

Warsaw University of Technology Faculty of Mathematics and Information Science

Message hidden in the Independence of Matrix-Kummer and Wishart Matrices

Agnieszka Piliszek

Luminy, July 11, 2017 r.

Setting

2 HV matrix characterization

Ω_+ - cone of symmetric, positive definite matrices n imes n.

Random matrix Y has Wishart distribution with parameters b > (r-1)/2and $\Sigma \in \Omega_+$ $(Y \sim \mathcal{W}(b, \Sigma))$ if it has the density

$$\mathcal{W}(b,\Sigma)(dy) = C_1(\det y)^{b-(r+1)/2} e^{-\langle \Sigma, y \rangle} I_{\Omega_+}(y) dy.$$

Random matrix Y has Wishart distribution with parameters b > (r-1)/2and $\Sigma \in \Omega_+$ $(Y \sim \mathcal{W}(b, \Sigma))$ if it has the density

$$\mathcal{W}(b,\Sigma)(dy) = C_1(\det y)^{b-(r+1)/2} e^{-\langle \Sigma, y \rangle} I_{\Omega_+}(y) dy.$$

Random matrix X has Matrix-Kummer distribution with parameters $a > (r-1)/2, b \in \mathbb{R}, \Sigma \in \Omega_+$ ($X \sim \mathcal{MK}(a, b, \Sigma)$) if it has the density

$$\mathcal{MK}(a,b,\Sigma)(dx) = C_2(\det x)^{a-\frac{r+1}{2}} (\det(I_n+x))^{-(a+b)} e^{-\langle \Sigma, x \rangle} I_{\Omega_+}(x) dx.$$

HV matrix characterization

Notation: \circ :

$$x\circ y:=x^{1/2}yx^{1/2}$$

HV matrix characterization

Notation: 0:

$$x\circ y:=x^{1/2}yx^{1/2}\neq y\circ x=y^{1/2}xy^{1/2},\ x,\,y\in\Omega_+$$

Theorem 1 (2017+)

Let X and Y be independent random matrices in Ω_+ with positive and continuous densities.

Then

$$\mathbf{U} = (1 + \mathbf{X})^{-1} \circ \mathbf{Y} \text{ and } \mathbf{V} = [1 + (1 + \mathbf{X})^{-1} \circ \mathbf{Y}] \circ \mathbf{X}$$

are independent if and only if $\mathbf{X} \sim \mathcal{MK}(a, b, c\mathbf{e})$ and $\mathbf{Y} \sim \mathcal{W}(a + b, c\mathbf{e})$, where a > (r - 1)/2, b > (r - 1)/2 - a, c > 0.

HV matrix characterization

Notation: 0:

$$x\circ y:=x^{1/2}yx^{1/2}\neq y\circ x=y^{1/2}xy^{1/2},\ x,\,y\in\Omega_+$$

Theorem 1 (2017+)

Let X and Y be independent random matrices in Ω_+ with positive and continuous densities.

Then

$$\mathbf{U} = (1 + \mathbf{X})^{-1} \circ \mathbf{Y} \text{ and } \mathbf{V} = [1 + (1 + \mathbf{X})^{-1} \circ \mathbf{Y}] \circ \mathbf{X}$$

are independent if and only if $\mathbf{X} \sim \mathcal{MK}(a, b, c\mathbf{e})$ and $\mathbf{Y} \sim \mathcal{W}(a + b, c\mathbf{e})$, where a > (r - 1)/2, b > (r - 1)/2 - a, c > 0. Moreover $\mathbf{U} \sim \mathcal{MK}(a + b, -b, c\mathbf{e})$ and $\mathbf{V} \sim \mathcal{W}(a, c\mathbf{e})$.

