Bayesian estimation of the intenisity function for Hawkes processes Luminy

S. Donnet, V. Rivoirard, J. Rousseau

July 2017

◆□▶ ◆課▶ ◆注▶ ◆注▶ 注目 のへぐ

Spikes and point processes

neuronal activity : electric impulses = spikes

 The interesting information from these spikes is related to the time of their appearance and their length(rather than their shape or intensity)

イロト 不得 トイヨト イヨト ヨー ろくで

 \Rightarrow Point processes On \mathbb{R}^+ .

Poisson processes and Hawkes processes

On $(\Omega, \mathcal{F}, \mathbb{P})$, **N** is a point process

Its distribution is caracterized by its conditional intensity process

$$\begin{split} \lambda(t) &= \lambda(t|\mathcal{F}_t) = \lim_{h \to 0} \frac{1}{h} \mathbb{P}(\text{ an event takes place in } [t, t+h]|\mathcal{F}_t) \\ &= "\mathbb{E}[dNt|\mathcal{F}_t]" \quad (\mathcal{F}_t) = \text{ adapted filtration} \end{split}$$

- Poisson Process
 - $\lambda(t)$ deterministic
 - intervals between events are independent
- Hawkes Process

$$\flat \lambda(t) = \left\{ \nu + \sum_{T_i < t} h(t - T_i) \right\}$$

• When h is positive : self-excitation, when h is negative inhibition

うして ふぼう ふほう ふほう しょう

Multidimensional Hawkes processes

- M neurones interracting : self or inter excitation or inhibition. We observe M point processes non independent.
- Conditional intensity of the process m :

$$\lambda^{(m)}(t) = \left\{ \nu^{(m)} + \sum_{\ell=1}^{M} \sum_{t_i^{(\ell)} < t} h_{\ell}^{(m)}(t - t_i^{(\ell)}) \right\}_+$$

- Remarks
 - $h_{\ell}^{(m)}$ is the excitation function of *m* by ℓ .
 - $h_{\ell}^{(m)}$ can be negative.
 - Stationary process if the spectral radius of matrix
 - $I = \left(\int_0^\infty |h_\ell^{(m)}(u)| du\right)_{1 \le \ell, m \le M} \text{ is } < 1.$
 - The functions $h_{\ell}^{(m)}$ have support : $[0, s_{max}]$

[Reynaud-Bouret et al., 2013]

Example of bi-dimensionnal Hawkes processes

Time

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Objectives

- Bayesian estimation $\theta = \left\{ \{\nu^{(m)}\}_{m=1...M}, \{h_{\ell}^{(m)}\}_{(\ell,m)\in\{1,...,M\}^2} \right\}.$
- exists : Lasso estimates [Hansen et al., 2014] .
- Hardly anything in the Bayesian framework [Rasmussen, 2013], K. Heller

Bayesian inference

$$\bullet \ \theta = \left\{ \{\nu^{(m)}\}_{m=1...M}, \{h_{\ell}^{(m)}\}_{(\ell,m)\in\{1,...,M\}^2} \right\}$$

- ▶ Observations **N** on M neurones during [0, T]
- ▶ **Likelihood** : \mathbf{n}_m = number of jumps for neuron *m*, and $T_1^{(m)}, \ldots, T_{n_m}^{(m)}$ jump times for neurone *m*, *m* ≤ *M*

$$L(\boldsymbol{N};\theta) = \exp\left[\sum_{m=1}^{M} \sum_{j=1}^{n_m} \log \lambda^{(m)}(T_j^{(m)}) - \int_0^T \lambda^{(m)}(u) du\right]$$

Posterior (pseudo) :

$$\pi(d heta|\mathbf{N}) = rac{\pi(d heta)L(\mathbf{N}; heta)}{p(\mathbf{N})}$$

► Depends on **N**_[-s_{max}:T]

Posterior concentration on θ : $T \rightarrow +\infty$

• Posterior concentration If θ^* = true parameter, $\epsilon_T = o(1)$

$$\mathbb{E}_{ heta^*}\left[\Pi(d(heta, heta^*) > \epsilon_{ extsf{ extsf} extsf{ extsf{ extsf{ extsf{ extsf{ extsf{ extsf{ extsf} extsf{ extsf} extsf{ extsf{$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …の�?

