## Post hoc inference via JER control

# Etienne Roquain ${ }^{1}$ <br> Joint work with Gilles Blanchard ${ }^{2}$ and Pierre Neuvial ${ }^{2}$ 

${ }^{1}$ LPMA, Université Pierre et Marie Curie, France
${ }^{2}$ Institut für Mathematik, Universität Potsdam, Germany
${ }^{3}$ IMT, Université Paul Sabatier, France

Mathematical Method of Modern Statistics, 12/07/2017

泪 Arxiv 1703.02307

# (1) Introduction 

(2) Post hoc bound
(3) JER control
(4) Power issues

## Find signal in massive datasets

- GWAS interesting SNPs? [Saad et al., 2011]



## Multiple inferences

- Multiple testing:
- derive the rejection set $R$
- such that from $\operatorname{FDR}(R) \leq \alpha$
[Benjamini and Hochberg (1995)] ... [Bogdan et al. (2014)], [Barber and Candès (2015)]
- Post-selective inference
- Inference after specific selection [Lockhart et al. (2014) and Fithian et al. (2014)]
- Inference after arbitrary selection
* confidence intervals on selected parameters
[Benjamini and Yekutieli (2005)], [Berk et al. (2013)]
* estimator/bound on signal quantity after selection [Goeman and Solari (2011)]


## CI no selection

Let

$$
X \sim \mathcal{N}\left(\theta, I_{m}\right) \in \mathbb{R}^{m}, \quad \theta \in \mathbb{R}^{m},
$$

$90 \% \mathrm{Cl}$ for each $\theta_{i}$


## CI no selection

Let

$$
X \sim \mathcal{N}\left(\theta, I_{m}\right) \in \mathbb{R}^{m}, \quad \theta \in \mathbb{R}^{m},
$$

$90 \% \mathrm{Cl}$ for each $\theta_{i}$


## Cl after selection

Let

$$
X \sim \mathcal{N}\left(\theta, I_{m}\right) \in \mathbb{R}^{m}, \quad \theta \in \mathbb{R}^{m}
$$

$90 \% \mathrm{Cl}$ for each $\theta_{i}$ after selection


## Cl after selection

Let

$$
X \sim \mathcal{N}\left(\theta, I_{m}\right) \in \mathbb{R}^{m}, \quad \theta \in \mathbb{R}^{m},
$$

$90 \% \mathrm{Cl}$ for each $\theta_{i}$ after selection


## Cl after selection

Let

$$
X \sim \mathcal{N}\left(\theta, I_{m}\right) \in \mathbb{R}^{m}, \quad \theta \in \mathbb{R}^{m},
$$

$90 \% \mathrm{Cl}$ for each $\theta_{i}$ after selection


## Cl after selection

Let

$$
X \sim \mathcal{N}\left(\theta, I_{m}\right) \in \mathbb{R}^{m}, \quad \theta \in \mathbb{R}^{m},
$$

$90 \% \mathrm{Cl}$ for each $\theta_{i}$ after selection


A solution : [Benjamini and Yekutieli (2005)] take $1-0.1|R| / m$ (or so)

## Estimating true null quantity

Let

$$
X \sim \mathcal{N}\left(\theta, I_{m}\right) \in \mathbb{R}^{m}, \quad \theta \in \mathbb{R}_{+}^{m},
$$

Parameter $m_{0}(\theta)=\#$ zeros in $\theta$ (true null number)


## Estimating true null quantity

Let

$$
X \sim \mathcal{N}\left(\theta, I_{m}\right) \in \mathbb{R}^{m}, \quad \theta \in \mathbb{R}_{+}^{m},
$$

Parameter $m_{0}(\theta)=$ \#zeros in $\theta$ (true null number)


## Estimating true null quantity

Let

$$
X \sim \mathcal{N}\left(\theta, I_{m}\right) \in \mathbb{R}^{m}, \quad \theta \in \mathbb{R}_{+}^{m},
$$

Parameter $m_{0}(\theta)=\#$ zeros in $\theta$ (true null number)

[Storey (2002)]

## Estimating $m_{0}$ after selection

Let

$$
X \sim \mathcal{N}\left(\theta, I_{m}\right) \in \mathbb{R}^{m}, \quad \theta \in \mathbb{R}_{+}^{m},
$$

Parameter $V(R)=$ \#zeros in $\theta$ in selected $R$ (false positives in $R$ )


