Penalized Monte Carlo methods in high-dimensional Ising model

Wojciech Rejchel

Nicolaus Copernicus University in Toruń, Poland

Joint work with Błażej Miasojedow (University of Warsaw)

・ 同 ト ・ ヨ ト ・ ヨ ト

Markov random field

• Undirected graph (V, E)

Wojciech Rejchel Penalized Monte Carlo methods in high-dimensional Ising model

・ 同 ト ・ ヨ ト ・ ヨ ト

Markov random field

- Undirected graph (V, E)
- $V = \{1, \ldots, d\}$ set of vertices

・ 同 ト ・ ヨ ト ・ ヨ ト …

Markov random field

- Undirected graph (V, E)
- $V = \{1, \ldots, d\}$ set of vertices
- $E \subset V \times V$ set of edges

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Markov random field

- Undirected graph (V, E)
- $V = \{1, \ldots, d\}$ set of vertices
- $E \subset V \times V$ set of edges
- $Y = (Y(1), \dots, Y(d))$ random vector

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Markov random field

- Undirected graph (V, E)
- $V = \{1, \ldots, d\}$ set of vertices
- $E \subset V \times V$ set of edges
- $Y = (Y(1), \ldots, Y(d))$ random vector
- Y(s) is associated with vertex $s \in V$

-

Ising model

• $Y(s) \in \{-1, 1\}$

Wojciech Rejchel Penalized Monte Carlo methods in high-dimensional Ising model

Ising model

• $Y(s) \in \{-1, 1\}$

• Joint distribution of Y is given by

$$p(y|\theta^{\star}) = \frac{1}{C(\theta^{\star})} \exp\left(\sum_{r < s} \theta^{\star}_{rs} y(r) y(s)\right)$$

< ロ > < 同 > < 三 > < 三 >

Ising model

• $Y(s) \in \{-1, 1\}$

• Joint distribution of Y is given by

$$p(y|\theta^{\star}) = \frac{1}{C(\theta^{\star})} \exp\left(\sum_{r < s} \theta^{\star}_{rs} y(r) y(s)\right)$$

•
$$\theta^{\star} \in \mathbb{R}^{\frac{d(d-1)}{2}}$$
 - true parameter

< ロ > < 同 > < 三 > < 三 >

Ising model

- $Y(s) \in \{-1, 1\}$
- Joint distribution of Y is given by

$$p(y|\theta^{\star}) = \frac{1}{C(\theta^{\star})} \exp\left(\sum_{r < s} \theta^{\star}_{rs} y(r) y(s)\right)$$

- $\theta^{\star} \in \mathbb{R}^{\frac{d(d-1)}{2}}$ true parameter
- Intractable norming constant

$$C(\theta^{\star}) = \sum_{y \in \{0,1\}^d} \exp\left(\sum_{r < s} \theta^{\star}_{rs} y(r) y(s)\right)$$

< 同 ト < 三 ト < 三 ト

Ising model

• $Y(s) \in \{-1, 1\}$

• Joint distribution of Y is given by

$$p(y|\theta^{\star}) = \frac{1}{C(\theta^{\star})} \exp\left(\sum_{r < s} \theta^{\star}_{rs} y(r) y(s)\right)$$

• $\theta^{\star} \in \mathbb{R}^{\frac{d(d-1)}{2}}$ - true parameter

• Intractable norming constant

$$C(\theta^{\star}) = \sum_{y \in \{0,1\}^d} \exp\left(\sum_{r < s} \theta^{\star}_{rs} y(r) y(s)\right)$$

•
$$J(y) = (y(r)y(s))_{r < s}$$

< 同 > < 三 > < 三 > -

Ising model

• $Y(s) \in \{-1, 1\}$

• Joint distribution of Y is given by

$$p(y|\theta^{\star}) = \frac{1}{C(\theta^{\star})} \exp\left(\sum_{r < s} \theta^{\star}_{rs} y(r) y(s)\right)$$

• $\theta^{\star} \in \mathbb{R}^{\frac{d(d-1)}{2}}$ - true parameter

• Intractable norming constant

$$\mathcal{C}(heta^{\star}) = \sum_{y \in \{0,1\}^d} \exp\left(\sum_{r < s} heta^{\star}_{rs} y(r) y(s)\right)$$

• $J(y) = (y(r)y(s))_{r < s}$

$$p(y|\theta^{\star}) = \frac{1}{C(\theta^{\star})} \exp\left[(\theta^{\star})'J(y)\right]$$