Note:

•
$$\mathbf{U}, \mathbf{V} \in \Omega_+$$

A. Piliszek (MiNI PW)

$$\mathbf{U} = (1 + \mathbf{X})^{-1} \circ \mathbf{Y},$$

$$\mathbf{V} = [I_n + (I_n + \mathbf{X})^{-1} \circ \mathbf{Y}] \circ \mathbf{X}.$$
(1)
(2)

$$\mathbf{U} = (1 + \mathbf{X})^{-1} \circ \mathbf{Y},$$

$$\mathbf{V} = [I_n + (I_n + \mathbf{X})^{-1} \circ \mathbf{Y}] \circ \mathbf{X}.$$
(1)
(2)

Note that

•
$$\mathbf{X} = [I_n + \mathbf{U}]^{-1} \circ \mathbf{V}$$

$$\mathbf{U} = (1 + \mathbf{X})^{-1} \circ \mathbf{Y},\tag{1}$$

$$\mathbf{V} = [I_n + (I_n + \mathbf{X})^{-1} \circ \mathbf{Y}] \circ \mathbf{X}.$$
 (2)

Note that

$$\mathbf{U} = (1 + \mathbf{X})^{-1} \circ \mathbf{Y},\tag{1}$$

$$\mathbf{V} = [I_n + (I_n + \mathbf{X})^{-1} \circ \mathbf{Y}] \circ \mathbf{X}.$$
 (2)

Note that

Let X and Y be independent random matrices in Ω_+ with positive and continuous densities.

Then $\mathbf{U} = (I_n + \mathbf{X})^{-1} \circ \mathbf{Y}$ and $\mathbf{V} = [I_n + (I_n + \mathbf{X})^{-1} \circ \mathbf{Y}] \circ \mathbf{X}$ are independent if and only if $\mathbf{X} \sim \mathcal{MK}(a, b, c\mathbf{e})$ and $\mathbf{Y} \sim \mathcal{W}(a + b, c\mathbf{e})$, where a > (r-1)/2, b > (r-1)/2 - a, c > 0.

Let X and Y be independent random matrices in Ω_+ with positive and continuous densities.

Then $\mathbf{U} = (I_n + \mathbf{X})^{-1} \circ \mathbf{Y}$ and $\mathbf{V} = [I_n + (I_n + \mathbf{X})^{-1} \circ \mathbf{Y}] \circ \mathbf{X}$ are independent if and only if $\mathbf{X} \sim \mathcal{MK}(a, b, c\mathbf{e})$ and $\mathbf{Y} \sim \mathcal{W}(a + b, c\mathbf{e})$, where a > (r-1)/2, b > (r-1)/2 - a, c > 0.

Let X and Y be independent random matrices in Ω_+ with positive and continuous densities.

Then $\mathbf{U} = (I_n + \mathbf{X})^{-1} \circ \mathbf{Y}$ and $\mathbf{V} = [I_n + (I_n + \mathbf{X})^{-1} \circ \mathbf{Y}] \circ \mathbf{X}$ are independent if and only if $\mathbf{X} \sim \mathcal{MK}(a, b, c\mathbf{e})$ and $\mathbf{Y} \sim \mathcal{W}(a + b, c\mathbf{e})$, where a > (r-1)/2, b > (r-1)/2 - a, c > 0.

"⇒" Straightforward – just solve functional equations

$$a(x) + b(y) = c((I_n + x)^{-1} \circ y) + d([I_n + (I_n + x)^{-1} \circ y] \circ x) \ x, y \in \Omega_+$$

Let X and Y be independent random matrices in Ω_+ with positive and continuous densities.

Then $\mathbf{U} = (I_n + \mathbf{X})^{-1} \circ \mathbf{Y}$ and $\mathbf{V} = [I_n + (I_n + \mathbf{X})^{-1} \circ \mathbf{Y}] \circ \mathbf{X}$ are independent if and only if $\mathbf{X} \sim \mathcal{MK}(a, b, c\mathbf{e})$ and $\mathbf{Y} \sim \mathcal{W}(a + b, c\mathbf{e})$, where a > (r-1)/2, b > (r-1)/2 - a, c > 0.

" \Rightarrow " Straightforward – just solve functional equations

 $a(x) + b(y) = c((I_n + x)^{-1} \circ y) + d([I_n + (I_n + x)^{-1} \circ y] \circ x) \ x, y \in \Omega_+$

• use 1-dimensional theorem (P., Wesołowski, 2016)

- Details on arXiv:1706.09718, A. Piliszek, Independence characterization for Wishart and Kummer matrices.
- A. Piliszek, J. Wesołowski, Kummer and gamma laws through independences on trees-Another parallel with the Matsumoto-Yor property. J. Multivar. Anal. **152** (2016), 15-27.

Thank you!