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Linear regression through quantiles

Koenker and Bassett (1978): replace E(Y |X ) = β0 + XTβ with

QY (τ | X ) = β0 + XTβ,

where

I τ is a response proportion of interest τ ,

I QY (τ | x) = inf{a : P(Y ≤ a | X ) ≥ τ} is the corresponding
(conditional) response quantile



Intensity trends of Atlantic tropical cyclones
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Obvious fact: In any serious application, one looks at multiple
response proportions τ



Salient features

I Analyze extreme and non-central response

– Peer group diversity helps low achievers in elementary school!

I Capture dependence beyond changes to the mean

– Regular vitamin intake does not improve plasma carotene level
on the average, but helps the top third of the population!

I Quantify differential predictor effects on response distribution

– Strongest tropical cyclones are getting stronger with time
quicker than mid-range and weak cyclones!



QR as an analytic tool

I Fits are assembled from separate single-τ analyses

I Estimated quantiles can cross (violates probability laws)

I Little borrowing of information across response distribution



P-values from cyclone intensity analysis

the inverse cumulative distribution function of the set of wind speeds
so that, for example, the 0.7 quantile is the value such that 70% of the
tropical cyclones have lifetime-maximum wind speeds below this
value (70th percentile).

Figure 1b shows global trends in tropical cyclone lifetime-max-
imum wind speeds for selected quantiles. Trends are near zero for the
lower quantiles (median and below), but are upward for the higher
quantiles, with the largest trends noted for the highest quantile (90th
percentile). The shading shows the 90% point-wise confidence band
about these trend estimates. Trends significantly above zero are seen
for quantiles above 0.7. The maximum wind speeds over the entire
period of record corresponding to the selected quantiles are also
displayed. For comparison, the red lines are from a least-squares
regression of maximum wind speed as a function of year, with the
solid line showing the trend of the mean lifetime-maximum wind
speed and the dashed lines indicating the 90% confidence limits
about this trend. We note that the trend value of approximately
0.15 m s21 yr21 interpolated from Fig. 1b at the 75th percentile
matches the slope value of the trend line corresponding to the upper
quartiles shown as the green line in Fig. 1a. The results clearly show
that the strongest tropical cyclones are getting stronger.

To examine whether these global increases are the result of trends
occurring in one or two tropical cyclone basins, we use quantile
regression to model the satellite-derived wind speeds from each basin
separately (Fig. 2). With the exception of the South Pacific Ocean, all
tropical cyclone basins show increases in the lifetime-maximum
wind speeds of the strongest storms. The increases are greatest for
cyclones over the North Atlantic and northern Indian oceans.
Consistent with earlier results, only over the North Atlantic is there
a significant increase in average tropical cyclone intensity. The width
of the confidence interval is inversely proportional to the number of
cyclones and proportional to the variability in wind speeds. We

display trends and associated standard errors and P values for
upper-quantile ($85th-percentile) lifetime-maximum wind speeds
in Table 1. We note significant (P , 0.05) increases for at least one
quantile level in all six basins, and upward trends in the wind speeds
of the strongest tropical cyclones in all basins for the highest quantile
considered (99th percentile), although not all trends at this extreme
quantile are statistically significant.

The potential intensity of a tropical cyclone is directly related to
SST below the cyclone, all else being equal5,6,17,18. Because the stron-
gest cyclones at their maxima are, on average, closest to their max-
imum potential intensities, increases in observed maximum wind
speeds should occur with SST at the upper quantiles. To test this,
we averaged Hadley Centre19 SST data over each of the six tropical
cyclone basins during the peak months of their respective tropical
cyclone seasons. The basin means are then averaged to obtain a global
tropics SST value for each year over the period 1981–2006. These
values are subsequently used instead of year in the quantile regres-
sion. The results are shown in Fig. 3a. Consistent with the theory, the
trends in units of metres per second per degree Celsius are positive for
the upper quantiles. For a 1 uC rise in SST, the results show an
increase of 1.9 6 2.9 m s21 (s.e.) in the value of the 80th percentile
and 6.5 6 4.2 m s21 in the value of the 90th percentile.
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Figure 2 | Trends in satellite-derived tropical cyclone lifetime-maximum
wind speeds from quantile regression. a, Western North Pacific Ocean
cyclones (cyclone count, 698); b, eastern North Pacific Ocean cyclones (423);
c, southern Indian Ocean cyclones (413); d, North Atlantic Ocean cyclones
(291); e, South Pacific Ocean cyclones (157); f, northern Indian Ocean
cyclones (115). The point-wise 90% confidence band is shown in grey, under
the assumption that the errors are independent and identically distributed.
Each solid red line is the trend from a least-squares regression of wind speed
as a function of year and the dashed red lines delineate the 90% point-wise
confidence band about this trend.