General Theorem on posterior concentration rates G& VdV (07)

Kullback- Leibler Condition

 $\Pi\left(\{K(p_{\theta^*,T}, p_{\theta,T}) \leq T\epsilon_T^2; V(p_{\theta^*,T}, p_{\theta,T}) \lesssim T\epsilon_T^2\}\right) > e^{-cT\epsilon_T^2}$ $\blacktriangleright \text{ Tests } \exists \Theta_T \ \pi(\Theta_T^c) < e^{-(c+2)T\epsilon_T^2} \text{ s.t.}$

 $\exists \phi_{\mathcal{T}}; \mathbb{E}_{\theta^*}\left(\phi_{\mathcal{T}}\right) = o(1); \quad \sup_{\theta \in \Theta_{\mathcal{T}}^c; d(\theta, \theta^*) > B\epsilon_{\mathcal{T}}} \mathbb{E}_{\theta}\left(1 - \phi_{\mathcal{T}}\right) \leq e^{-(c+2)\mathcal{T}\epsilon_{\mathcal{T}}^2}$

Then

 $\Pi\left(d(\theta,\theta^*)>M\epsilon_T|\boldsymbol{N}\right)$

Application to Hawkes processes

▶ Parameter space :

$$\Theta = \{(
u_\ell, h_{k,\ell}, k, \ell \leq M); \ h_{k,\ell} \geq 0, \
u_\ell > 0, \ \|
ho\| < 1$$

For stationarity

$$\rho = (\rho_{k,\ell})_{k,\ell \leq M}, \quad \rho_{k,\ell} = \int h_{k,\ell}(x) dx$$

▶ Metrics : *L*₁ and *L*₁ stochastic

$$egin{split} d_{1,T}(heta, heta^*) &= \int_0^T \sum_\ell |\lambda_{\ell, heta} - \lambda_{\ell, heta^*}|(t)dt, \ \| heta - heta^*\|_1 &= \sum_\ell |
u_\ell -
u_\ell^*| + \sum_{\ell,k} \|h_{k,\ell} - h_{k,\ell}^*\|_1 \end{split}$$

$$\lambda_{\ell,\theta}(t) = \nu_{\ell} + \sum_{k=1}^{M} \int_{t-s_{max}}^{t^{-}} h_{k,\ell}(t-u) dN_{u}^{k}$$

▶ Observations $\mathbf{N}_{[-s_{max},T]} = (N_t^{\ell}, t \leq T, \ell \leq M).$

Concentration in $d_{1,T}$

• True
$$heta^* = (
u^*, h^*)$$
 with $u^* > 0$ and $\|
ho^*\| < 1$. If

• KL $: \exists c > 0$ such that

 $\Pi(|\nu-\nu^*|<\epsilon_T;\max_{\ell,k}\|h_{\ell,k}-h^*_{\ell,k}\|_2\leq\epsilon_T(\log\log T)^{-1/2})>e^{-cT\epsilon_T^2}$

► Sieve :
$$\exists \Theta_T \subset \Theta$$
, $\Pi(\Theta_T^c) = o(e^{-CT\epsilon_T^2})$

Entropy :

$$\log N(\epsilon_{\mathcal{T}}, \Theta_{\mathcal{T}}, \|.\|_1) \lesssim T \epsilon_{\mathcal{T}}^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Then

$$\mathbb{E}^*\left[\pi\left(\textit{d}_{1,\mathcal{T}}(heta^*, heta) > M\epsilon_{\mathcal{T}}|\mathsf{N}
ight)
ight] \lesssim rac{1}{\mathcal{T}\epsilon_{\mathcal{T}}^2}$$

