoover Representation Theorem('79))

If the distribution of $\underline{\mathbf{A}}$ is jointly exchangeable, then there exists μ such that

 $(\Omega, \pi, W) \sim \mu$ $[\mathbf{A}|(\Omega, \pi, W)] \sim \mathbb{P}_W$

 \rightsquigarrow $W\mbox{-}{\rm random}$ graph distribution correspond to extremal points of the set of jointly exchangeable distributions.

For $W\text{-}\mathsf{random}$ graph, $\mathbb{E}_W[\#E] \asymp n^2 \rightsquigarrow \mathsf{Realized}$ graphs are dense

Sparse Graphon Models

- (Ω, π, W, ρ_n) with $\rho_n \to_{n \to \infty} 0$.
 - **1** Sample ξ according to π
 - **2** For each i < j, draw an edge between i and j with probability $\rho_n W(\xi_i, \xi_j)$

Other methods :

- L_p graphon (e.g Borgs et al.('15))
- Graphex (e.g.Veitch & Roy('16))

Objective

Given an observation A, goal = infering the graphon (Ω, π, W) in some sense...

Caveats :

- Identifiability
- Loss functions
- Approximation class

Objective

Given an observation A, goal = infering the graphon (Ω, π, W) in some sense...

Caveats :

- Identifiability
- Loss functions
- Approximation class

Lemma

 (Ω, π, W) graphon $\tau : (\Omega', \pi') \mapsto (\Omega, \pi)$ measure-preserving W^{τ} be such that $W^{\tau}(x, y) := W(\tau(x), \tau(y))$. Then $\mathbb{P}_W = \mathbb{P}_{W^{\tau}}$.

Two Consequences :

- Triplet (Ω, π, W) is not identifiable
- Sufficient to consider graphons on $([0,1], \lambda)$ [but problematic] $\rightsquigarrow \mathcal{W}$: space of graphons on $([0,1], \lambda)$.

Even Restricting to $([0,1],\lambda),$ the topology of a network invariant wrt node labeling change :

Weak isomorphism

Two graphons U and W are weakly isomorphic if there exist measure preserving maps ϕ , ψ : $[0,1] \rightarrow [0,1]$ such that $U^{\phi} = W^{\psi}$ almost everywhere.

Even Restricting to $([0,1],\lambda),$ the topology of a network invariant wrt node labeling change :

Weak isomorphism

Two graphons U and W are weakly isomorphic if there exist measure preserving maps ϕ , ψ : $[0,1] \rightarrow [0,1]$ such that $U^{\phi} = W^{\psi}$ almost everywhere.

Proposition (Lovász('12))

 $\mathbb{P}_U = \mathbb{P}_W$ if and only if U and W are weakly isomorphic.

 \rightsquigarrow one can only perform inference in $\widetilde{\mathcal{W}}$ (equivalence classes of $\mathcal W$ wrt weak isomorphism)

Distance betw. graphs \rightsquigarrow Distance betw.graphons \rightsquigarrow Distance bet. equivalence classes

Distance on Graphs :

$$\begin{split} \|\mathbf{A} - \mathbf{B}\|_2 &:= \frac{1}{n} \sqrt{\sum_{ij} (\mathbf{A}_{ij} - \mathbf{B}_{ij})^2} \rightsquigarrow \text{Frobenius distance} \\ \|\mathbf{A} - \mathbf{B}\|_{\Box} &:= \frac{1}{n^2} \max_{S, T \subset [n]} \left| \sum_{i \in S, j \in T} \mathbf{A}_{ij} - \mathbf{B}_{ij} \right| \rightsquigarrow \text{Cut Distance} \end{split}$$

Distance betw. graphs \rightsquigarrow Distance betw.graphons \rightsquigarrow Distance bet. equivalence classes

Distance on Graphs :

$$\|\mathbf{A} - \mathbf{B}\|_{2} := \frac{1}{n} \sqrt{\sum_{ij} (\mathbf{A}_{ij} - \mathbf{B}_{ij})^{2}} \rightsquigarrow \text{Frobenius distance}$$
$$\|\mathbf{A} - \mathbf{B}\|_{\Box} := \frac{1}{n^{2}} \max_{S, T \subset [n]} \left| \sum_{i \in S, j \in T} \mathbf{A}_{ij} - \mathbf{B}_{ij} \right| \rightsquigarrow \text{Cut Distance}$$