Ising model

•
$$\theta_{rs}^{\star} = 0$$

Wojciech Rejchel Penalized Monte Carlo methods in high-dimensional Ising model

< ロ > < 回 > < 回 > < 回 > < 回 >

Ising model

• $\theta_{rs}^{\star} = 0$ means that Y(r) and Y(s) are conditionally independent

・ 同 ト ・ ヨ ト ・ ヨ ト

Ising model

- $\theta_{rs}^{\star} = 0$ means that Y(r) and Y(s) are conditionally independent
- Finding conditional independence

< 同 > < 三 > < 三 > -

Ising model

- $\theta_{rs}^{\star} = 0$ means that Y(r) and Y(s) are conditionally independent
- Finding conditional independence ⇔ recognizing structure of graph

くロ と く 同 と く ヨ と 一

Ising model

- $\theta_{rs}^{\star} = 0$ means that Y(r) and Y(s) are conditionally independent
- Finding conditional independence ⇔ recognizing structure of graph ⇔ estimation of θ^{*}

くロ と く 同 と く ヨ と 一

Likelihood estimation

• Y_1, \ldots, Y_n - independent random vectors from $p(\cdot | \theta^*)$

イロト イヨト イヨト

3

Likelihood estimation

- Y_1, \ldots, Y_n independent random vectors from $p(\cdot | \theta^{\star})$
- Negative log-likelihood

$$\ell_n(\theta) = -\frac{1}{n} \sum_{i=1}^n \theta' J(Y_i) + \log C(\theta)$$

<回とくほとくほと。

3

Likelihood estimation

- Y_1, \ldots, Y_n independent random vectors from $p(\cdot | \theta^{\star})$
- Negative log-likelihood

$$\ell_n(\theta) = -\frac{1}{n}\sum_{i=1}^n \theta' J(Y_i) + \log C(\theta)$$

• Pseudolikelihood approximation

・ 同 ト ・ ヨ ト ・ ヨ ト …

Likelihood estimation

- Y_1, \ldots, Y_n independent random vectors from $p(\cdot | \theta^{\star})$
- Negative log-likelihood

$$\ell_n(\theta) = -\frac{1}{n} \sum_{i=1}^n \theta' J(Y_i) + \log C(\theta)$$

- Pseudolikelihood approximation
- Monte Carlo (MC) approximation

Pseudolikelihood approximation

۲

$$p(y| heta) = \prod_{s=1}^d p(y(s)|y(s-1),\ldots,y(1), heta)$$

< ∃ →

Pseudolikelihood approximation

۲

$$p(y| heta) = \prod_{s=1}^{d} p(y(s)|y(s-1), \dots, y(1), heta)$$

 $pprox \prod_{s=1}^{d} p(y(s)|y(-s), heta)$

- ₹ 🖬 🕨

Pseudolikelihood approximation

• $p(y|\theta) = \prod_{s=1}^{d} p(y(s)|y(s-1), \dots, y(1), \theta)$ $\approx \prod_{s=1}^{d} p(y(s)|y(-s), \theta)$ • $y(-s) = (y(1), \dots, y(s-1), y(s+1), \dots, y(d))$

伺 ト イヨト イヨト

MC approximation

• h(y) - importance sampling distribution

< 同 > < 三 > < 三 > -

MC approximation

- h(y) importance sampling distribution
- Norming constant

$$C(\theta) = \sum_{y \in \{0,1\}^d} \exp \left[\theta' J(y) \right]$$

・ 同 ト ・ ヨ ト ・ ヨ ト

MC approximation

- h(y) importance sampling distribution
- Norming constant

$$C(\theta) = \sum_{y \in \{0,1\}^d} \exp \left[\theta' J(y) \right] = \sum_{y \in \{0,1\}^d} \frac{\exp \left[\theta' J(y) \right]}{h(y)} h(y)$$

(日本) (日本) (日本)

MC approximation

- h(y) importance sampling distribution
- Norming constant

$$C(\theta) = \sum_{y \in \{0,1\}^d} \exp\left[\theta' J(y)\right] = \sum_{y \in \{0,1\}^d} \frac{\exp\left[\theta' J(y)\right]}{h(y)} h(y)$$
$$= \mathbb{E}_{Y \sim h} \frac{\exp\left[\theta' J(Y)\right]}{h(Y)}$$

. .