How does it work : (1) concentration in $d_{1,T}$

Prove that
$$\forall \theta \in \{|\nu - \nu^*| < \epsilon_T; \max_{\ell,k} \|h_{\ell,k} - h_{\ell,k}^*\|_2 \leq \epsilon_T / \log \log T\}$$

$$KL_T(\theta^*, \theta) \leq \kappa T \epsilon_T^2, \quad \mathbb{P}^* \left(\ell_T(\theta) - \ell_T(\theta^*) < -(\kappa + 1)T \epsilon_T^2\right) \leq \frac{\log T}{T \epsilon_T^2}$$
tests : \(\theta_1 \in \Theta_T, S_j = \{\theta, d_{1,T}(\theta^*, \theta) \in (j\epsilon_T, (j+1)\epsilon_T)\}.
$$A_1 = \{t; \ \lambda_{\theta_1} \geq \lambda_{\theta^*}(t)\},$$

$$\phi_{\theta_1} = \max_{\ell} \left(\mathbb{I}\{N^{\ell}(A_1) - \Lambda^{\ell}(A_1; \theta^*) \geq jT\epsilon_T/8\} \lor \mathbb{I}\{N^{\ell}(A_1^c) - \Lambda^{\ell}(A_1^c; \theta^*) \geq jT\epsilon_T/8\} \lor \mathbb{I}\{N^{\ell}(A_1^c) - \Lambda^{\ell}(A_1^c; \theta^*) \geq jT\epsilon_T/8\} \lor \mathbb{I}\{N^{\ell}(A_1^c) - \Lambda^{\ell}(A_1^c; \theta^*) \geq jT\epsilon_T/8\}$$

$$\mathbb{E}^* \left(\mathbb{I}_{\Omega_{\mathcal{T}}} \phi_{\theta_1} \right) + \sup_{\|\theta - \theta_1\|_1 \leq j c_0 \epsilon_{\mathcal{T}}} \mathbb{E}^* \left[\mathbb{E}_{\theta} \left(\mathbb{I}_{\Omega_{\mathcal{T}}} \mathbb{I}_{\theta \in \mathcal{S}_j} (1 - \phi_{\theta_1}) | \mathcal{G}_0 \right) \right] \leq 2e^{-x_0 I_j \epsilon_{\mathcal{T}} [1 \wedge j \epsilon_{\mathcal{T}}]}$$

・ロト・西ト・ヨト・ヨー うへつ

weak conditions - examples of priors

$$\rho \sim \pi_{\rho}; \quad \bar{h}_{k,\ell} = h_{k,\ell} / \rho_{k,\ell} \stackrel{iid}{\sim} \pi_h, \quad \nu_{\ell} \stackrel{iid}{\sim} \pi_{\nu}$$

Histograms

$$\bar{h}_{k,\ell} = \delta_{k,\ell} g_{k,\ell}, \quad g_{k,\ell} \stackrel{iid,\mathcal{D}}{=} g, \quad \delta_{k,\ell} \stackrel{iid}{\sim} Be(p)$$

and g has distribution given by

$$g = \sum_{j=1}^{J} \frac{z_j w_j}{|l_j|}, \quad l_j = (s_j, s_{j+1}), \quad z_j \stackrel{iid}{\sim} Be(q), \quad \sum_{j:z_j=1} w_j = 1$$
$$J - 1 \sim \mathcal{P}(a), \quad (w_j, j \in \{z_j = 1\}) \sim \mathcal{D}(\alpha_J, \cdots, \alpha_J),$$
$$(s_1, \cdots, s_J) \sim \Pi_s$$

If \bar{h}^* are Hölder β then

$$\epsilon_T \lesssim (T/\sqrt{\log\log T}\log T)^{-eta/(2eta+1)}, \quad eta \leq 1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Mixtures of Betas : Adaptive extimation over Hölder classes

Prior model

$$h_{k,\ell} = \left(\int_0^1 g_{lpha,\epsilon} dM(\epsilon)
ight)_+, \quad g_{lpha,\epsilon}(x) = \ {
m Beta}\left(rac{lpha}{1-\epsilon},rac{lpha}{\epsilon}
ight)$$

M : signed bounded measure on [0, 1].

► Why?

$$E\left[\text{ Beta}\left(\frac{\alpha}{1-\epsilon},\frac{\alpha}{\epsilon}\right) \right] = \epsilon, \quad \textit{var}\left[\text{ Beta}\left(\frac{\alpha}{1-\epsilon},\frac{\alpha}{\epsilon}\right) \right] = \frac{\epsilon(1-\epsilon)}{\alpha}$$

≣ જવભ

Why postitive part of mixtures of Betas?

