Warsaw University of Technology

Faculty of Mathematics and Information Science

Message hidden in the Independence of Matrix-Kummer and Wishart Matrices

Agnieszka Piliszek

Luminy, July 11, 2017 r.

Plan

(1) Setting
(2) HV matrix characterization

Matrix setting

Ω_{+}- cone of symmetric, positive definite matrices $n \times n$.

Two distributions

Random matrix Y has Wishart distribution with parameters $b>(r-1) / 2$ and $\Sigma \in \Omega_{+}(Y \sim \mathcal{W}(b, \Sigma))$ if it has the density

$$
\mathcal{W}(b, \Sigma)(d y)=C_{1}(\operatorname{det} y)^{b-(r+1) / 2} e^{-\langle\Sigma, y\rangle} I_{\Omega_{+}}(y) d y
$$

Two distributions

Random matrix Y has Wishart distribution with parameters $b>(r-1) / 2$ and $\Sigma \in \Omega_{+}(Y \sim \mathcal{W}(b, \Sigma))$ if it has the density

$$
\mathcal{W}(b, \Sigma)(d y)=C_{1}(\operatorname{det} y)^{b-(r+1) / 2} e^{-\langle\Sigma, y\rangle} I_{\Omega_{+}}(y) d y
$$

Random matrix X has Matrix-Kummer distribution with parameters $a>(r-1) / 2, b \in \mathbb{R}, \Sigma \in \Omega_{+}(X \sim \mathcal{M} \mathcal{K}(a, b, \Sigma))$ if it has the density

$$
\mathcal{M K}(a, b, \Sigma)(d x)=C_{2}(\operatorname{det} x)^{a-\frac{r+1}{2}}\left(\operatorname{det}\left(I_{n}+x\right)\right)^{-(a+b)} e^{-\langle\Sigma, x\rangle} I_{\Omega_{+}}(x) d x
$$

HV matrix characterization

Notation: ○:

$$
x \circ y:=x^{1 / 2} y x^{1 / 2}
$$

HV matrix characterization

Notation: ○:

$$
x \circ y:=x^{1 / 2} y x^{1 / 2} \neq y \circ x=y^{1 / 2} x y^{1 / 2}, \quad x, y \in \Omega_{+}
$$

Theorem 1 (2017+)

Let \mathbf{X} and \mathbf{Y} be independent random matrices in Ω_{+}with positive and continuous densities.
Then

$$
\mathbf{U}=(1+\mathbf{X})^{-1} \circ \mathbf{Y} \text { and } \mathbf{V}=\left[1+(1+\mathbf{X})^{-1} \circ \mathbf{Y}\right] \circ \mathbf{X}
$$

are independent if and only if $\mathbf{X} \sim \mathcal{M} \mathcal{K}(a, b, c \mathbf{e})$ and $\mathbf{Y} \sim \mathcal{W}(a+b, c \mathbf{e})$, where $a>(r-1) / 2, b>(r-1) / 2-a, c>0$.

HV matrix characterization

Notation: ०:

$$
x \circ y:=x^{1 / 2} y x^{1 / 2} \neq y \circ x=y^{1 / 2} x y^{1 / 2}, \quad x, y \in \Omega_{+}
$$

Theorem 1 (2017+)

Let \mathbf{X} and \mathbf{Y} be independent random matrices in Ω_{+}with positive and continuous densities.
Then

$$
\mathbf{U}=(1+\mathbf{X})^{-1} \circ \mathbf{Y} \text { and } \mathbf{V}=\left[1+(1+\mathbf{X})^{-1} \circ \mathbf{Y}\right] \circ \mathbf{X}
$$

are independent if and only if $\mathbf{X} \sim \mathcal{M} \mathcal{K}(a, b, c \mathbf{e})$ and $\mathbf{Y} \sim \mathcal{W}(a+b, c \mathbf{e})$, where $a>(r-1) / 2, b>(r-1) / 2-a, c>0$. Moreover $\mathbf{U} \sim \mathcal{M K}(a+b,-b, c \mathbf{e})$ and $\mathbf{V} \sim \mathcal{W}(a, c \mathbf{e})$.

