Post hoc inference via JER control

Etienne Roquain¹ Joint work with Gilles Blanchard² and Pierre Neuvial²

¹LPMA, Université Pierre et Marie Curie, France ²Institut für Mathematik, Universität Potsdam, Germany ³IMT, Université Paul Sabatier, France

Mathematical Method of Modern Statistics, 12/07/2017

T Arxiv 1703.02307

2 Post hoc bound

3 JER control

E

・ロト ・回 ト ・ ヨ ト ・ ヨ ト

Find signal in massive datasets

Etienne Roquain Joint work with Gilles Blanchard and

Multiple inferences

- Multiple testing:
 - derive the rejection set R
 - such that from $FDR(R) \leq \alpha$

[Benjamini and Hochberg (1995)] ... [Bogdan et al. (2014)], [Barber and Candès (2015)]

Post-selective inference

- Inference after specific selection [Lockhart et al. (2014) and Fithian et al. (2014)]
- · Inference after arbitrary selection
 - * confidence intervals on selected parameters [Benjamini and Yekutieli (2005)], [Berk et al. (2013)]
 - estimator/bound on signal quantity after selection [Goeman and Solari (2011)]

CI no selection

Let

$$X \sim \mathcal{N}(\theta, I_m) \in \mathbb{R}^m, \ \theta \in \mathbb{R}^m,$$

90% CI for each θ_i

CI no selection

Let

$$X \sim \mathcal{N}(\theta, I_m) \in \mathbb{R}^m, \ \theta \in \mathbb{R}^m,$$

90% CI for each θ_i

Let

$$X \sim \mathcal{N}(heta, I_m) \in \mathbb{R}^m, \ \ heta \in \mathbb{R}^m,$$

Let

$$X \sim \mathcal{N}(\theta, I_m) \in \mathbb{R}^m, \ \ \theta \in \mathbb{R}^m,$$

Let

$$X \sim \mathcal{N}(\theta, I_m) \in \mathbb{R}^m, \ \ \theta \in \mathbb{R}^m,$$

Let

$$X \sim \mathcal{N}(\theta, I_m) \in \mathbb{R}^m, \ \theta \in \mathbb{R}^m,$$

Estimating true null quantity

Let

$$X \sim \mathcal{N}(\theta, I_m) \in \mathbb{R}^m, \ \ \theta \in \mathbb{R}^m_+,$$

Parameter $m_0(\theta) = \#$ zeros in θ (true null number)

Estimating true null quantity

Let

$$X \sim \mathcal{N}(\theta, I_m) \in \mathbb{R}^m, \ \theta \in \mathbb{R}^m_+,$$

Parameter $m_0(\theta) = \#$ zeros in θ (true null number)

Estimating true null quantity

Let

$$X \sim \mathcal{N}(\theta, I_m) \in \mathbb{R}^m, \ \theta \in \mathbb{R}^m_+,$$

Parameter $m_0(\theta) = \#$ zeros in θ (true null number)

 $\hat{m}_0 = 2\#\{i: X_i \leq 0\} \geq 2\#\{i: \theta_i = 0, X_i \leq 0\} \approx m_0.$

[Storey (2002)]

Image: Image:

Estimating m_0 after selection

Let

$$X \sim \mathcal{N}(\theta, I_m) \in \mathbb{R}^m, \ \theta \in \mathbb{R}^m_+,$$

Parameter V(R) = #zeros in θ in selected R (false positives in R)

Estimating m_0 after selection

Let

$$X \sim \mathcal{N}(\theta, I_m) \in \mathbb{R}^m, \ \theta \in \mathbb{R}^m_+,$$

Parameter V(R) = #zeros in θ in selected R (false positives in R)

Estimating m_0 after selection

Let

$$X \sim \mathcal{N}(\theta, I_m) \in \mathbb{R}^m, \ \theta \in \mathbb{R}^m_+,$$