< 同 > < 三 > < 三 > -

MC approximation

- h(y) importance sampling distribution
- Norming constant

$$C(\theta) = \sum_{y \in \{0,1\}^d} \exp\left[\theta' J(y)\right] = \sum_{y \in \{0,1\}^d} \frac{\exp\left[\theta' J(y)\right]}{h(y)} h(y)$$
$$= \mathbb{E}_{Y \sim h} \frac{\exp\left[\theta' J(Y)\right]}{h(Y)}$$

• Norming constant approximation

$$\frac{1}{m}\sum_{k=1}^{m}\frac{\exp\left[\theta'J(Y^{k})\right]}{h(Y^{k})}$$

(日本) (日本) (日本)

MC approximation

- h(y) importance sampling distribution
- Norming constant

$$C(\theta) = \sum_{y \in \{0,1\}^d} \exp\left[\theta' J(y)\right] = \sum_{y \in \{0,1\}^d} \frac{\exp\left[\theta' J(y)\right]}{h(y)} h(y)$$
$$= \mathbb{E}_{Y \sim h} \frac{\exp\left[\theta' J(Y)\right]}{h(Y)}$$

• Norming constant approximation

$$\frac{1}{m}\sum_{k=1}^{m}\frac{\exp\left[\theta'J(Y^k)\right]}{h(Y^k)}$$

 Y^1, \ldots, Y^m - Markov chain with stationary distribution h

MCMC approximation

• Y^1, \ldots, Y^m - Markov chain with stationary distribution h

3

MCMC approximation

$$\ell_n^m(\theta) = -\frac{1}{n} \sum_{i=1}^n \theta' J(Y_i) + \log\left(\frac{1}{m} \sum_{k=1}^m \frac{\exp\left[\theta' J(Y^k)\right]}{h(Y^k)}\right)$$

Wojciech Rejchel Penalized Monte Carlo methods in high-dimensional Ising model

э

・ 同 ト ・ ヨ ト ・ ヨ ト

High-dimensional setting

•
$$d = d_n >> n$$

Wojciech Rejchel Penalized Monte Carlo methods in high-dimensional Ising model

.

High-dimensional setting

- $d = d_n >> n$
- Number of parameters $=\frac{d(d-1)}{2}$

< 同 ト < 三 ト < 三 ト

High-dimensional setting

- $d = d_n >> n$
- Number of parameters $=\frac{d(d-1)}{2}$
- Penalized empirical risk minimization

 $\ell_n^m(\theta) + \lambda |\theta|_1$

< 同 ト < 三 ト < 三 ト

High-dimensional setting

•
$$d = d_n >> n$$

- Number of parameters $=\frac{d(d-1)}{2}$
- Penalized empirical risk minimization

$$\ell_n^m(\theta) + \lambda |\theta|_1$$

•
$$|\theta|_1 = \sum_{r < s} |\theta_{rs}|$$

伺 ト イヨト イヨト

High-dimensional setting

•
$$d = d_n >> n$$

- Number of parameters $=\frac{d(d-1)}{2}$
- Penalized empirical risk minimization

$$\ell_n^m(\theta) + \lambda |\theta|_1$$

•
$$|\theta|_1 = \sum_{r < s} |\theta_{rs}|$$

• $\hat{\theta} = \arg \min_{\theta} \ell_n^m(\theta) + \lambda |\theta|_1$

伺 ト イヨト イヨト

Notations

•
$$\bar{d} = d(d-1)/2$$

Wojciech Rejchel Penalized Monte Carlo methods in high-dimensional Ising model

< ロ > < 回 > < 回 > < 回 > < 回 >

Notations

< ロ > < 回 > < 回 > < 回 > < 回 >

Notations

•
$$\bar{d} = d(d-1)/2$$

• $T = \{(r,s) : \theta_{rs}^{\star} \neq 0\}$
• $\bar{d}_0 = |T|$

▲御▶ ▲ 臣▶ ▲ 臣▶

Notations

- $\bar{d} = d(d-1)/2$
- $T = \{(r, s) : \theta_{rs}^{\star} \neq 0\}$
- $\bar{d}_0 = |T|$
- Y^1, \ldots, Y^m Gibbs sampler on $\{-1, 1\}^d$ with stationary distribution h

伺 ト イヨト イヨト

-

Main results

Theorem

Let $\varepsilon > 0$. If

Wojciech Rejchel Penalized Monte Carlo methods in high-dimensional Ising model

Main results

Theorem

Let $\varepsilon > 0$. If

cone invertibility condition is satisfied

Main results

Theorem

Let $\varepsilon > 0$. If

- cone invertibility condition is satisfied
- 2 $n \ge C_1 \bar{d}_0^2 \log(\bar{d}/\varepsilon)$