## Estimating $m_{0}$ after selection

Let

$$
X \sim \mathcal{N}\left(\theta, I_{m}\right) \in \mathbb{R}^{m}, \quad \theta \in \mathbb{R}_{+}^{m},
$$

Parameter $V(R)=$ \#zeros in $\theta$ in selected $R$ (false positives in $R$ )


## Estimating $m_{0}$ after selection

Let

$$
X \sim \mathcal{N}\left(\theta, I_{m}\right) \in \mathbb{R}^{m}, \quad \theta \in \mathbb{R}_{+}^{m},
$$

Parameter $V(R)=$ \#zeros in $\theta$ in selected $R$ (false positives in $R$ )


## A basic idea

$$
\begin{aligned}
V(R) & =\#\left\{i \in R: \theta_{i}=0\right\} \\
& =\#\left\{i \in R: \theta_{i}=0, X_{i} \leq 0\right\}+\#\left\{i \in R: \theta_{i}=0, X_{i}>0\right\} \\
& \leq \#\left\{i \in R: X_{i} \leq 0\right\}+\#\left\{i \in R: \theta_{i}=0, X_{i}>0\right\} \\
& \leq \#\left\{i \in R: X_{i} \leq 0\right\}+\#\left\{i: \theta_{i}=0, X_{i}>0\right\} \\
& \approx \#\left\{i \in R: X_{i} \leq 0\right\}+m / 2=: \bar{V}(R)
\end{aligned}
$$

## A basic idea



## What is $R$ ?



## (1) Introduction

## (2) Post hoc bound

## (3) JER control

(4) Power issues

## Aim

Observe $X \sim P$ with parameter $\theta=\theta(P) \in \mathbb{R}^{m}$.
Number of false positives in $R \subset\{1, \ldots, m\}$ :

$$
V(R)=\left|R \cap \mathcal{H}_{0}\right|, \quad \mathcal{H}_{0}=\left\{i: \theta_{i}=0\right\} .
$$

## Post hoc bound

$\bar{V}(\cdot) \in \mathbb{N}$, such that for all $P$,

$$
\mathbf{P}(\forall R \subset\{1, \ldots, m\}: V(R) \leq \bar{V}(R)) \geq 1-\alpha
$$

- agnostic method on $R$
- desirable to have sharp $\bar{V}(R)$ for $R$ containing large $X_{i}$ 's
- take reference sets $\left(R_{k}\right)_{k}$ making only few false discoveries


## Aim

Observe $X \sim P$ with parameter $\theta=\theta(P) \in \mathbb{R}^{m}$.
Number of false positives in $R \subset\{1, \ldots, m\}$ :

$$
V(R)=\left|R \cap \mathcal{H}_{0}\right|, \quad \mathcal{H}_{0}=\left\{i: \theta_{i}=0\right\} .
$$

## Post hoc bound

$\bar{V}(\cdot) \in \mathbb{N}$, such that for all $P$,

$$
\mathbf{P}(\forall R \subset\{1, \ldots, m\}: V(R) \leq \bar{V}(R)) \geq 1-\alpha
$$

- agnostic method on $R$
- desirable to have sharp $\bar{V}(R)$ for $R$ containing large $X_{i}$ 's
- take reference sets $\left(R_{k}\right)_{k}$ making only few false discoveries


## Method

## JER control

$\mathfrak{R}=\left\{R_{k}\right\}_{k}$ reference family such that

$$
J E R(\mathfrak{R})=\mathbf{P}\left(\exists k: V\left(R_{k}\right) \geq k\right) \leq \alpha
$$

That is, $\mathcal{E}=\left\{\forall k:\left|R_{k} \cap \mathcal{H}_{0}\right| \leq k-1\right\}$ is of proba $\geq 1-\alpha$.

## Lemma (interpolation)

On the event $\mathcal{E}, \forall R$,

$$
V(R) \leq \bar{V}(R)=\min _{k}\left\{\left|R_{k}^{c} \cap R\right|+k-1\right\}
$$

- JER control offers post hoc bound


## Method

## JER control

$\mathfrak{R}=\left\{R_{k}\right\}_{k}$ reference family such that

$$
\operatorname{JER}(\mathfrak{R})=\mathbf{P}\left(\exists k: V\left(R_{k}\right) \geq k\right) \leq \alpha
$$

That is, $\mathcal{E}=\left\{\forall k:\left|R_{k} \cap \mathcal{H}_{0}\right| \leq k-1\right\}$ is of proba $\geq 1-\alpha$.