Parameter V(R) = #zeros in θ in selected R (false positives in R)

$$V(R) = \#\{i \in R : \theta_i = 0\}$$

= $\#\{i \in R : \theta_i = 0, X_i \le 0\} + \#\{i \in R : \theta_i = 0, X_i > 0\}$
 $\le \#\{i \in R : X_i \le 0\} + \#\{i \in R : \theta_i = 0, X_i > 0\}$
 $\le \#\{i \in R : X_i \le 0\} + \#\{i : \theta_i = 0, X_i > 0\}$
 $\approx \#\{i \in R : X_i \le 0\} + m/2 =: \overline{V}(R)$

Etienne Roquain Joint work with Gilles Blanchard and

ヘロト ヘロト ヘヨト ヘヨト

A basic idea

$$V(R) = \#\{i \in R : X_i \le 0\} + m/2$$
$$= \#\{i \in R : X_i \le 0\} + |R|/2 \frac{m}{|R|}$$

Etienne Roquain Joint work with Gilles Blanchard and

・ロト ・回 ト ・ ヨト ・ ヨ

What is *R*?

R from the data in any possible way

2 Post hoc bound

3 JER control

-

(日)

Aim

Observe $X \sim P$ with parameter $\theta = \theta(P) \in \mathbb{R}^m$. Number of false positives in $R \subset \{1, \dots, m\}$:

$$V(R) = |R \cap \mathcal{H}_0|, \quad \mathcal{H}_0 = \{i : \theta_i = 0\}.$$

Post hoc bound

 $\overline{V}(\cdot) \in \mathbb{N}$, such that for all P,

 $\mathbf{P}(\forall \mathbf{R} \subset \{1,\ldots,m\} : \mathbf{V}(\mathbf{R}) \leq \overline{\mathbf{V}}(\mathbf{R})) \geq 1 - \alpha$

▶ agnostic method on *R*

• desirable to have sharp $\overline{V}(R)$ for R containing large X_i 's

▶ take reference sets $(R_k)_k$ making only few false discoveries

・ロト ・回ト ・ヨト ・ヨト

Aim

Observe $X \sim P$ with parameter $\theta = \theta(P) \in \mathbb{R}^m$. Number of false positives in $R \subset \{1, \dots, m\}$:

$$V(R) = |R \cap \mathcal{H}_0|, \quad \mathcal{H}_0 = \{i : \theta_i = 0\}.$$

Post hoc bound

 $\overline{V}(\cdot) \in \mathbb{N}$, such that for all P,

 $\mathbf{P}\left(orall \mathbf{R} \subset \{1,\ldots,m\} : V(\mathbf{R}) \leq \overline{V}(\mathbf{R})\right) \geq 1 - lpha$

- agnostic method on R
- desirable to have sharp $\overline{V}(R)$ for R containing large X_i 's
- ▶ take reference sets $(R_k)_k$ making only few false discoveries

Method

JER control

 $\mathfrak{R} = \{\mathbf{R}_k\}_k$ reference family such that

$$JER(\mathfrak{R}) = \mathbf{P}(\exists k : V(R_k) \ge k) \le lpha$$

That is, $\mathcal{E} = \{ \forall k : |R_k \cap \mathcal{H}_0| \le k - 1 \}$ is of proba $\ge 1 - \alpha$.

Lemma (interpolation)

On the event $\mathcal{E}, \forall R$,

$$V(R) \le \overline{V}(R) = \min_{k} \{ |R_k^c \cap R| + k - 1 \}$$

JER control offers post hoc bound

Etienne Roquain Joint work with Gilles Blanchard and

・ロト ・回ト ・ヨト ・ヨト

Method

JER control

 $\mathfrak{R} = \{\mathbf{R}_k\}_k$ reference family such that

$$JER(\mathfrak{R}) = \mathbf{P}(\exists k : V(R_k) \ge k) \le lpha$$

That is, $\mathcal{E} = \{ \forall k : |\mathbf{R}_k \cap \mathcal{H}_0| \le k - 1 \}$ is of proba $\ge 1 - \alpha$.