Main results

Theorem

Let $\varepsilon > 0$. If

cone invertibility condition is satisfied

$$\begin{array}{l} \bullet \quad n \geq C_1 \bar{d}_0^2 \log(\bar{d}/\varepsilon) \\ \bullet \quad m \geq C_2 \frac{\bar{d}_0^2 M^2 \log(\beta_1 \bar{d}/\varepsilon)}{\beta_2} \end{array}$$

Main results

Theorem

Let $\varepsilon > 0$. If

cone invertibility condition is satisfied

then with probability at least $1-4\varepsilon$

$$\left|\hat{\theta}-\theta^{\star}\right|_{\infty}\leqslant C_{3}\lambda,$$

Main results

Theorem

Let $\varepsilon > 0$. If

cone invertibility condition is satisfied

then with probability at least $1-4\varepsilon$

$$\left|\hat{\theta}-\theta^{\star}\right|_{\infty}\leqslant C_{3}\lambda,$$

where

$$\lambda = \max\left(\sqrt{\frac{\log(\bar{d}/\varepsilon)}{n}}, M\sqrt{\frac{\log(\beta_1 \bar{d}/\varepsilon)}{\beta_2 m}}\right)$$

Wojciech Rejchel

Penalized Monte Carlo methods in high-dimensional Ising model

Main results

• $d \sim O(\exp(n^a)), \bar{d}_0 \sim O(n^b), \text{ if } a + 2b < 1$

Wojciech Rejchel Penalized Monte Carlo methods in high-dimensional Ising model

・ 同 ト ・ ヨ ト ・ ヨ ト

Main results

•
$$d \sim O(\exp(n^a)), \bar{d}_0 \sim O(n^b),$$
 if $a + 2b < 1$

 $\bullet\,$ Lasso estimator with threshold $\delta\,$

$$\tilde{\theta}_{rs} = \begin{cases} \hat{\theta}_{rs} & \text{if } |\hat{\theta}_{rs}| > \delta \\ 0 & \text{if } |\hat{\theta}_{rs}| \leqslant \delta \end{cases}$$

< 同 > < 国 > < 国 >

Main results

•
$$d \sim O(\exp(n^a)), \bar{d}_0 \sim O(n^b),$$
 if $a + 2b < 1$

 $\bullet\,$ Lasso estimator with threshold $\delta\,$

$$\tilde{\theta}_{rs} = \begin{cases} \hat{\theta}_{rs} & \text{if } |\hat{\theta}_{rs}| > \delta \\ 0 & \text{if } |\hat{\theta}_{rs}| \leqslant \delta \end{cases}$$

• $\theta_{\min}^{\star} = \min_{r < s} |\theta_{rs}^{\star}|$

・ 同 ト ・ ヨ ト ・ ヨ ト

Main results

Corollary

Let $\varepsilon > 0$. If conditions (1)-(3) are satisfied and $\theta_{min}^{\star}/2 \ge \delta \ge C_3 \lambda$, then

$$P\left(ilde{T}=T
ight)\geqslant 1-4arepsilon.$$

イロト イポト イヨト ・

Related papers

 Ravikumar, P., Wainwright, M. J., Lafferty, J. - Ann. Statist. (2010)

・ 同 ト ・ ヨ ト ・ ヨ ト

Related papers

- Ravikumar, P., Wainwright, M. J., Lafferty, J. Ann. Statist. (2010)
- Höfling, H., Tibshirani, R. JMLR (2009)

< ロ > < 同 > < 三 > < 三 >

Related papers

- Ravikumar, P., Wainwright, M. J., Lafferty, J. Ann. Statist. (2010)
- Höfling, H., Tibshirani, R. JMLR (2009)
- Guo J., Levina E., Michailidis G., Zhu J. (2010)

< ロ > < 同 > < 三 > < 三 >

Related papers

- Ravikumar, P., Wainwright, M. J., Lafferty, J. Ann. Statist. (2010)
- Höfling, H., Tibshirani, R. JMLR (2009)
- Guo J., Levina E., Michailidis G., Zhu J. (2010)
- Jalali, A., Johnson, C. C., Ravikumar, P. K. NIPS (2011)