Table 1 | Summary statistics

Statistic Quantile

0.85 0.90 0.95 0.975 0.99

Global (2,097)

W (m s21) 51.9 55.8 62.6 68.8 75.9
Trend (m s21 yr21) 10.19 10.21 10.18 10.25 10.30
s.e. (m s21 yr21) 0.049 0.072 0.141 0.122 0.093
P ,0.001 0.003 0.212 0.044 0.001

Western North Pacific (698)

W (m s21) 58.9 63.7 69.6 73.1 77.6
Trend (m s21 yr21) 10.12 10.14 10.09 10.29 10.36
s.e. (m s21 yr21) 0.190 0.177 0.192 0.116 0.230
P 0.520 0.434 0.647 0.012 0.115

Eastern North Pacific (423)

W (m s21) 44.8 48.8 53.0 57.3 62.8
Trend (m s21 yr21) 10.11 10.16 10.33 10.46 10.80
s.e. (m s21 yr21) 0.117 0.156 0.160 0.184 NA
P 0.327 0.308 0.042 0.014 NA

Southern Indian (413)

W (m s21) 49.2 51.3 56.4 57.8 62.6
Trend (m s21 yr21) 10.28 10.29 10.44 10.43 10.69
s.e. (m s21 yr21) 0.065 0.145 0.177 0.178 0.353
P ,0.001 0.046 0.014 0.016 0.052

North Atlantic (291)

W (m s21) 48.9 54.8 60.3 72.7 77.8
Trend (m s21 yr21) 10.63 10.73 10.81 11.11 11.52
s.e. (m s21 yr21) 0.228 0.226 0.449 0.356 NA
P 0.006 0.001 0.073 0.002 NA

South Pacific (157)

W (m s21) 52.8 54.7 59.8 65.8 67.1
Trend (m s21 yr21) 20.04 20.23 20.37 20.06 10.46
s.e. (m s21 yr21) 0.174 0.227 0.214 0.563 0.210
P 0.803 0.313 0.088 0.914 0.030

Northern Indian (115)

W (m s21) 41.5 45.0 47.4 50.4 56.4
Trend (m s21 yr21) 10.48 10.42 10.69 10.83 10.87
s.e. (m s21 yr21) 0.224 0.220 0.222 NA NA
P 0.034 0.059 0.002 NA NA

Statistics are from a quantile regression of lifetime-maximum tropical cyclone wind speed
(derived from satellites) as a function of year, either globally or by tropical cyclone basin. Sample
size (number of tropical cyclones) is given in parentheses next to the basin name. Values are
shown for selected upper quantiles (0.85, 0.90, 0.95, 0.975, and 0.99). For each quantile, W
denotes the tropical cyclone lifetime-maximum wind speed over all cyclones in the basin and
over all years in the analysis (1981–2006). For some extreme quantiles the s.e., computed
assuming independent and identically distributed errors, and P value are not reliable and so are
reported as not available (NA).
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Figure 2 | Trends in satellite-derived tropical cyclone lifetime-maximum
wind speeds from quantile regression. a, Western North Pacific Ocean
cyclones (cyclone count, 698); b, eastern North Pacific Ocean cyclones (423);
c, southern Indian Ocean cyclones (413); d, North Atlantic Ocean cyclones
(291); e, South Pacific Ocean cyclones (157); f, northern Indian Ocean
cyclones (115). The point-wise 90% confidence band is shown in grey, under
the assumption that the errors are independent and identically distributed.
Each solid red line is the trend from a least-squares regression of wind speed
as a function of year and the dashed red lines delineate the 90% point-wise
confidence band about this trend.