Lemma (interpolation)

On the event \mathcal{E} , $\forall R$,

$$V(R) \leq \overline{V}(R) = \min_{k} \{ |R_{k}^{c} \cap R| + k - 1 \}$$

JER control offers post hoc bound

・ロト ・回ト ・ヨト ・ヨト … ヨ

2 Post hoc bound

Etienne Roquain Joint work with Gilles Blanchard and

Post hoc inference via JER control

JER control 14 / 22

イロト イヨト イヨト イヨト

Simes inequality

Proposition [Simes (1986)]

If $(p_i, 1 \leq i \leq m)$ available with $(p_i, i \in H_0)$ i.i.d. U(0, 1),

$$\mathbf{P}(\exists k : p_{(k:\mathcal{H}_0)} \leq \alpha k/m) \leq \alpha.$$

we have \leq if positive dependence [Benjamini and Yekutieli (2001)]

Corollary

Simes reference family \Re with $R_k = \{i : p_i \le \alpha k/m\}$ satisfies

 $JER(\mathfrak{R}) = \mathbf{P}(\exists k : V(R_k) \ge k) \le \alpha$

and thus provides a post hoc bound ([Goeman and Solari (2011)]).

- Calibrated for independence only
- Why threshold $t_k \propto k$?

・ロト ・回ト ・ヨト ・ヨト

Simes inequality

Proposition [Simes (1986)]

If $(p_i, 1 \le i \le m)$ available with $(p_i, i \in H_0)$ i.i.d. U(0, 1),

$$\mathbf{P}(\exists k : p_{(k:\mathcal{H}_0)} \leq \alpha k/m) \leq \alpha.$$

we have \leq if positive dependence [Benjamini and Yekutieli (2001)]

Corollary

Simes reference family \Re with $R_k = \{i : p_i \le \alpha k/m\}$ satisfies

$$JER(\mathfrak{R}) = \mathbf{P}(\exists k : V(R_k) \ge k) \le \alpha$$

and thus provides a post hoc bound ([Goeman and Solari (2011)]).

Calibrated for independence only

• Why threshold $t_k \propto k$?

Simes inequality

Proposition [Simes (1986)]

If $(p_i, 1 \leq i \leq m)$ available with $(p_i, i \in H_0)$ i.i.d. U(0, 1),

$$\mathbf{P}(\exists k : p_{(k:\mathcal{H}_0)} \leq \alpha k/m) \leq \alpha.$$

we have \leq if positive dependence [Benjamini and Yekutieli (2001)]

Corollary

Simes reference family \Re with $R_k = \{i : p_i \le \alpha k/m\}$ satisfies

$$JER(\mathfrak{R}) = \mathbf{P}(\exists k : V(R_k) \ge k) \le \alpha$$

and thus provides a post hoc bound ([Goeman and Solari (2011)]).

- Calibrated for independence only
- Why threshold $t_k \propto k$?

JER control with λ -adjustment

►
$$X \sim \mathcal{N}(\theta, \Gamma) \in \mathbb{R}^m, \theta \in \mathbb{R}^m, \Gamma$$
 known

▶ *p*-values:
$$p_i = 2\overline{\Phi}(|X_i|), 1 \le i \le m$$

▶ Reference family: \Re with $R_k = \{i : p_i \le t_k(\lambda)\}$, some kernel $t_k(\lambda)$

$$\mathsf{JER}(\mathfrak{R}) = \mathbf{P}(\exists k : p_{(k:\mathcal{H}_0)} \leq t_k(\lambda))$$
$$\leq \mathbf{P}_{Z \sim \mathcal{N}(0,\Gamma)} \left(\min_k \left\{ t_k^{-1} (2\overline{\Phi}(|Z|_{(k)})) \right\} \leq \lambda \right) \text{ known } !$$

Method

Compute $\lambda(\alpha, \Gamma)$ with bound $\leq \alpha$ and use $t_k(\lambda(\alpha, \Gamma))$

Linear kernel: $t_k(\lambda) = \lambda k/m$ (Simes under independence)

▶ Balanced kernel: such that the $t_k^{-1}(2\overline{\Phi}(|Z|_{(k)}))$'s are all U(0,1)

JER control with λ -adjustment

►
$$X \sim \mathcal{N}(\theta, \Gamma) \in \mathbb{R}^m, \theta \in \mathbb{R}^m, \Gamma$$
 known