## Lemma (interpolation)

On the event $\mathcal{E}, \forall R$,

$$
V(R) \leq \bar{V}(R)=\min _{k}\left\{\left|R_{k}^{c} \cap R\right|+k-1\right\}
$$

- JER control offers post hoc bound


## (1) Introduction

## (2) Post hoc bound

## (3) JER control

## (4) Power issues

## Simes inequality

## Proposition [Simes (1986)]

If $\left(p_{i}, 1 \leq i \leq m\right)$ available with $\left(p_{i}, i \in \mathcal{H}_{0}\right)$ i.i.d. $U(0,1)$,

$$
\mathbf{P}\left(\exists k: p_{\left(k: \mathcal{H}_{0}\right)} \leq \alpha k / m\right) \leq \alpha .
$$

we have $\leq$ if positive dependence [Benjamini and Yekutieli (2001)]
Corollary
Simes reference family $\mathfrak{R}$ with $R_{k}=\left\{i: p_{i} \leq a k / m\right\}$ satisfies

and thus provides a post hoc bound ([Goeman and Solari (2011)]).

- Calibibrated for independence only
- Why threshold $t_{k} \propto k$ ?


## Simes inequality

## Proposition [Simes (1986)]

If $\left(p_{i}, 1 \leq i \leq m\right)$ available with $\left(p_{i}, i \in \mathcal{H}_{0}\right)$ i.i.d. $U(0,1)$,

$$
\mathbf{P}\left(\exists k: p_{\left(k: \mathcal{H}_{0}\right)} \leq \alpha k / m\right) \leq \alpha .
$$

we have $\leq$ if positive dependence [Benjamini and Yekutieli (2001)]

## Corollary

Simes reference family $\mathfrak{R}$ with $R_{k}=\left\{i: p_{i} \leq \alpha k / m\right\}$ satisfies

$$
J E R(\Re)=\mathbf{P}\left(\exists k: V\left(R_{k}\right) \geq k\right) \leq \alpha
$$

and thus provides a post hoc bound ([Goeman and Solari (2011)]).

## - Calibrated for independence only

$\rightarrow$ Why threshold $t_{k} \propto k$ ?

## Simes inequality

## Proposition [Simes (1986)]

If $\left(p_{i}, 1 \leq i \leq m\right)$ available with $\left(p_{i}, i \in \mathcal{H}_{0}\right)$ i.i.d. $U(0,1)$,

$$
\mathbf{P}\left(\exists k: p_{\left(k: \mathcal{H}_{0}\right)} \leq \alpha k / m\right) \leq \alpha .
$$

we have $\leq$ if positive dependence [Benjamini and Yekutieli (2001)]

## Corollary

Simes reference family $\mathfrak{R}$ with $R_{k}=\left\{i: p_{i} \leq \alpha k / m\right\}$ satisfies

$$
J E R(\Re)=\mathbf{P}\left(\exists k: V\left(R_{k}\right) \geq k\right) \leq \alpha
$$

and thus provides a post hoc bound ([Goeman and Solari (2011)]).

- Calibrated for independence only
- Why threshold $t_{k} \propto k$ ?


## JER control with $\lambda$-adjustment

- $X \sim \mathcal{N}(\theta, \Gamma) \in \mathbb{R}^{m}, \theta \in \mathbb{R}^{m}, \Gamma$ known
- $p$-values: $p_{i}=2 \bar{\Phi}\left(\left|X_{i}\right|\right), 1 \leq i \leq m$
- Reference family: $\mathfrak{R}$ with $R_{k}=\left\{i: p_{i} \leq t_{k}(\lambda)\right\}$, some kernel $t_{k}(\lambda)$


## $\operatorname{JER}(\Re)=P\left(\exists k: p_{\left(k: \mathcal{H}_{0}\right)} \leq t_{k}(\lambda)\right)$



Method
Compute $\lambda(\alpha, \Gamma)$ with bound $\leq \alpha$ and use $t_{k}(\lambda(\alpha, \Gamma))$

- Linear kernel: $t_{k}(\lambda)=\lambda k / m$ (Simes under independence)
- Balanced kernel: such that the $t_{k}^{-1}\left(2 \Phi\left(|Z|_{(k)}\right)\right)$ 's are all $U(0,1)$