Table 1 | Summary statistics

Statistic Quantile

0.85 0.90 0.95 0.975 0.99

Global (2,097)

W (m s21) 51.9 55.8 62.6 68.8 75.9
Trend (m s21 yr21) 10.19 10.21 10.18 10.25 10.30
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P ,0.001 0.003 0.212 0.044 0.001
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s.e. (m s21 yr21) 0.190 0.177 0.192 0.116 0.230
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W (m s21) 44.8 48.8 53.0 57.3 62.8
Trend (m s21 yr21) 10.11 10.16 10.33 10.46 10.80
s.e. (m s21 yr21) 0.117 0.156 0.160 0.184 NA
P 0.327 0.308 0.042 0.014 NA
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(derived from satellites) as a function of year, either globally or by tropical cyclone basin. Sample
size (number of tropical cyclones) is given in parentheses next to the basin name. Values are
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From Elsner, Kossin, and Jagger (2008) published in Nature Letters



A more complete picture
S.T. Tokdar and J.B. Kadane 53
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Figure 1: P-values from individual linear quantile regression analyses of north Atlantic
tropical cyclone intensity against time. A substantial fluctuation leads to di±culties in
drawing a composite inference.

ø2. Therefore, although one could calculate posterior probabilities such as P (Ø(ø) <
0 | data) for every individual ø -model, there is no coherent way to combine these
probabilities across ø values, as they each represent posterior belief under a diÆerent
model. Therefore, the issue of simultaneous inference remains unsolved (see, however,
Dunson and Taylor 2005; Lancaster and Jun 2010, who oÆer partial solutions based on
pseudo and empirical likelihoods).

A major obstacle in performing a simultaneous fitting of the joint model (2) appears
to be the monotonicity constraint that the map ø 7! QY (ø | x) must be increasing in
ø (non-decreasing if the distribution of Y has atoms) for every x 2 X , the domain of
X. This constraint puts stringent restrictions on the (Ø0(·), Ø(·)) curves that do not sit
well with the loss function minimization approach of Koenker and Bassett (1978). It
is possible to avoid the monotonicity problem altogether by specifying a nonparametric
model for the conditional distribution FY (y | x) and then inverting it to derive con-
ditional quantile curves QY (ø | x) (Scaccia and Green 2003; Geweke and Keane 2007;
Taddy and Kottas 2010). The resultant curves, however, lack the interpretability of the
linear model (2). This lack of interpretability could be a serious issue in studies where
linear coe±cients have meanings as rates of change with respect to input variables, such
as time or diet, that can be understood and interpreted by an expert.

In this paper we introduce a semi-parametric Bayesian framework for a simultaneous



In pursuit of Joint Estimation

I Model

QY (τ |x) = β0(τ) + xTβ(τ), τ ∈ (0, 1),

with function valued parameters

β0 : (0, 1)→ R, β : (0, 1)→ Rp

I Must satisfy the monotonicity constraint

β0(τ1) + xTβ(τ1) ≥ β0(τ2) + xTβ(τ2)

for every pair τ1 > τ2 and for every x ∈ X where X is a
pre-specified domain for X



From exploratory to inference tool

I When monotonicity holds, we have an interpretable generative
model:

Yi = β0(Ui ) + XT
i β(Ui ),Ui

IID∼ Unif(0, 1)



Many unsatisfactory attempts

I He (1997): imposes serious restrictions on the shape of β(τ)

I Dunson and Taylor (2005): uses substitution likelihood, does
not scale to dense τ grids

I Tokdar and Kadane (2012): complete, scalable solution when
dim(X ) = 1; cheap shortcut when dim(X ) > 1



Cyclone intensity analysis from Tokdar and Kadane (2012)S.T. Tokdar and J.B. Kadane 59
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Figure 2: Posterior summaries of our joint quantile regression analysis of maximum wind
speed (WmaxST) of north Atlantic tropical cyclones against year (Year) of occurrence.
(a) Posterior mean of QY (ø | x) for ø 2 {0.05, 0.1, 0.2, · · · , 0.9, 0.95} overlaid on data
scatter. (b) Posterior medians and 50% and 95% central credible intervals for slopes sø =
@
@xQY (ø | x). (c) Posterior probability of sø being negative. (d) Terminal conditional
densities fY (y | 1981) and fY (y | 2006) (solid lines) found by inverting posterior means
of QY (ø | 1981) and QY (ø | 2006), overlaid on the histograms of WmaxST pooled over
the first and the last 10 years of study. The dashed curves are the base power-Pareto
density f̃ .



Best existing approach: Reich et al. (2011)

I Non-crossing:
I Bernstein basis polynomials with non-negative coefficients
I Extending ideas from Bondell et al. (2010)

I Prior and computing
I Truncated Gaussian prior distributions on coefficients
I Gibbs sampling based Bayesian model fitting

I BUT require rectangular predictor domain X
I Getting X right is important for QR



Getting X right: a toy example
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I Xi ’s simulated from the triangle ∆{(−1,−1), (−1, 2), (2,−1)}
I Crossing outside triangle but inside embedding rectangle

I GP gets it right, BP estimates are flatter



Our new approach!