イロト イポト イヨト イヨト

Related papers

- Ravikumar, P., Wainwright, M. J., Lafferty, J. Ann. Statist. (2010)
- Höfling, H., Tibshirani, R. JMLR (2009)
- Guo J., Levina E., Michailidis G., Zhu J. (2010)
- Jalali, A., Johnson, C. C., Ravikumar, P. K. NIPS (2011)
- Xue, L., Zou, H., Cai, T. Ann. Statist. (2012)

くロ と く 同 と く ヨ と 一

Simulated data sets

•
$$d = 20, 50$$

Wojciech Rejchel Penalized Monte Carlo methods in high-dimensional Ising model

▲御▶ ▲ 臣▶ ▲ 臣▶

Simulated data sets

- d = 20, 50
- n = 50, 100, 200, 500, 1000

.

Simulated data sets

- d = 20, 50
- *n* = 50, 100, 200, 500, 1000
- $m = 10^5$

伺 ト イヨト イヨト

Model 1

Wojciech Rejchel Penalized Monte Carlo methods in high-dimensional Ising model

Model 2

d

≅⊁ ≅

Simulated data sets

• We draw 20 configuration of signs

伺 ト イ ヨ ト イ ヨ

Simulated data sets

- We draw 20 configuration of signs
- We draw 20 replications of data set

< ∃ →

Simulated data sets

- We draw 20 configuration of signs
- We draw 20 replications of data set

•
$$\lambda = c_1 * \sqrt{\log \bar{d}/n}$$

→ < Ξ → <</p>

Simulated data sets

- We draw 20 configuration of signs
- We draw 20 replications of data set

•
$$\lambda = c_1 * \sqrt{\log \bar{d}/n}$$

• $\delta = c_2 * \sqrt{\log \bar{d}/n}$

< ∃ →

Model 1

		Pseudo		MCMC	
d	n	Lasso	ΤL	Lasso	ΤL
20	50	0.23	0.37	0.02	0.18
	100	0.74	0.91	0.10	0.73
	200	0.78	1.00	0.44	0.97
	500	0.97	1.00	0.92	1.00
	1000	1.00	1.00	1.00	1.00
50	50	0.20	0.20	0.03	0.12
	100	0.70	0.83	0.07	0.61
	200	0.88	1.00	0.33	0.93
	500	0.99	1.00	0.73	1.00
	1000	1.00	1.00	0.97	1.00

イロト イヨト イヨト イヨト

Ξ.

Model 2

		Pseudo		MCMC	
d	n	Lasso	ΤL	Lasso	ΤL
20	50	0.15	0.15	0.45	0.45
	100	0.14	0.14	0.51	0.51
	200	0.14	0.18	0.54	0.54
	500	0.19	0.23	0.56	0.56
	1000	0.25	0.26	0.55	0.55
50	50	0.15	0.15	0.46	0.46
	100	0.14	0.14	0.50	0.50
	200	0.15	0.15	0.53	0.53
	500	0.16	0.25	0.55	0.55
	1000	0.23	0.25	0.54	0.54

Wojciech Rejchel Penalized Monte Carlo methods in high-dimensional Ising model

References

Besag J. (1974). Spatial interaction and the statistical analysis of lattice systems. J. R. Statist. Soc. B, 36, 192–236.

Guo J., Levina E., Michailidis G. and Zhu J. (2010). *Joint structure estimation for categorical Markov networks*, Technical report.

Höfling, H. and Tibshirani, R. (2009). *Estimation of sparse binary pairwise Markov networks using pseudo-likelihoods.* J. Mach. Learn. Res., 10, 883–906.

Ising, E. (1925). Beitrag zur theorie des ferromagnetismus. Z. Physik, 31, 53-258.

Jalali, A., Johnson, C. C. and Ravikumar, P. K. (2011). *On learning discrete graphical models using greedy methods,* Proceedings of NIPS.

Miasojedow, B., Rejchel, W. (2016). Sparse estimation in Ising Model via penalized Monte Carlo methods, arXiv:1612.07497.

Ravikumar, P., Wainwright, M. J. and Lafferty, J. (2010). *High-dimensional Ising model selection using I*₁-regularized logistic regression. Ann. Statist., 38 1287–1319.

Tibshirani, R. (1996). *Regression shrinkage and selection via the lasso.* J. R. Statist. Soc. B, 58, 267–288.

Xue, L., Zou, H. and Cai, T. (2012). Nonconcave penalized composite conditional likelihood estimation of sparse Ising models. Ann. Stat., 40, 1403–1429.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