Note:

- $\mathbf{U}, \mathbf{V} \in \Omega_{+}$

HV matrix characterization-remarks

We have

$$
\begin{gather*}
\mathbf{U}=(1+\mathbf{X})^{-1} \circ \mathbf{Y} \tag{1}\\
\mathbf{V}=\left[I_{n}+\left(I_{n}+\mathbf{X}\right)^{-1} \circ \mathbf{Y}\right] \circ \mathbf{X} \tag{2}
\end{gather*}
$$

HV matrix characterization-remarks

We have

$$
\begin{gather*}
\mathbf{U}=(1+\mathbf{X})^{-1} \circ \mathbf{Y} \tag{1}\\
\mathbf{V}=\left[I_{n}+\left(I_{n}+\mathbf{X}\right)^{-1} \circ \mathbf{Y}\right] \circ \mathbf{X} \tag{2}
\end{gather*}
$$

Note that

- $\mathbf{X}=\left[I_{n}+\mathbf{U}\right]^{-1} \circ \mathbf{V}$

HV matrix characterization-remarks

We have

$$
\begin{gather*}
\mathbf{U}=(1+\mathbf{X})^{-1} \circ \mathbf{Y} \tag{1}\\
\mathbf{V}=\left[I_{n}+\left(I_{n}+\mathbf{X}\right)^{-1} \circ \mathbf{Y}\right] \circ \mathbf{X} \tag{2}
\end{gather*}
$$

Note that

- $\mathbf{X}=\left[I_{n}+\mathbf{U}\right]^{-1} \circ \mathbf{V}$

$$
\begin{gathered}
\mathbf{V}=\left[I_{n}+\mathbf{U}\right] \circ \mathbf{X}=\left[I_{n}+\mathbf{U}\right]^{1 / 2} \mathbf{X}\left[I_{n}+\mathbf{U}\right]^{1 / 2} \\
\Downarrow \\
\mathbf{X}=\left[I_{n}+\mathbf{U}\right]^{-1 / 2} \mathbf{V}\left[I_{n}+\mathbf{U}\right]^{-1 / 2}=\left[I_{n}+\mathbf{U}\right]^{-1} \circ \mathbf{V}
\end{gathered}
$$

HV matrix characterization-remarks

We have

$$
\begin{gather*}
\mathbf{U}=(1+\mathbf{X})^{-1} \circ \mathbf{Y} \tag{1}\\
\mathbf{V}=\left[I_{n}+\left(I_{n}+\mathbf{X}\right)^{-1} \circ \mathbf{Y}\right] \circ \mathbf{X} \tag{2}
\end{gather*}
$$

Note that

- $\mathbf{X}=\left[I_{n}+\mathbf{U}\right]^{-1} \circ \mathbf{V}$

$$
\begin{gathered}
\mathbf{V}=\left[I_{n}+\mathbf{U}\right] \circ \mathbf{X}=\left[I_{n}+\mathbf{U}\right]^{1 / 2} \mathbf{X}\left[I_{n}+\mathbf{U}\right]^{1 / 2} \\
\Downarrow \\
\mathbf{X}=\left[I_{n}+\mathbf{U}\right]^{-1 / 2} \mathbf{V}\left[I_{n}+\mathbf{U}\right]^{-1 / 2}=\left[I_{n}+\mathbf{U}\right]^{-1} \circ \mathbf{V}
\end{gathered}
$$

- $\mathbf{Y}=\left(I_{n}+\mathbf{X}\right) \circ \mathbf{U}=\left(I_{n}+\left[I_{n}+\mathbf{U}\right]^{-1} \circ \mathbf{V}\right) \circ \mathbf{U}$.