• (R. 08) : $\forall f \in \mathcal{H}(\beta, L)$, there exists f_1 such that

$$\|g_{\alpha,f_1}-f\|_{\infty}=O(\alpha^{-\beta/2}), \quad g_{\alpha,f_1}(x)=\int_0^1 g_{\alpha,\epsilon}(x)f_1(\epsilon)d\epsilon$$

and
$$\exists P = \sum_{j=1}^{J} w_j \delta_{(\epsilon_j)}, \ J \lesssim \sqrt{\alpha} (\log \alpha)^{3/2}$$
$$\|g_{\alpha, f_1} - g_{\alpha, P}\|_2 = O(\alpha^{-\beta/2})$$

Prior

$$J \sim \mathcal{P}(a), \quad (|w_1|, \cdots, |w_J|) \sim \mathcal{D}(\alpha/J, \cdots, \alpha/J), \quad \sqrt{\alpha} \sim \Gamma(a_0, b_0)$$

with

$$w_j = \zeta_j |w_j|, \quad \zeta_j \in \{-1,1\} \quad \textit{iid}, \quad \epsilon_j \stackrel{\text{\tiny{iid}}}{\sim} \mathsf{Beta}(a_1,b_1)$$

Posterior concentration rate : adative

$$\epsilon_{\mathcal{T}} \lesssim \mathcal{T}^{-eta/(2eta+1)}(\log \mathcal{T})^q$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Concentration in L_1 :

$$\| heta - heta_0\|_1 = \sum_\ell |
u_\ell -
u_\ell^*| + \sum_{\ell,k} \|h_{\ell,k} - h_{\ell,k}^*\|_1$$

 $d_{1,T}(heta, heta^*) = \int_0^T |\lambda_ heta(t) - \lambda_{ heta^*}(t)| dt$: non explicit

Theorem

Under the same assumptions and if

$$\Pi(\|\rho\|>1-u_0\epsilon_T)\leq e^{-cT\epsilon_T^2}$$

then $\exists M_0 > 0$

 $\mathbb{E}^*\left[\mathsf{\Pi}\left(\|\theta - \theta^*\|_1 > M_0 \epsilon_T | \mathsf{N} \right) \right] = o(1)$

うして ふぼう ふほう ふほう しょう

From $d_{1,T}$ to L_1

$$\begin{split} \mathbb{E}^* \left[\mathsf{\Pi}(\{d_{1,\tau}(\theta,\theta^*) \leq \epsilon_T\} \cap \{ \|\theta - \theta^*\|_1 > M_0 \epsilon_T | \mathbf{N}) \right] \\ & \leq \mathbb{P}^* \left(D_T < e^{-cT\epsilon_T^2} \right) + e^{cT\epsilon_T^2} \int_{\|\theta - \theta^*\|_1 > M_0 \epsilon_T} \mathbb{E}^* \left[\mathbb{P}_\theta \left[d_{1,\tau}(\theta^*,\theta) \leq \epsilon_T | \mathcal{G}_0 \right] \right] d\mathsf{\Pi}(\theta) \\ \end{split}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲国▶

Some consequences

• Point estimators $\hat{f} = E[f|\mathbf{N}]$ satisfies

$$\mathbb{P}_{ heta^*}\left(\|f^*-\hat{f}\|_1\lesssim\epsilon_{T}
ight)
ightarrow 1$$

• *Easy conditions* Compared to Hansen et al. – who had a stronger condition on the type dictionnary

Simulation study

• Prior : random histogram

$$egin{aligned} h_{\ell,k} &= \underbrace{\delta_{\ell,k}}_{\mathsf{Be}(1/2)} \sum_{j=1}^{M^\ell,k} \mathbb{I}_{l_j^{\ell,k}} rac{w_j^{\ell,k}}{|l_j^{\ell,k}|}, \quad M^{\ell,k} \stackrel{\mathit{iid}}{\sim} 1 + \mathcal{P}(a) \ \log
u_\ell &\sim \mathcal{N}(3,1), \quad w_j^{\ell,k} \sim \mathsf{Be}(1/2) imes \mathsf{In} \, \mathcal{N}(\mu_lpha, s_lpha^2) \end{aligned}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …の�?