## JER control with $\lambda$-adjustment

- $X \sim \mathcal{N}(\theta, \Gamma) \in \mathbb{R}^{m}, \theta \in \mathbb{R}^{m}, \Gamma$ known
- $p$-values: $p_{i}=2 \bar{\Phi}\left(\left|X_{i}\right|\right), 1 \leq i \leq m$
- Reference family: $\mathfrak{R}$ with $R_{k}=\left\{i: p_{i} \leq t_{k}(\lambda)\right\}$, some kernel $t_{k}(\lambda)$

$$
\operatorname{JER}(\mathfrak{R})=\mathbf{P}\left(\exists k: p_{(k: \mathcal{H} 0)} \leq t_{k}(\lambda)\right)
$$

$$
\leq \mathbf{P}_{Z \sim \mathcal{N}(0, \Gamma)}\left(\min _{k}\left\{t_{k}^{-1}\left(2 \bar{\Phi}\left(|Z|_{(k)}\right)\right)\right\} \leq \lambda\right) \text { known! }
$$

- Linear kernel: $t_{k}(\lambda)=\lambda k / m$ (Simes under independence)
- Balanced kernel: such that the $t_{k}^{-1}\left(2 \Phi\left(|Z|_{(k)}\right)\right)$ 's are all $U(0,1)$


## JER control with $\lambda$-adjustment

- $X \sim \mathcal{N}(\theta, \Gamma) \in \mathbb{R}^{m}, \theta \in \mathbb{R}^{m}, \Gamma$ known
- $p$-values: $p_{i}=2 \bar{\Phi}\left(\left|X_{i}\right|\right), 1 \leq i \leq m$
- Reference family: $\mathfrak{R}$ with $R_{k}=\left\{i: p_{i} \leq t_{k}(\lambda)\right\}$, some kernel $t_{k}(\lambda)$

$$
\begin{aligned}
\operatorname{JER}(\mathfrak{R}) & =\mathbf{P}\left(\exists k: p_{\left(k: \mathcal{H}_{0}\right)} \leq t_{k}(\lambda)\right) \\
& \leq \mathbf{P}_{Z \sim \mathcal{N}(0, \Gamma)}\left(\min _{k}\left\{t_{k}^{-1}\left(2 \bar{\Phi}\left(|Z|_{(k)}\right)\right)\right\} \leq \lambda\right) \text { known! }
\end{aligned}
$$

## Method

Compute $\lambda(\alpha, \Gamma)$ with bound $\leq \alpha$ and use $t_{k}(\lambda(\alpha, \Gamma))$

- Linear kernel: $t_{k}(\lambda)=\lambda k / m$ (Simes under independence)
- Balanced kernel: such that the $t_{k}^{-1}\left(2 \bar{\Phi}\left(|Z|_{(k)}\right)\right)$ 's are all $U(0,1)$


## Illustration

- $\alpha=0.25$
- $\Gamma=$ equi $(\rho)$
- $m=1000$
- $B=1000$
- rep $=1000$



## (1) Introduction

## (2) Post hoc bound

(3) JER control

## (4) Power issues

## Notions of power

## Post hoc bound:

$$
\begin{aligned}
& \mathbf{P}\left(\forall R \subset\{1, \ldots, m\}:\left|R \cap \mathcal{H}_{0}\right| \leq \bar{V}(R)\right) \geq 1-\alpha \\
& \mathbf{P}\left(\forall R \subset\{1, \ldots, m\}:\left|R \cap \mathcal{H}_{1}\right| \geq \bar{S}(R)\right) \geq 1-\alpha,
\end{aligned}
$$

for $\bar{S}(R)=|R|-\bar{V}(R)$ and $\mathcal{H}_{1}=\mathcal{H}_{0}^{c}$.

Detection power: $R=$ all
For some procedure $\mathfrak{R}, \operatorname{Pow}{ }^{*}(\mathfrak{R})=P(S(\{1, \ldots, m\})>0)$

Averaged power: $R$ "random"
For some procedure $\mathfrak{R}, \operatorname{Pow}(\mathfrak{R})=\mathbf{E}\left(\left.\frac{S(R)}{|R \cap \mathcal{H}|}| | R \right\rvert\,>0\right)$

## Notions of power

Post hoc bound:

$$
\begin{aligned}
& \mathbf{P}\left(\forall R \subset\{1, \ldots, m\}:\left|R \cap \mathcal{H}_{0}\right| \leq \bar{V}(R)\right) \geq 1-\alpha \\
& \mathbf{P}\left(\forall R \subset\{1, \ldots, m\}:\left|R \cap \mathcal{H}_{1}\right| \geq \bar{S}(R)\right) \geq 1-\alpha,
\end{aligned}
$$

for $\bar{S}(R)=|R|-\bar{V}(R)$ and $\mathcal{H}_{1}=\mathcal{H}_{0}^{c}$.