▶ *p*-values:
$$p_i = 2\overline{\Phi}(|X_i|), 1 \le i \le m$$

▶ Reference family: \Re with $R_k = \{i : p_i \le t_k(\lambda)\}$, some kernel $t_k(\lambda)$

$$\mathsf{JER}(\mathfrak{R}) = \mathbf{P}(\exists k : p_{(k:\mathcal{H}_0)} \leq t_k(\lambda))$$
$$\leq \mathbf{P}_{Z \sim \mathcal{N}(0,\Gamma)} \left(\min_k \left\{ t_k^{-1}(2\overline{\Phi}(|Z|_{(k)})) \right\} \leq \lambda \right) \text{ known } !$$

Method

Compute $\lambda(\alpha, \Gamma)$ with bound $\leq \alpha$ and use $t_k(\lambda(\alpha, \Gamma))$

▶ Linear kernel: $t_k(\lambda) = \lambda k/m$ (Simes under independence)

▶ Balanced kernel: such that the $t_k^{-1}(2\overline{\Phi}(|Z|_{(k)}))$'s are all U(0,1)

・ロト ・回ト ・ヨト ・ヨト

JER control with λ -adjustment

►
$$X \sim \mathcal{N}(\theta, \Gamma) \in \mathbb{R}^m, \theta \in \mathbb{R}^m, \Gamma$$
 known

▶ *p*-values:
$$p_i = 2\overline{\Phi}(|X_i|), 1 \le i \le m$$

▶ Reference family: \Re with $R_k = \{i : p_i \le t_k(\lambda)\}$, some kernel $t_k(\lambda)$

$$\mathsf{JER}(\mathfrak{R}) = \mathbf{P}(\exists k : p_{(k:\mathcal{H}_0)} \leq t_k(\lambda))$$
$$\leq \mathbf{P}_{Z \sim \mathcal{N}(0,\Gamma)} \left(\min_k \left\{ t_k^{-1}(2\overline{\Phi}(|Z|_{(k)})) \right\} \leq \lambda \right) \text{ known } !$$

Method

Compute $\lambda(\alpha, \Gamma)$ with bound $\leq \alpha$ and use $t_k(\lambda(\alpha, \Gamma))$

- ▶ Linear kernel: $t_k(\lambda) = \lambda k/m$ (Simes under independence)
- ▶ Balanced kernel: such that the $t_k^{-1}(2\overline{\Phi}(|Z|_{(k)}))$'s are all U(0,1)

Illustration

▶ *α* = 0.25

- Γ = equi(ρ)
- ▶ *m* = 1000
- ► *B* = 1000
- ▶ rep= 1000

2 Post hoc bound

3 JER control

Etienne Roquain Joint work with Gilles Blanchard and

Notions of power

Post hoc bound:

$$\mathbf{P} \left(\forall R \subset \{1, \dots, m\} : |R \cap \mathcal{H}_0| \le \overline{V}(R) \right) \ge 1 - \alpha \\ \mathbf{P} \left(\forall R \subset \{1, \dots, m\} : |R \cap \mathcal{H}_1| \ge \overline{S}(R) \right) \ge 1 - \alpha,$$

for $\overline{S}(R) = |R| - \overline{V}(R)$ and $\mathcal{H}_1 = \mathcal{H}_0^c$.

Detection power: R = all

For some procedure \mathfrak{R} , Pow^{*}(\mathfrak{R}) = **P**($\overline{S}(\{1, ..., m\}) > 0$)

Averaged power: R "random"

For some procedure \mathfrak{R} , Pow(\mathfrak{R}) = $\mathbf{E}\left(\frac{\overline{S}(R)}{|R \cap \mathcal{H}_1|} \mid |R| > 0\right)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日

Notions of power

Post hoc bound:

$$\mathbf{P} \left(\forall \mathbf{R} \subset \{1, \dots, m\} : |\mathbf{R} \cap \mathcal{H}_0| \le \overline{\mathbf{V}}(\mathbf{R}) \right) \ge 1 - \alpha \\ \mathbf{P} \left(\forall \mathbf{R} \subset \{1, \dots, m\} : |\mathbf{R} \cap \mathcal{H}_1| \ge \overline{\mathbf{S}}(\mathbf{R}) \right) \ge 1 - \alpha,$$

for $\overline{S}(R) = |R| - \overline{V}(R)$ and $\mathcal{H}_1 = \mathcal{H}_0^c$.