I Complete characterization over any bounded convex X
I Likelihood based estimation (penalized or Bayesian)



Characterization Theorem

I Assume non-atomic Y and 0 is an interior pt of X
I Non-crossing ≡ β̇0(τ) + xT β̇(τ) > 0,∀τ ∈ (0, 1),∀x ∈ X
I β̇0(τ) > 0 ∀τ

I Define: a(b,X ) =

{
supx∈X {−xTb}/‖b‖ b 6= 0,
diam(X ) b = 0.

I Theorem. Non-crossing if and only if

β̇0(τ) > 0, β̇(τ) = β̇0(τ)
v(τ)

a(v(τ),X )
√

1 + ‖v(τ)‖2
,

for some p-variate, real function v(τ) = (v1(τ), · · · , vp(τ))T .
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An almost constraint-free parametrization

I Fixed quantities:
I A τ0 ∈ (0, 1), an anchoring quantile, e.g., τ0 = 0.5
I A base pdf f0 [e.g., t(ν)], with cdf F0, Q0 = F−10 , q0 = Q̇0

I A bounded convex X [e.g., convex hull of observed Xi ’s]

I Specification

β0(τ0) = γ0, β(τ0) = γ, β0(τ) = γ0 + σ

∫ ζ(τ)

ζ(τ0)
q0(u)du

β(τ) = γ + σ

∫ ζ(τ)

ζ(τ0)

w(u)

a(w(u),X )
√

1 + ‖w(u)‖2
q0(u)du

I Model parameters:
I γ0 ∈ R, γ ∈ Rp, σ > 0
I w : [0, 1]→ Rp (unconstrained)
I ζ : [0, 1]→ [0, 1] a diffeomorphism



Relating back to the Characterization Theorem

β̇0(τ) = σq0(ζ(τ))ζ̇(τ) > 0 for all τ ∈ (0, 1)

β̇(τ) = σ
w(ζ(τ))

a(w(ζ(τ)),X )
√

1 + ‖w(ζ(τ))‖2
q0(ζ(τ))ζ̇(τ)

= β̇0(τ)
v(τ)

a(v(τ),X )
√

1 + ‖v(τ)‖2

with v := w ◦ ζ



Role of f0: centrally embedded linear model

I When ζ = Identity, w ≡ 0 (and Q0(τ0) = 0)

QY (τ |X ) = γ0 + XTγ + σQ0(τ)

i.e.,
Y = γ0 + XTγ + σε, ε ∼ f0.

I The prior can be made to center around this linear model



Role of f0: tail and support control

I Prior supports f (y |x) with tails decaying at least as quickly as
those of f0

I To gain more control we allow a family {f0(·|ν) : ν ∈ S} of
varying tails. Our R package qrjoint uses the Student-t family
as default.

I Can take f0 to be supported on [0,∞) to analyze positive
valued response variables



Likelihood score evaluation

I Basic math
I f (y |x) = 1

∂
∂τ QY (τ |x)

∣∣∣
τ=τx (y)

; τx(y) solves QY (τ |x) = y

I Log-likelihood score equals∑
i

log f (yi |xi ) = −
∑
i

log
{
β̇0 (τxi (yi )) + xTi β̇ (τxi (yi ))

}
I Calculations based on dense grid: {τk = k

N : k = 0, . . . ,N}
I Mostly quick vector-matrix multiplications
I a(w(ζ(τ)),X ) is calculated as an automatic byproduct



A Bayesian implementation

I Prior specification
I Flat/Horseshoe type shrinkage prior on γ

I A GP prior on every wj , j = 1, . . . , p
I Square exponential covariance function
I Hyperpriors on range and scale

I A logistic-GP prior on ζ:

ζ(τ) =

∫ τ

0
ew0(u)du∫ 1

0
ew0(u)du

where w0 is a GP

I Computation:
I Adaptive MCMC and blocking over preidctor index
I ‘Standard’ GP approximations (low-rank, discretized range)

I Posterior consistency holds (well-/ill-specified wrt f0)



Consistency holds under mild tail conditions
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Type II left tail (sub−type B)

Defn: Type I left tail.

I Q(0) > −∞

I c(σ) := limt↓0
1
σ
f0(m+

Q(t)−m
σ

)

f (Q(t))
∈ (0,∞),

I c(σ)→ 0 as σ ↓ 0.

