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Markov random field

Undirected graph (V ,E )

V = {1, . . . , d} - set of vertices

E ⊂ V × V - set of edges

Y = (Y (1), . . . ,Y (d)) - random vector

Y (s) is associated with vertex s ∈ V
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Ising model

Y (s) ∈ {−1, 1}

Joint distribution of Y is given by

p(y |θ?) =
1

C (θ?)
exp

(∑
r<s

θ?rsy(r)y(s)

)

θ? ∈ R
d(d−1)

2 - true parameter
Intractable norming constant

C (θ?) =
∑

y∈{0,1}d
exp

(∑
r<s

θ?rsy(r)y(s)

)

J(y) = (y(r)y(s))r<s

p(y |θ?) =
1

C (θ?)
exp

[
(θ?)′J(y)

]
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Ising model

θ?rs = 0

means that Y (r) and Y (s) are conditionally
independent

Finding conditional independence ⇔ recognizing structure of
graph ⇔ estimation of θ?
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Likelihood estimation

Y1, . . . ,Yn - independent random vectors from p(·|θ?)

Negative log-likelihood

`n(θ) = −1
n

n∑
i=1

θ′J(Yi ) + logC (θ)

Pseudolikelihood approximation

Monte Carlo (MC) approximation
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Pseudolikelihood approximation

p(y |θ) =
d∏

s=1

p(y(s)|y(s − 1), . . . , y(1), θ)

≈
d∏

s=1

p(y(s)|y(−s), θ)

y(−s) = (y(1), . . . , y(s − 1), y(s + 1), . . . , y(d))
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MC approximation

h(y) - importance sampling distribution

Norming constant

C (θ) =
∑

y∈{0,1}d
exp

[
θ′J(y)

]
=

∑
y∈{0,1}d

exp [θ′J(y)]

h(y)
h(y)

= EY∼h
exp [θ′J(Y )]

h(Y )

Norming constant approximation

1
m

m∑
k=1

exp
[
θ′J(Y k)

]
h(Y k)

Y 1, . . . ,Ym - Markov chain with stationary distribution h
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MCMC approximation

Y 1, . . . ,Ym - Markov chain with stationary distribution h

`mn (θ) = −1
n

n∑
i=1

θ′J(Yi ) + log

 1
m

m∑
k=1

exp
[
θ′J(Y k)

]
h(Y k)


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High-dimensional setting

d = dn >> n

Number of parameters = d(d−1)
2

Penalized empirical risk minimization

`mn (θ) + λ|θ|1

|θ|1 =
∑

r<s |θrs |
θ̂ = arg minθ `mn (θ) + λ|θ|1
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Notations

d̄ = d(d − 1)/2

T = {(r , s) : θ?rs 6= 0}
d̄0 = |T |
Y 1, . . . ,Ym - Gibbs sampler on {−1, 1}d with stationary
distribution h
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Main results

Theorem

Let ε > 0. If

1 cone invertibility condition is satisfied
2 n ­ C1d̄

2
0 log(d̄/ε)

3 m ­ C2
d̄2

0M
2 log(β1d̄/ε)
β2

then with probability at least 1− 4ε∣∣∣θ̂ − θ?∣∣∣
∞
¬ C3λ,

where

λ = max

√ log(d̄/ε)

n
,M

√
log(β1d̄/ε)

β2m


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Main results

d ∼ O(exp(na)), d̄0 ∼ O(nb), if a + 2b < 1

Lasso estimator with threshold δ

θ̃rs =

{
θ̂rs if |θ̂rs | > δ

0 if |θ̂rs | ¬ δ

θ?min = min
r<s
|θ?rs |
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Main results

Corollary

Let ε > 0. If conditions (1)-(3) are satisfied and θ?min/2 ­ δ ­ C3λ,
then

P
(
T̃ = T

)
­ 1− 4ε.
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We draw 20 replications of data set
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Model 1

Pseudo MCMC
d n Lasso TL Lasso TL
20 50 0.23 0.37 0.02 0.18

100 0.74 0.91 0.10 0.73
200 0.78 1.00 0.44 0.97
500 0.97 1.00 0.92 1.00
1000 1.00 1.00 1.00 1.00

50 50 0.20 0.20 0.03 0.12
100 0.70 0.83 0.07 0.61
200 0.88 1.00 0.33 0.93
500 0.99 1.00 0.73 1.00
1000 1.00 1.00 0.97 1.00
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Model 2

Pseudo MCMC
d n Lasso TL Lasso TL
20 50 0.15 0.15 0.45 0.45

100 0.14 0.14 0.51 0.51
200 0.14 0.18 0.54 0.54
500 0.19 0.23 0.56 0.56
1000 0.25 0.26 0.55 0.55

50 50 0.15 0.15 0.46 0.46
100 0.14 0.14 0.50 0.50
200 0.15 0.15 0.53 0.53
500 0.16 0.25 0.55 0.55
1000 0.23 0.25 0.54 0.54
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