Detection power: R = all

For some procedure \mathfrak{R} , $\mathsf{Pow}^*(\mathfrak{R}) = \mathbf{P}(\overline{S}(\{1, \dots, m\}) > 0)$

Averaged power: *R* "random"

For some procedure \mathfrak{R} , Pow(\mathfrak{R}) = **E** $\left(\frac{\overline{S}(R)}{|R \cap \mathcal{H}_1|} \mid |R| > 0\right)$

・ロト ・回ト ・ヨト ・ヨ

Notions of power

Post hoc bound:

$$\mathbf{P} \left(\forall \mathbf{R} \subset \{1, \dots, m\} : |\mathbf{R} \cap \mathcal{H}_0| \le \overline{\mathbf{V}}(\mathbf{R}) \right) \ge 1 - \alpha \\ \mathbf{P} \left(\forall \mathbf{R} \subset \{1, \dots, m\} : |\mathbf{R} \cap \mathcal{H}_1| \ge \overline{\mathbf{S}}(\mathbf{R}) \right) \ge 1 - \alpha,$$

for $\overline{S}(R) = |R| - \overline{V}(R)$ and $\mathcal{H}_1 = \mathcal{H}_0^c$.

Detection power: R = all

For some procedure \mathfrak{R} , $\mathsf{Pow}^*(\mathfrak{R}) = \mathbf{P}(\overline{S}(\{1, \dots, m\}) > 0)$

Averaged power: R "random"

For some procedure
$$\mathfrak{R}$$
, $\mathsf{Pow}(\mathfrak{R}) = \mathbf{E}\left(\frac{\overline{S}(R)}{|R \cap \mathcal{H}_1|} \mid |R| > 0\right)$

Optimal detection

[Donoho and Jin (2004)]:

- Testing full null
- \triangleright β sparsity parameter
- r effect size parameter
- Higher criticism attains the boundary

Theorem

for r < ρ*(β), any JER controlling family has lim sup_m Pow*(ℜ) ≤ α;
for r > ρ*(β), balanced ℜ has Pow*(ℜ) → 1.

Proof: balanced \mathfrak{R} is a version of Higher criticism

Optimal detection

[Donoho and Jin (2004)]:

- Testing full null
- \triangleright β sparsity parameter
- r effect size parameter
- Higher criticism attains the boundary

Theorem

- ▶ for $r < \rho^{\star}(\beta)$, any JER controlling family has $\limsup_{m} \mathsf{Pow}^{\star}(\mathfrak{R}) \leq \alpha$;
- for $r > \rho^{\star}(\beta)$, balanced \mathfrak{R} has $\mathsf{Pow}^{*}(\mathfrak{R}) \to 1$.

Proof: balanced \mathfrak{R} is a version of Higher criticism

Illustration averaged power

Etienne Roguain Joint work with Gilles Blanchard and

Outlook

Take home message

- Agnostic approach for false positive bound
- Price to pay: reference family (complexity K)

Todo

- Permutation (Γ unknown)
- Less conservative with structure constraints on R
- Multivariate test statistics

Advertising: ANR-16-CE40-0019 "Sanssouci"

- Postdoc position in Toulouse
- Worshop in Toulouse Feb 7-9, 2018

Outlook

Take home message

- Agnostic approach for false positive bound
- Price to pay: reference family (complexity K)

Todo

- Permutation (Γ unknown)
- Less conservative with structure constraints on R
- Multivariate test statistics

Advertising: ANR-16-CE40-0019 "Sanssouci"

- Postdoc position in Toulouse
- Worshop in Toulouse Feb 7-9, 2018

Outlook

Take home message

- Agnostic approach for false positive bound
- Price to pay: reference family (complexity K)

Todo

- Permutation (Γ unknown)
- Less conservative with structure constraints on R
- Multivariate test statistics

Advertising: ANR-16-CE40-0019 "Sanssouci"

- Postdoc position in Toulouse
- Worshop in Toulouse Feb 7-9, 2018

• □ ▶ • □ ▶ • □ ▶