Scenarios

- ▶ v_ℓ = 20
- Scenario 1 : We first consider K = 2 neurons and piecewise constant interactions :

 $h_{1,1} = 30 \cdot \mathbb{I}_{(0,0.02]}, \quad h_{2,1} = 30 \cdot \mathbb{I}_{(0,0.01]}, \quad h_{1,2} = 30 \cdot \mathbb{I}_{(0.01,0.02]}, \quad h_{2,2} = 0.$

 Scenario 2 : In this scenario, we mimic K = 8 neurons belonging to three independent groups. The non-null interactions are the piecewise constant functions defined as :

$$h_{2,1} = h_{3,1} = h_{2,2} = h_{1,3} = h_{2,3} = h_{8,5} = h_{5,6} = h_{6,7} = h_{7,8} = 30 \cdot \mathbb{I}_{(0,0.02]}.$$

Results Scenario 1 : K=2 – ν

Figure: Results for scenario 1. On the left, posterior distribution of (ν_1, ν_2) with T = 5, T = 10 and T = 20 for one dataset. On the right, distribution of the posterior mean of $(\nu_1, \nu_2) \left(\widehat{\mathbb{E}} \left[\nu_k | (N_t^{sim})_{t \ in[0, T]} \right] \right)_{sim=1...25}$ over the 25 simulated datasets.

Results Scenario 1 : $K=2 - h_{k,\ell}$

Figure: Scenario 1, K=2. Estimation of the $(h_{\ell,k})_{\ell,k=1,2}$ using the regular prior (left) continuous prior (right). The gray region indicates the credible region for $h_{\ell,k}(t)$ (delimited by the 5% and 95% percentiles of the posterior distribution). The true $h_{\ell,k}$ is in plain line, the posterior expectation and posterior median for $h_{\ell,k}(t)$ are in dotted and dashed lines respectively.

◆□> ◆■> ◆国> ◆国> 「国」のへで

Results for Scenario 2 : K= $8-\nu_\ell$

Figure: Results for scenario 2 for one given dataset. Posterior estimation of the interaction graph for T = 10 on the left and T = 20 on the right, for one randomly chosen dataset. Level of grey and width of the edges proportional to the posterior estimated probability of $\widehat{\mathbb{P}}(\delta_{\ell,k} = 1|(N_t^{sim})_{t \ in[0,T]})$.

イロト 不得下 イヨト イヨト ヨー ろくで

Figure: Results for scenario 2 over the 25 simulated datasets. Posterior estimation of the interaction graph for T = 10 on the left and T = 20 on the right. Level of grey and width of the edges are proportional to the posterior estimated probability of $\frac{1}{25} \sum_{sim=1}^{25} \widehat{\mathbb{P}}(\delta_{\ell,k} = 1 | (N_t^{sim})_{t \ in[0,T]})$.

イロト 不得下 イヨト イヨト ヨー ろくで

Figure: Results for scenario 2 for one given dataset. Estimation of the non null

Conclusion

- Theory for L₁ posterior concentration rates under quite weak assumptions
- Only for non negative $h_{k,\ell}$
- Simulations : too slow for the moment to treat many neurons. Ok for <= 10 (just) - How about the mixture of Beta or other priors?</p>

イロト 不得 トイヨト イヨト ヨー ろくぐ

Understanding credible regions

Thank You

Lasso and probabilistic inequalities for multivariate point processes. to appear in, .

Bernoulli, to appear.

Rasmussen, J. (2013).

Bayesian inference for hawkes processes.

Methodology and Computing in Applied Probability, 15(3):623-642.

Reynaud-Bouret, P., Rivoirard, V., and Tuleau-Malot, C. (2013). Inference of functional connectivity in neurosciences via hawkes processes. *1st IEEE global Conference on Signal and Information Processing.*

うして ふぼう ふほう ふほう しょう