Low-rank Interaction Contingency Tables

Geneviève Robin, Julie Josse, Éric Moulines, Sylvain Sardy

École Polytechnique

genevieve.robin@polytechnique.edu

July 11, 2017

Geneviève Robin (Polytechnique)

High dimensional count data

• Ecological data (abundance of species across environments)

	Alop.alpi	Alch.pent	Geum.mont	Pote.aure	Sali.herb
AR26	0	0	2	2	0
AR08	1	0	2	1	0
AR05	0	0	3	3	0
AR06	0	0	3	0	0
AR69	1	0	2	2	2
AR32	2	0	3	3	1
AR40	2	3	3	4	0

Table: Excerpt of Aravo dataset. 82 species of plants across 75 environments in the French Alps (Dray and Dufour, 2007).

How do species interact with environments ?

• $Y \in \mathbb{N}^{m_1 \times m_2}$, Y_{ij} independent Poisson; estimate $X_{ij} = \log (\mathbb{E}[Y_{ij}])$; \Rightarrow Log-linear model:

$$X_{ij} = \alpha_i + \beta_j + \Theta_{ij}, \ \mathsf{rk}(\Theta) = K$$

Log-linear model with known covariates

Environment characteristics, species traits are known.

	Aspect	Slope	Form	PhysD	ZoogD	Snow		Heigh	t Spread	Angle	Area	Thick	SLA	N_mass	Seed
AR26	5	0	3	20	no	140	Alor	alpi 5.0		20	190.90	0.20	15.10	203.85	0.21
AR08	8	20	3	60	some	160	Poa	alpi 8.0) 15	45	160.00	0.18	10.70	204.37	0.32
AR05	9	10	4	20	high	150	Alch.	, pent 2.0) 20	15	218.10	0.16	23.70	364.98	0.31
AR06	8	20	3	40	high	160	Geum.r	mont 5.0	0 10	15	852.60	0.20	11.30	223.74	1.67
AR69	8	30	2	30	high	160	Plan	.alpi 0.5) 10	20	40.00	0.22	11.90	242.76	0.33
AR32	8	10	5	20	some	160	Pote.	aure 3.0) 20	15	264.50	0.10	17.50	253.75	0.24
AR40	8	15	4	10	some	180	Sali.	herb 1.0) 50	60	82.50	0.18	14.70	367.50	0.05

Figure: Environment (left) an species (right) covariates for Aravo data (excerpt)

$$X_{ij} = (R\alpha)_{ij} + (\beta C)_{ij} + \Theta_{ij}$$

- $X \in \mathbb{R}^{m_1 \times m_2}$. Column covariates $C \in \mathbb{R}^{K_2 \times m_2}$, row covariates $R \in \mathbb{R}^{m_1 \times K_1}$, $\alpha \in \mathbb{R}^{K_1 \times m_2}$, $\beta \in \mathbb{R}^{m_1 \times K_2}$, Θ_{ij}
- α_{ij} effect of *i*-th row covariate on *j*-th species
- β_{ij} effect of j-th column covariate on i-th environment

Penalized negative Poisson log-likelihood for $\lambda>0$ (relaxation of the rank constraint)

$$\Phi_Y^\lambda(X,\Theta) = -(m_1m_2)^{-1}\sum_{i=1}^{m_1}\sum_{j=1}^{m_2}\left(Y_{ij}X_{ij} - \exp(X_{ij})\right) + \lambda \left\|\Theta
ight\|_*$$

$$\begin{aligned} \hat{X}^{\lambda}, \hat{\Theta}^{\lambda} &= \underset{X \in \mathcal{K}}{\operatorname{argmin}} \quad \Phi^{\lambda}_{Y}(X) \\ \text{s.t.} & \mathcal{T}(X) = \Theta \end{aligned} ,$$

 $\mathcal{T}: X \in \mathbb{R} \mapsto \prod_{R}^{\perp} X \prod_{C}^{\perp}$ projection on matrix subspace orthogonal to R and C.

Parameter λ tuned with cross-validation or Quantile Universal Threshold (QUT) Diaz Rodriguez and Sardy (2014).

Alternating direction method of multipliers (ADMM) Boyd et al. (2011)

Augmented Lagrangian indexed by τ , Γ dual variable:

$$\mathcal{L}_{\tau}(X,\Theta,\Gamma) = \Phi_{Y}(X) + \lambda \left\|\Theta\right\|_{\sigma,1} + \langle \Gamma, \mathcal{T}(X) - \Theta \rangle + \frac{\tau}{2} \left\|\mathcal{T}(X) - \Theta\right\|_{2}^{2}.$$

At iteration k + 1 ADMM update rules are given by

$$\begin{aligned} X^{k+1} &= \operatorname{argmin}_{X \in \mathcal{K}} \quad \mathcal{L}_{\tau} \left(X, \Theta^{k}, \Gamma^{k} \right) \\ \Theta^{k+1} &= \operatorname{argmin}_{\Theta \in \mathcal{K}_{\mathcal{T}}} \quad \mathcal{L}_{\tau} \left(X^{k+1}, \Theta, \Gamma^{k} \right) \\ \Gamma^{k+1} &= \Gamma^{k} + \tau \left(\mathcal{T} (X^{k+1}) - \Theta^{k+1} \right). \end{aligned}$$

Theorem (Risk bound)

Assume

- Y_{ij} have bounded means and variance;
- Y_{ij} are subexponential variables;

•
$$m_1 + m_2 \ge C_1$$
, $\lambda = C_2 \sqrt{2(m_1 \vee m_2) \log(m_1 + m_2)} / (m_1 m_2)$.

Then

$$rac{\left\|X-\hat{X}_{\lambda}
ight\|_{\sigma,2}^{2}}{m_{1}m_{2}}\lesssimrac{\left(m_{1}+m_{2}
ight)\left(\mathsf{rk}(\Theta)+\mathcal{K}_{1}+\mathcal{K}_{2}
ight)}{m_{1}m_{2}},$$

with probability at least $1 - (m_1 + m_2)^{-1}$.

 ${\it C}_1, {\it C}_2$ are constants and \lesssim denotes inequality up to constants and log factors.

· < /⊒ > < ∃ > <

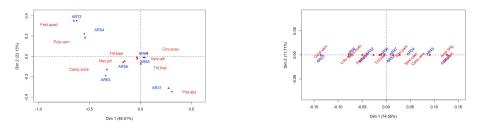


Figure: Visualization of the 10 largest interactions between environments (blue) and species (red) in the two first dimensions of interaction with GAMMIT without covariates (left) and with explanatory covariates (right).

- Use GAMMIT to impute contingency tables
- Extend the model to analyze mixed data
- Application to analysis of healthcare data

- Low-rank Interaction Contingency Tables on https://arxiv.org for more details
- Implementation of the method available at https://github.com/genevievelrobin/GAMMIT

- Boyd, S., N. Parikh, E. Chu, B. Peleato, and J. Eckstein (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. *Foundations and Trends in Machine Learning* 3(1), 1–22.
- Diaz Rodriguez, J. and S. Sardy (2014). Quantile universal threshold: model selection at the detection edge for high-dimensional regression. *ArXiv e-prints*.
- Dray, S. and A. Dufour (2007). The ade4 package: implementing the duality diagram for ecologists. *Journal of Statistical Software 22*(4), 1–20.