Norms on Graphons :

$$||W||_2 := [\int_{[0,1]^2} W^2(x,y) dx dy]^{1/2} \rightsquigarrow \text{ Frobenius norm}$$

$$||W||_{\Box} := \sup_{S,T \subset [0,1]} \left| \int_{S \times T} W(x,y) dx dy \right| \rightsquigarrow \text{Cut norm (cornerstone of graph limits)}$$

Distance betw. graphs \rightsquigarrow Distance betw.graphons \rightsquigarrow Distance bet. equivalence classes

Distance on Graphs :

$$\|\mathbf{A} - \mathbf{B}\|_{2} := \frac{1}{n} \sqrt{\sum_{ij} (\mathbf{A}_{ij} - \mathbf{B}_{ij})^{2}} \rightsquigarrow \text{Frobenius distance}$$
$$\|\mathbf{A} - \mathbf{B}\|_{\Box} := \frac{1}{n^{2}} \max_{S, T \subset [n]} \left| \sum_{i \in S, j \in T} \mathbf{A}_{ij} - \mathbf{B}_{ij} \right| \rightsquigarrow \text{Cut Distance}$$

Norms on Graphons :

$$||W||_2 := [\int_{[0,1]^2} W^2(x,y) dx dy]^{1/2} \rightsquigarrow \text{ Frobenius norm}$$

$$||W||_{\Box} := \sup_{S,T \subset [0,1]} \left| \int_{S \times T} W(x,y) dx dy \right| \rightsquigarrow \text{Cut norm (cornerstone of graph limits)}$$

Distances on $\widetilde{\mathcal{W}}$. \mathcal{M} : Measure-preserving bijections $\tau : [0,1] \rightarrow [0,1]$ l_2 distance $\delta_2(W, W_1) := \inf_{\tau \in \mathcal{M}} ||W - W_1^{\tau}||_2$ Cut distance $\delta_{\Box}(W, W_1) := \inf_{\tau \in \mathcal{M}} ||W - W_1^{\tau}||_{\Box}$

Distance betw. graphs \rightsquigarrow Distance betw.graphons \rightsquigarrow Distance bet. equivalence classes

Distance on Graphs :

$$\|\mathbf{A} - \mathbf{B}\|_{2} := \frac{1}{n} \sqrt{\sum_{ij} (\mathbf{A}_{ij} - \mathbf{B}_{ij})^{2}} \rightsquigarrow \text{Frobenius distance}$$
$$\|\mathbf{A} - \mathbf{B}\|_{\Box} := \frac{1}{n^{2}} \max_{S, T \subset [n]} \left| \sum_{i \in S, j \in T} \mathbf{A}_{ij} - \mathbf{B}_{ij} \right| \rightsquigarrow \text{Cut Distance}$$

Norms on Graphons :

$$||W||_{2} := [\int_{[0,1]^{2}} W^{2}(x,y) dx dy]^{1/2} \rightsquigarrow \text{ Frobenius norm}$$

$$||W||_{\Box} := \sup_{S,T \subset [0,1]} \left| \int_{S \times T} W(x,y) dx dy \right| \rightsquigarrow \text{Cut norm (cornerstone of graph limits)}$$

Distances on $\widetilde{\mathcal{W}}$. \mathcal{M} : Measure-preserving bijections $\tau : [0, 1] \rightarrow [0, 1]$ l_2 distance $\delta_2(W, W_1) := \inf_{\tau \in \mathcal{M}} ||W - W_1^{\tau}||_2$ Cut distance $\delta_{\Box}(W, W_1) := \inf_{\tau \in \mathcal{M}} ||W - W_1^{\tau}||_{\Box}$

These metrics are not equivalent : $\delta_{\Box}(W,\widehat{W}) \leq \delta_2(W,\widehat{W})$

Regularity Lemma and approximation by SBMs

Proposition (Szemerédi ('75), Frieze and Kannan ('99))

For any $W \in \mathcal{W}$ and any k, there exists a k-step graphon W_k such that

$$\|W - W_k\|_{\square} \lesssim \frac{1}{\sqrt{\log(k)}}$$

This rate is universal!

Regularity Lemma and approximation by SBMs

Proposition (Szemerédi ('75), Frieze and Kannan ('99))

For any $W \in \mathcal{W}$ and any k, there exists a k-step graphon W_k such that

$$\|W - W_k\|_{\Box} \lesssim \frac{1}{\sqrt{\log(k)}}$$

This rate is universal!

