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Arpege French Meteorological data
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At n = 259 locations,
- Temperature and Wind
- for 14 years
- hourly sample rate
- d = 122 712 points for raw
data
- Y data matrix (n x d)
- n << d
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Objective and Questions :

Goals

Segmentation of the country into regions using meteorological
data

Temperature and/or Wind

Study the Between Year variability

Methodological & Statistical Questions :

High dimensional data n = 259, d = 122 712, d >> n

Features extraction, Smoothing

Representation of the data
Modeling

Mixtures, HMM
Spectral clustering

Clustering algorithms :
Hierarchical clustering, Kmeans
Kernel clustering
Spectral clustering
Number of clusters, Smoothing



Wind and Temperature spots for 2014
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Natural-time aggregation smoothing
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The data are observed hourly. It is commonly admitted to take

1 the average on a day : daily observed data T = 365 for one
year.

2 the average on a week : daily observed data T = 52 for one
year.

3 the average on a month : daily observed data T = 12 for one
year.



PCA-reduction

Projection of the observations using a data driven orthonormal
basis

X centered data matrix (n, d)
n = 259, d >> n large

The Feature matrix (n,T ) is computed by projection, T << d :

Z = XUT

UT is the matrix defined by the first eigenvectors of S , the
Variance-Covariance matrix.

T chosen so that ? λ1+...+λT

Σjλj
= κpca (0.95)

→ Global linear method involving all the n = 259 spots to
compute UT

→ Is UT similar between years ?



Functional smoothing

Data are (in fact) functions of time regularly spaced.

X i
t = f i (t/d) + ǫit ,

f i is unknow, ǫi ∼ N (0, σ2), t = 1, . . . , d .
Nonparametric estimation of f i : f i =

∑T
ℓ=1 β

i
ℓgℓ

with D = {g1, . . . , gp} dictionary of functions.
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hours

How to choose T ? (more to come)
Here
We note X̂ i

j0
=

∑j0
j=1 β̂

i
(j)gj

with |β̂i
(1)| ≥ . . . ≥ |β̂i

(n)|, and
||X̂ i

(j0)
||2

||X i ||2
≥ TNP(= 0.95).



Kmeans Clustering

Choose k the number of clusters
Find the Arg min (in C1, . . . ,Ck) of :

k
∑

r=1

∑

j 6=j ′,∈Cr

‖Yj − Yj ′‖
2 = 2

k
∑

r=1

∑

j∈Cr

‖Yj − Ȳr‖
2,

Ȳr =
1

|Cj |

∑

j∈Cr

Yj .

Surrogate Model : Maximum Likelihood approach in a Mixture of
Gaussian Variables

g(x |θ) =
k

∑

l=1

αlgl (x |θl )

where αl belongs to [0, 1] and gl is a gaussian density with
expectation θl(∈ IRd) covariance matrix Id .



Kmeans Clustering

Choose k the number of clus-
ters

1 INPUT k centroids
Z̄1 . . . Z̄k (k points at
random)

2 Compute
∑K

k=1

∑

c(i)=k ||Zi − