
Detection and Estimation
of Local Signals

Summary

I will discuss a general framework for detection of local signals,

primarily defined by change-points, in random sequences or random

fields. Changes can occur continuously, e.g., a change in the slope of

a regression line, or discontinuously, e.g., a jump in the level of a

process. A motivating example of jump discontinuities is provided by

copy number variation (CNV). I will focus on the simplest version of the

problem: segmentation of independent normal observations according

to changes in the mean. Results will be illustrated by simulations and

applications. Confidence regions for the change-points and some

difficulties associated with dependent observations will also be

discussed.

Aspects of this research involve collaboration with Fang Xiao, Li Jian,

Liu Yi, Nancy Zhang, Benjamin Yakir and Li (Charlie) Xia.
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A general formulation

Suppose that dYs = (µ+ ξf(s− t))ds+ ρYs + σdWs. Here f is a positive

kernel, for example, (i) the indicator that s ≥ 0, (ii) the indicator of the interval

(0,∆], (iii) a symmetric probability density function centered at 0 with scale ∆,

or (iv) the positive part function, s+. The process is observed for s ∈ T , which

may be an interval of the real line or in some applicationsmay be

multi-dimensional. Initially we assume that σ is known and equals 1.

The parameters of primary interest are t, ξ, which define the local signal. Let β

denote the nuisance parameters µ, ρ. Given t, the efficient score for testing

ξ = 0 is
∂ℓ

∂ξ
(0, β̂), (1)

where β̂ are maximum likelihood estimators of β under the assumption that

ξ = 0.
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Significance Thresholds

By standard likelihood theory this is asymptotically distributed as

∂ℓ

∂ξ
− Iξ,βI

−1

β,β

∂ℓ

∂β
, (2)

where I is the Fisher information matrix, partitioned according to the coordinates ξ, β,

and all expressions are evaluated at t, ξ = 0 and true values of β. Hence (2) is of the

form

Vt −Ψ′(t)Aη. (3)

Here Vt = ∂ℓ/∂ξ is a Gaussian process with covariance function denoted by G(s, t),

while Ψ(t)′ = Iξ,β , η = ∂ℓ/∂β is normally distributed with mean 0 and covariance

matrix Iβ,β , and A = I−1

β,β .

Let σ(s, t) = G(s, t)−Ψ′(s)AΨ(t) denote the covariance function of (3) under the

hypothesis ξ = 0, and put

Zt = [σ(t, t)]−1/2[Vt −Ψ′(t)Aη]. (4)

We can use this representaton to approximate P0{maxZt ≥ b}.
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Examples

(1) For f equal to the indicator of the interval (0,∞], the test statistic

when there is no change-point is distributed as

max
t0<t<t1

[W (t)− tW (T )/T ]/[t(1− t/T )]1/2, (5)

which does not depend on the nuisance parameters µ, ρ.

(2) For µ = β0 + β1(t− T/2) and f(s) = max(0, s), the covariance

function again does not depend on the nuisance parameters, but now

is differentiable, so a version of Rice’s formula applies.
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Binary Segmentation: Top

Down (Vostrikova)

If we assume there is at most one change, the likelihood ratio

test statistic is

max
j

|Sj − jSm/m|/[j(1− j/m)]1/2.

Use this statistic to test the hypothesis of no change-point

against the alternative of “at least one change-point” by

thresholding at level b. Then iterate. Problem: How do we

choose the value of b if we do not know the number of

change-points?
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Segmentation Statistics

The log likelihood ratio statistic for a putative change-point in (i, k) is

max
i<j<k

|Zi,j,k|

where

Zi,j,k = [Sj −Si − (j− i)(Sk −Sj)/(k− j)]/[(j− i)(1− (j− i)/(k− i))]1/2. (6)

Our basic segmentation statistic is maxi<j<k |Zi,j,k|, which generates a

candidate set of change-points, by thresholding at a level b. We choose

change-points from this candidate set by selecting those with the smallest

value of k − i. An alternative possibility is to select those with the largest value

of |Z| and to impose a “no overlap” condition on i, k.

Niu and Zhang (2012) suggest a similar statistic, but with k − j = j − i.
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p-values

A basic theoretical result is the approximation

P{max
i,j,k

|Zi,j,k| ≥ b} ∼ .25b5ϕ(b)

×

m1
∑

m0

m1
∑

m0

(m− u− v)

uv(u+ v)
ν[b(

u

v(u+ v)
)1/2]ν[b(

v

u(u+ v)
)1/2]ν[b(

u+ v

uv
)1/2].

(7)

where ν(x) is a special function defined, e.g., in Siegmund (1985) and

easily computed numerically. For a simple numerical example, for

m = 500 and b = 4.83, (2) gives 0.05. Simulated values based on 2000

repetitions yields 0.047.
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BT474: Chromosomes 17
and 5

For chromosome 17, there are m = 87 observations, the

standard deviation is 0.51; the 0.05 detection threshold is

approximately 4.22. There is an increase in copy number at the

36th observation (17q11.2-12), with a change back to baseline

just two observations later. There is a second increase at the

51st observation (17q21.3) and a return to the baseline at the

67th (17q23).

For chromosome 5 there are 99 observations and a standard

deviation of 0.16. Change-points are detected at 25, 45, 51, 54,

65, 89, and 91.
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Continuation of Example 1

Suppose there are N aligned sequences with aligned intervals (s, t] where the ith

interval shows a displacement from the baseline value of δi. It is assumed that any

particular signal affects only a small fraction of the intervals, an assumption appropriate

for detection of inherited copy number variations. The log likelihood function for a

putative signal in (s, t]

N∑

1

log{1− p0 + p0 exp[δi

t∑

s+1

(Yu,i − δi/2)]},

which when maximized with respect to δi becomes

N∑

1

log{1− p0 + p0 exp[U
2
i (s, t)/2]},

where Ui(s, t) = [
∑t

s+1
Yu,i − (t− s)Ȳi]/[(t− s){1− (t− s)/T}]1/2. More generally,

we consider statistics of the form

N∑

1

f [Ui(s, t)]

for different functions f .
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p-values for Example 1

Let Z(s, t) =
∑N

1
f [Ui(s, t)]. Let ψ(θ) = log E[exp(θf(U)] and

I = θψ̇(θ)− ψ(θ), where θ is chosen to satisfy Nψ̇(θ) = b. Put

µ = .5NEθ{f
′(U)U − f ′′(U)} = .5NθEθ{f

′(U)}2

and σ2 = NEθ{f
′(U)}2. Then

P

(

max
T0<t−s<T1

Z(s, t) > b

)

≈ [2πNψ̈(θ)]−1/2θµ2e−NI

×

∫ T1/T

T0/T

1

u2(1− u)
ν2

[

2µ/σT 1/2

{u(1− u)}1/2

]

du,

where ν(x) is a special function defined, e.g., in Siegmund (1985) and

easily computed numerically.
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Example 2

G(s, t) = E0[VsVt −Ψ(s)′AΨ(t)] is smooth and does not depend

on nuisance parameters α, β, ρ, so

P{ max
T0<t<T1

Zt ≥ b} ∼ (ϕ(b)/(2π)1/2)

∫ T1

T0

[E(Ż2
t )]

1/2dt. (8)

For a numerical example, suppose T = 136, b = 4.97. (Singapore

annual rainfall for 136 years.) Then the approximation (8) gives

the value 4× 10−6.

Note also that Et,ξZt = ξ[G(t, t]1/2, as expected.
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Confidence Regions for

Example 2

Using the Kac-Slepian model process, we find that for a

change-point τ , conditional on a large value Zτ ,

max(Z2
t − Z2

τ ) ≈ Ż2
τ /E(Ż

2
τ ). (9)

Hence a 0.9 confidence region for τ is the set of all t such that

Z2
t ≥ maxs Z

2
s − χ2

1(.9). Note that this is exactly what “regular”

likelihood theory would suggest for a likelihood ratio statistic with

one degree of freedom..

The result (9) can be used to give an approximation for the local

power to detect a change at τ .
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Estimation of σ2 and ρ

When there are signals in the form of change-points, the usual

estimators of σ2 and of ρ can be very badly biased. Using them can

lead to a serious loss of power. If there is a known segment of the data

without local signals, these parameters can be estimated from that part

of the data. If we assume the observations are independent, a

reasonable estimator of σ2 is
∑

(Yt − Yt−1)
2/(2T ). Other possibilities

remain to be explored.
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Confidence Regions for
Example 1

Given the number of change-points M , the likelihood ratio

statistic for the locations and size of jumps of the change points

is

ℓ(τ̂i, µ̂j)− ℓ(τi, µj),

where 1 ≤ i ≤ m and 0 ≤ j ≤M . In the special case M = 1,

with some approximations, this can be simplified to

(Sτ − τµ0)
2/(2τ) + (Sm − Sτ − (m− τ)µ1)

2/[2(m− τ)]

+max
i

[δ̂τ (Sτ+i − Sτ )− δ̂i/2],

where δ̂ is the maximum likelihood estimate of µ0 − µ1.
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Probability Approximation

Let Zi(δ) = δ[Sτ+i − Sτ − δi/2]. Then P{maxi Zi(δ̂τ ) ≥ x|δ̂τ )}

≈ 2ν(δ̂) exp(−x)− [ν(δ̂)]2 exp(−2x).

If we replace δ̂τ by δ (consistency), we have expressed the

probability on the preceding slide as the distribution of the sum

of three (almost) INDEPENDENT random variables with known

distributions. Generalization to the case of M change-points is

straightforward.
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Numerical Examples.

Table 1: Likelihood ratio based joint confidence intervals. p̂ is the simulated probability

that the parameters t1 and t2 are rejected when the true parameter values are τ1 and τ2.

Nominal confidence level is 0.05. Simulations are based on 1000 (500) repetitions in the

first four (last 12) rows.

δ1 δ2 b τ1, τ2 t1, t2 p̂

2.13 1.33 6.4 9, 33 9, 33 0.049

2.5 4.0 5.35 87, 104 87, 104 0.051

0.65 2.5 6.65 138, 225 138, 225 0.047

1.73 2.13 6.23 57, 66 57, 66 0.049

2.13 1.33 6.4 9, 33 7, 33 0.59

2.13 1.33 6.4 9, 33 11, 33 0.58

2.13 1.33 6.4 9, 33 9, 29 0.47

2.13 1.33 6.4 9, 33 9, 37 0.44

0.65 2.5 6.65 138, 225 138, 227 0.75

0.65 2.5 6.65 138, 225 138, 223 0.73

0.65 2.5 6.65 138, 225 120, 225 0.49

– p. 16/17



References

Frick, K, Munk, A. and Sieling, H. (2014). Multiscale change-point inference, JRSS B.

Olshen, A. B., Venkatraman, E. S., Lucito, R. and Wigler, M. (2004). Circular binary

segmentation for the analysis of array-based DNA copy number data, Biostatistics. 5,

557-572.

Fang, Xiao, Li, Jian, and Siegmund D. (2016). Segmentation and Estimation of

Change-point Models, Arkiv.

Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-pont detection. Ann.

Statist. 42, 2243-2281.

Li Charlie Xia, Sukolsak Sakshuwong, Erik Hopmans, John Bell, Sue Grimes, David O.

Siegmund, Hanlee P. Ji, Nancy R. Zhang (2016) A genome-wide approach for detecting

novel insertion-deletion variants of mid-range size, Nucleic Acids Research.

Niu, S. Y. and Zhang, H. (2012). The screening and ranking algorithm to detect DNA

copy number variations. Ann. Appl. Statist. 6, 1306-1326.

Zhang, N. R., Siegmund, D. O.,Yakir, B. (2011). Detectiing simultaneous variant intervals

in aligned sequences Ann. Appl. Statist. 5 645-668.

Zhang, N., Yakir, B., Xia, L., Siegmund, D. (2016). Scan statistics on Poisson random

fields with applications in genomics, Ann. Appl. Statist.

– p. 17/17


	�f Detection and Estimation of Local Signals
	large A general formulation
	�f Significance Thresholds
	large Examples
	large Binary Segmentation: Top Down (Vostrikova)
	large Segmentation Statistics 
	large p-values 
	�f BT474: Chromosomes 17 and 5
	large Continuation of Example 1
	large p-values for Example 1
	large Example 2
	large Confidence Regions for Example 2
	�f Estimation of $sigma ^2$ and $ho $
	�f Confidence Regions for Example 1
	�f Probability Approximation
	large Numerical Examples.
	large References