SBM as basic stones for approximating graphons

Regularity Lemma and approximation by SBMs

Proposition (Szemerédi ('75), Frieze and Kannan ('99))

For any $W \in \mathcal{W}$ and any k, there exists a k-step graphon W_k such that

$$\|W - W_k\|_{\Box} \lesssim \frac{1}{\sqrt{\log(k)}}$$

This rate is universal!

SBM as basic stones for approximating graphons

Obviously false for δ_2 : similar to histograms in classical Nonparametric Estimation

Estimating $f_0 = \rho_n W_0$

 $\rho_n W_0 \longrightarrow \Theta_0 \longrightarrow \mathbf{A}$

General Scheme :

- **1** Estimating the matrix $\Theta_0 := \mathbb{E}[\mathbf{A}|\xi]$ by $\widehat{\Theta}$.
- **2** From matrix to graphon. Given Θ , define the **empirical graphon** \tilde{f}_{Θ} as the *n* piecewise constant function :

$$\widetilde{f}_{\boldsymbol{\Theta}}(x,y) = \boldsymbol{\Theta}_{\lceil nx\rceil, \lceil ny\rceil}, \qquad x,y \in [0,1]$$

Estimating $f_0 = \rho_n W_0$

 $\rho_n W_0 \longrightarrow \Theta_0 \longrightarrow \mathbf{A}$

General Scheme :

- **1** Estimating the matrix $\Theta_0 := \mathbb{E}[\mathbf{A}|\boldsymbol{\xi}]$ by $\widehat{\Theta}$.
- **2** From matrix to graphon. Given Θ , define the **empirical graphon** \tilde{f}_{Θ} as the *n* piecewise constant function :

$$\widetilde{f}_{\boldsymbol{\Theta}}(x,y) = \boldsymbol{\Theta}_{\lceil nx \rceil, \lceil ny \rceil}, \qquad x,y \in [0,1]$$

Lemma

For any estimator $\widehat{\Theta}$ and any norm N,

$$\mathbf{E}\left[\delta_{N}(\widetilde{f}_{\widehat{\mathbf{\Theta}}}, f_{0})\right] \leq \mathbf{E}\left[\|\widehat{\mathbf{\Theta}} - \mathbf{\Theta}_{0}\|_{N}\right] + \underbrace{\mathbf{E}\left[\delta_{N}\left(\widetilde{f}_{\mathbf{\Theta}_{0}}, f_{0}\right)\right]}_{\text{opportion opposition opposition$$

agnostic error

Raw data : A

Restricted Least Squares estimator : (RLS) Wolfe & Olhlede ('13), Borgs et al.('15), Klopp, Tsybakov, V.('17), Gao et al.('17)

$$\widetilde{\boldsymbol{\Theta}}_{\lambda} \in \arg \min_{\boldsymbol{\Theta} \in \mathrm{SBM}(k): \|\boldsymbol{\Theta}\|_{\infty} \leq \mathbf{r}} \|\mathbf{A} - \boldsymbol{\Theta}\|_{2}^{2},$$

where $r \in (0, 1)$ and SBM(k) space of k block-constant matrix. $(\widehat{\Theta}_k^r \text{ is not polynomial-time computable})$

Singular Value Thresholding : $\widetilde{\Theta}_{\lambda}$ e.g. Chatterjee('12), Klopp & V.('17)

$$\widetilde{\boldsymbol{\Theta}}_{\lambda} := \sum_{j:\sigma_j(\mathbf{A}) \ge \lambda} \sigma_j(\mathbf{A}) u_j(\mathbf{A}) v_j(\mathbf{A})^T ,$$

Probability Matrix Estimation in $\|.\|_2$

Theorem (Oracle inequality Klopp, Tsybakov, V.('17))

For any Θ_0 such that $\|\Theta_0\|_{\infty} \leq r$,

$$\mathbb{E}\left[\|\widehat{\boldsymbol{\Theta}}_k^r - \boldsymbol{\Theta}_0\|_2^2\right] \lesssim \min_{\boldsymbol{\Theta} \in \mathrm{SBM}(k)} \|\boldsymbol{\Theta}_0 - \boldsymbol{\Theta}\|_2^2 + r\left(\frac{\log k}{n} + \frac{k^2}{n^2}\right)$$