HV matrix characterization-remarks

Theorem 2 (2017+)

Let \mathbf{X} and \mathbf{Y} be independent random matrices in Ω_{+}with positive and continuous densities.
Then $\mathbf{U}=\left(I_{n}+\mathbf{X}\right)^{-1} \circ \mathbf{Y}$ and $\mathbf{V}=\left[I_{n}+\left(I_{n}+\mathbf{X}\right)^{-1} \circ \mathbf{Y}\right] \circ \mathbf{X}$ are independent if and only if $\mathbf{X} \sim \mathcal{M K}(a, b, c \mathbf{e})$ and $\mathbf{Y} \sim \mathcal{W}(a+b, c \mathbf{e})$, where $a>(r-1) / 2, b>(r-1) / 2-a, c>0$.

HV matrix characterization-remarks

Theorem 2 (2017+)

Let \mathbf{X} and \mathbf{Y} be independent random matrices in Ω_{+}with positive and continuous densities.
Then $\mathbf{U}=\left(I_{n}+\mathbf{X}\right)^{-1} \circ \mathbf{Y}$ and $\mathbf{V}=\left[I_{n}+\left(I_{n}+\mathbf{X}\right)^{-1} \circ \mathbf{Y}\right] \circ \mathbf{X}$ are independent if and only if $\mathbf{X} \sim \mathcal{M K}(a, b, c \mathbf{e})$ and $\mathbf{Y} \sim \mathcal{W}(a+b, c \mathbf{e})$, where $a>(r-1) / 2, b>(r-1) / 2-a, c>0$.
" \Leftarrow " Straightforward - just need to calculate Jacobian and do some elementary transformations.

HV matrix characterization-remarks

Theorem 2 (2017+)

Let \mathbf{X} and \mathbf{Y} be independent random matrices in Ω_{+}with positive and continuous densities.
Then $\mathbf{U}=\left(I_{n}+\mathbf{X}\right)^{-1} \circ \mathbf{Y}$ and $\mathbf{V}=\left[I_{n}+\left(I_{n}+\mathbf{X}\right)^{-1} \circ \mathbf{Y}\right] \circ \mathbf{X}$ are independent if and only if $\mathbf{X} \sim \mathcal{M K}(a, b, c \mathbf{e})$ and $\mathbf{Y} \sim \mathcal{W}(a+b, c \mathbf{e})$, where $a>(r-1) / 2, b>(r-1) / 2-a, c>0$.
" \Leftarrow " Straightforward - just need to calculate Jacobian and do some elementary transformations.
" \Rightarrow " Straightforward - just solve functional equations
$a(x)+b(y)=c\left(\left(I_{n}+x\right)^{-1} \circ y\right)+d\left(\left[I_{n}+\left(I_{n}+x\right)^{-1} \circ y\right] \circ x\right) x, y \in \Omega_{+}$

HV matrix characterization-remarks

Theorem 2 (2017+)

Let \mathbf{X} and \mathbf{Y} be independent random matrices in Ω_{+}with positive and continuous densities.
Then $\mathbf{U}=\left(I_{n}+\mathbf{X}\right)^{-1} \circ \mathbf{Y}$ and $\mathbf{V}=\left[I_{n}+\left(I_{n}+\mathbf{X}\right)^{-1} \circ \mathbf{Y}\right] \circ \mathbf{X}$ are independent if and only if $\mathbf{X} \sim \mathcal{M K}(a, b, c \mathbf{e})$ and $\mathbf{Y} \sim \mathcal{W}(a+b, c \mathbf{e})$, where $a>(r-1) / 2, b>(r-1) / 2-a, c>0$.
" \Leftarrow " Straightforward - just need to calculate Jacobian and do some elementary transformations.
" \Rightarrow " Straightforward - just solve functional equations
$a(x)+b(y)=c\left(\left(I_{n}+x\right)^{-1} \circ y\right)+d\left(\left[I_{n}+\left(I_{n}+x\right)^{-1} \circ y\right] \circ x\right) x, y \in \Omega_{+}$

- use 1-dimensional theorem (P.,Wesołowski, 2016)
- Details on arXiv:1706.09718, A. Piliszek, Independence characterization for Wishart and Kummer matrices.
- A. Piliszek, J. Wesołowski, Kummer and gamma laws through independences on trees-Another parallel with the Matsumoto-Yor property. J. Multivar. Anal. 152 (2016), 15-27.

Thank you!