## Detection power: $R=$ all

For some procedure $\mathfrak{R}, \operatorname{Pow}^{*}(\Re)=\mathbf{P}(\bar{S}(\{1, \ldots, m\})>0)$

Averaged power: $R$ "random"
For some procedure $\mathfrak{R}, \operatorname{Pow}(\mathfrak{R})=\mathbf{E}\left(\left.\frac{\bar{S}(R)}{\left|R \cap \mathcal{H}_{1}\right|}| | R \right\rvert\,>0\right)$

## Notions of power

Post hoc bound:

$$
\begin{aligned}
& \mathbf{P}\left(\forall R \subset\{1, \ldots, m\}:\left|R \cap \mathcal{H}_{0}\right| \leq \bar{V}(R)\right) \geq 1-\alpha \\
& \mathbf{P}\left(\forall R \subset\{1, \ldots, m\}:\left|R \cap \mathcal{H}_{1}\right| \geq \bar{S}(R)\right) \geq 1-\alpha,
\end{aligned}
$$

for $\bar{S}(R)=|R|-\bar{V}(R)$ and $\mathcal{H}_{1}=\mathcal{H}_{0}^{c}$.

## Detection power: $R=$ all

For some procedure $\mathfrak{R}, \operatorname{Pow}^{*}(\Re)=\mathbf{P}(\bar{S}(\{1, \ldots, m\})>0)$

## Averaged power: $R$ "random"

For some procedure $\mathfrak{R}, \operatorname{Pow}(\mathfrak{R})=\mathbf{E}\left(\left.\frac{\bar{S}(R)}{\left|R \cap \mathcal{H}_{1}\right|}| | R \right\rvert\,>0\right)$

## Optimal detection

[Donoho and Jin (2004)]:

- Testing full null
- $\beta$ sparsity parameter
- $r$ effect size parameter
- Higher criticism attains the boundary


Theorem

* for $r<\rho^{*}(\beta)$, any JER controlling family has limsup Pow $^{*}(\Re) \leq \alpha$;
$\Rightarrow$ for $r>\rho^{*}(\beta)$, balanced $\Re$ has Pow* $(\Re) \rightarrow 1$.
Proof: balanced $\mathfrak{R}$ is a version of Higher criticism


## Optimal detection

[Donoho and Jin (2004)]:

- Testing full null
- $\beta$ sparsity parameter
- $r$ effect size parameter
- Higher criticism attains the boundary



## Theorem

- for $r<\rho^{\star}(\beta)$, any JER controlling family has $\lim \sup _{m} \operatorname{Pow}^{*}(\mathfrak{R}) \leq \alpha$;
- for $r>\rho^{\star}(\beta)$, balanced $\mathfrak{R}$ has $\operatorname{Pow}^{*}(\mathfrak{R}) \rightarrow 1$.

Proof: balanced $\mathfrak{R}$ is a version of Higher criticism

## Illustration averaged power



## Outlook

## Take home message

- Agnostic approach for false positive bound
- Price to pay: reference family (complexity K)


# - Permutation (「 unknown) <br> - Less conservative with structure constraints on $R$ <br> - Multivariate test statistics 

Advertising: ANR-16-CE40-0019 "Sanssouci"

- Postdoc position in Toulouse
- Worshop in Toulouse Feb 7-9, 2018


## Outlook

## Take home message

- Agnostic approach for false positive bound
- Price to pay: reference family (complexity K)


## Todo

- Permutation (Г unknown)
- Less conservative with structure constraints on $R$
- Multivariate test statistics
- Postdoc position in Toulouse
- Worshop in Toulouse Feb 7-9, 2018


## Outlook

## Take home message

- Agnostic approach for false positive bound
- Price to pay: reference family (complexity K)


## Todo

- Permutation (Г unknown)
- Less conservative with structure constraints on $R$
- Multivariate test statistics


## Advertising: ANR-16-CE40-0019 "Sanssouci"

- Postdoc position in Toulouse
- Worshop in Toulouse Feb 7-9, 2018