(Minimax optimal over $\mathrm{SBM}(k) \cap \mathcal{B}_{\infty}(r)$) (Gao et al. ('15))

Two terms :

- $\frac{k^2}{n^2} \rightsquigarrow$ parametric rate (k(k+1)/2 parameter to estimate)
- $\frac{n \log(k)}{n^2} \rightsquigarrow$ clustering rate (of order k^n possible partitions)

Probability Matrix Estimation in $\|.\|_2$

Theorem (Oracle inequality Klopp, Tsybakov, V.('17))

For any Θ_0 such that $\|\Theta_0\|_{\infty} \leq r$,

$$\mathbb{E}\left[\|\widehat{\boldsymbol{\Theta}}_k^r - \boldsymbol{\Theta}_0\|_2^2\right] \lesssim \min_{\boldsymbol{\Theta} \in \mathrm{SBM}(k)} \|\boldsymbol{\Theta}_0 - \boldsymbol{\Theta}\|_2^2 + r\left(\frac{\log k}{n} + \frac{k^2}{n^2}\right)$$

(Minimax optimal over $\mathrm{SBM}(k) \cap \mathcal{B}_{\infty}(r)$) (Gao et al. ('15))

Two terms :

- $\frac{k^2}{n^2} \rightsquigarrow \text{ parametric rate } (k(k+1)/2 \text{ parameter to estimate})$
- $\frac{n \log(k)}{n^2} \rightsquigarrow$ clustering rate (of order k^n possible partitions)

SVT estimator

Fix
$$\lambda = c\sqrt{n\|\mathbf{\Theta}_0\|_{\infty}}$$
. For all k

$$\mathbb{E}[\|\widetilde{\boldsymbol{\Theta}}_{\lambda} - \boldsymbol{\Theta}_{0}\|_{2}^{2}] \lesssim \min_{\boldsymbol{\Theta} \in \mathrm{SBM}(k)} \|\boldsymbol{\Theta}_{0} - \boldsymbol{\Theta}\|_{2}^{2} + \frac{\|\boldsymbol{\Theta}_{0}\|_{\infty}k}{n} ,$$

Loss of order $\frac{k}{\log(k)} \wedge \frac{n}{k}$ wrt RLS estimators

Best known polynomial time bound

δ_2 Graphon Estimation for k-step functions

 $\mathcal{W}[k]: \text{Collection of }k\text{-Step function graphons}\\ \text{Here }f_0=\rho_n W_0 \text{ with }W\in \mathcal{W}[k] \\$

Proposition

$$\mathbb{E}\left[\delta^2\left(\widetilde{f}_{\mathbf{\Theta}_0}, f_0\right)\right] \lesssim \rho_n^2 \sqrt{\frac{k}{n}}$$

If $\rho_n \leq r$ then for RLS

$$\mathbb{E}\left[\delta^2\left(f_{\widehat{\boldsymbol{\Theta}}_k^r}, f_0\right)\right] \lesssim \rho_n\left(\frac{k^2}{n^2} + \frac{\log(k)}{n}\right) + \rho_n^2\sqrt{\frac{k}{n}}$$

δ_2 Graphon Estimation for k-step functions

 $\mathcal{W}[k]: \text{Collection of }k\text{-Step function graphons}\\ \text{Here }f_0=\rho_n W_0 \text{ with }W\in \mathcal{W}[k] \\$

Proposition

$$\mathbb{E}\left[\delta^2\left(\widetilde{f}_{\mathbf{\Theta}_0}, f_0\right)\right] \lesssim \rho_n^2 \sqrt{\frac{k}{n}}$$

If $\rho_n \leq r$ then for RLS

$$\mathbb{E}\left[\delta^2\left(f_{\widehat{\boldsymbol{\Theta}}_k^r}, f_0\right)\right] \lesssim \rho_n\left(\frac{k^2}{n^2} + \frac{\log(k)}{n}\right) + \rho_n^2\sqrt{\frac{k}{n}}$$

For SVT

$$\mathbb{E}\left[\delta^2\left(f_{\widetilde{\boldsymbol{\Theta}}_{\lambda}},f_0\right)\right] \lesssim \rho_n \frac{k}{n} + \rho_n^2 \sqrt{\frac{k}{n}}$$

(RLS is Minimax optimal (up to possible log(k) term)) Klopp et al. ('17)

δ_2 Graphon Estimation for k-step functions

 $\mathcal{W}[k]: \text{Collection of } k\text{-Step function graphons}$ Here $f_0 = \rho_n W_0$ with $W \in \mathcal{W}[k]$