Defn: Type II left tail.

I limt↓0
1
σ
f0(m+

Q(t)−m
σ

)

f (Q(t))
→∞

I u(σ) :=

inf

{
t > 0 :

1
σ
f0(m+

Q(t)−m
σ

)

f (Q(t))
≤ 1

}
> 0

I u(σ)→ 0 as σ ↓ 0.



Theorem

I Assumptions:
I β̇∗/β̇∗0 has cont. extension to [0, 1]

I ∃c0 > 0 s.t. β̇∗0 (t) + xT β̇∗(t) ≥ c0β̇
∗
0 (t) ∀x ∈ X , t ∈ (0, 1).

I Result. f ∗ ∈ KL(Π) whenever f ∗Y (·|0) has type I or II tails
with respect to tν for all small enough ν > 0.



Efficient and reproducible computation
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I Left: True quantile lines and synthetic data (n = 1000)

I Right: Posterior summaries of β1(τ) from four runs of MCMC



Estimation accuracy

I 100 datasets from the above setting

I Pointwise mean absolute estimation error and coverage:
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Application to plasma concentration of beta-carotene

I Low plasma concentration of beta-carotene may lead to higher
risk of cancer

I What are the determinants of low concentration?

I Y = log transform of beta-carotene concentration

I X = age; smoking status; Quetelet (BMI); vitamin use,
dietary intake (fat, fiber, alcohol, cholesterol, beta-carotene)



Parameter estimation
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Results

I Being female, use of vitamin and consumption of fiber have
reasonably strong positive effect on plasma concentration of
beta-carotene.

I Smoking and BMI have reasonably strong negative effect.

I Calories, fat, alcohol or cholesterol consumption appears to
have little effect.

I Dietary intake of beta-carotene appears to have a positive
effect, but the inference is not conclusive.

I More enhanced positive and negative effects, respectively for
heavy vitamin use and BMI, on the upper quantiles



More dramatic effects on upper tail

j Predictor βj(0.9)− βj(0.1) βj(0.9)− βj(0.5)
1 Age 1.6(−0.33,4.07) 0.97(−0.81,3.34)

2 Sex2 4.6(−50.75,57.83) 6.5(−42.93,57.27)

3 SmokStat2 −13.43(−69.5,38) −5.94(−55.69,43.85)

4 SmokStat3 −19.11(−94.84,31.17) −20.9(−90,26.57)

5 Quetelet −1.93(−5.61,0.91) −1.51(−4.79,1.02)

6 VitUse1 14.37(−26.87,81.3) 16.65(−22.72,81.83)

7 VitUse2 113.05(19.86,209.36) 93.53(12.62,185.14)

8 Calories 0(−0.02,0.02) 0(−0.02,0.02)

9 Fat −0.02(−0.37,0.36) −0.02(−0.37,0.32)

10 Fiber −0.16(−3.31,3.19) −0.22(−3.27,2.85)

11 Alcohol 0.04(−0.74,1.28) 0.05(−0.62,1.11)

12 Cholesterol 0(−0.12,0.13) 0(−0.12,0.12)

13 BetaDiet 0.01(0,0.04) 0.01(−0.01,0.03)



Assessment of fit

I 10 sets of random 2:1 train/test split of data

I Risk = Ave ‘check’ loss1 ρτ (Yi − β̂0(τ)− XT
i β̂(τ)) at each τ

I Accuracy is inverse relative risk with LM as benchmark
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1ρτ (r) = r{τ − I (r < 0)}



Survival analysis

I Censored observations

I Log-likelihood score calculation now changes to∑
i

[(1− ci ) log fY (yi |xi ) + ci log{1− FY (yi |xi )}]

=
∑
i

[
ci log{1− τxi (yi )}

− (1− ci ) log
{
β̇0
(
τxi (yi )

)
+ xTi β̇

(
τxi (yi )

)}]
,

ci = censoring status (1= right censored, 0 = observed).

I That’s all that needs changing!



Return to drug study

I Data from University of Massachusetts Aids Research Unit
IMPACT Study data (UIS, Hosmer and Lemeshow, 1998,
Table 1.3)

I Response = (log) time to return to drug

I Predictors include current treatment assignment , drug use
history, compliance factor, depression score, race, age,
treatment site

I Total 575 subjects. Return times were right censored for 111



Parameter estimation
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Survival curves – crossing!
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