Proposition

$$\mathbb{E}\left[\delta^2\left(\widetilde{f}_{\mathbf{\Theta}_0}, f_0\right)\right] \lesssim \rho_n^2 \sqrt{\frac{k}{n}}$$

If $\rho_n \leq r$ then for RLS

$$\mathbb{E}\left[\delta^2\left(f_{\widehat{\boldsymbol{\Theta}}_k^r}, f_0\right)\right] \lesssim \rho_n\left(\frac{k^2}{n^2} + \frac{\log(k)}{n}\right) + \rho_n^2\sqrt{\frac{k}{n}}$$

For SVT

$$\mathbb{E}\left[\delta^2\left(f_{\widetilde{\mathbf{\Theta}}_{\lambda}}, f_0\right)\right] \lesssim \rho_n \frac{k}{n} + \rho_n^2 \sqrt{\frac{k}{n}}$$

(RLS is Minimax optimal (up to possible log(k) term)) Klopp et al. ('17)

- (i) Weakly sparse graphs : \implies the agnostic error dominates.
- (ii) Moderately sparse graphs : \implies the Probability matrix estimation error dominates
- (iii) Highly sparse graphs : The null estimator $\tilde{f} \equiv 0$ is of smaller order

Proposition

For any probability matrix Θ_0 such that $\|\Theta_0\|_{\infty} \ge 1/n$, $\mathbf{E} \left[\|\mathbf{A} - \Theta_0\|_{\Box}\right] \le 12\sqrt{\frac{\|\Theta_0\|_{\infty}}{n}}$

- Valid for all matrices Θ₀. Optimal convergence rate (even for simple classes such as two-block matrices)
- More refined estimators (SVT) do not decrease the performances but RLS may be biased.

Graphon Estimation in Cut distance

Theorem ((Consequence of Szemeredi's Lemma) Lovász, '12)

For all W_0 with $\rho_n = 1$, one has whp

$$\delta_{\Box}\left(ilde{f}_{\mathbf{A}}, W_0
ight) \lesssim rac{1}{\sqrt{\log(n)}}$$

Valid for all graphons!

Theorem (Klopp and V., '17)

For all $W_0 \in \mathcal{W}[k]$ and $\rho_n > 0$, we have

$$\mathbf{E}_{W_0}\left[\delta_{\Box}\left(\widetilde{f}_{\mathbf{A}}, f_0\right)\right] \lesssim \rho_n \min\left(\sqrt{\frac{k}{n\log(k)}}, \frac{1}{\sqrt{\log(n)}}\right) + \sqrt{\frac{\rho_n}{n}}$$

- Similar bound for the SVT estimator $\widetilde{f}_{\widetilde{\Theta}_{\lambda}}$
- This convergence rate is optimal

Graphon Estimation in Cut distance

Theorem ((Consequence of Szemeredi's Lemma) Lovász, '12)

For all W_0 with $\rho_n = 1$, one has whp

$$\delta_{\Box}\left(ilde{f}_{\mathbf{A}}, W_0
ight) \lesssim rac{1}{\sqrt{\log(n)}}$$

Valid for all graphons!

Theorem (Klopp and V., 17)

For all $W_0 \in \mathcal{W}[k]$ and $\rho_n > 0$, we have

$$\mathbf{E}_{W_0}\left[\delta_{\Box}\left(\widetilde{f}_{\mathbf{A}}, f_0\right)\right] \lesssim \rho_n \min\left(\sqrt{\frac{k}{n \log(k)}}, \frac{1}{\sqrt{\log(n)}}\right) + \sqrt{\frac{\rho_n}{n}}$$

- Similar bound for the SVT estimator $\widetilde{f}_{\widetilde{\Theta}_{\lambda}}$
- This convergence rate is optimal
- (i) Weakly sparse graphs Agnostic error dominates.
- (ii) Moderately sparse graphs Probability Matrix Estimation error dominates.

- Non-parametric viewpoint on network analysis
- Identifiability Caveats
- Importance of the metric choice
- Good behavior of universal Singular Value Thresholding estimator.
- Computational barriers for estimation in δ_2 ?
- Less results for L_p graphons (Borgs et al.'16) and graphex
- Incorporating some geometry into estimation ~→ Functional Estimation (e.g. Issartel'17+)

Thank You!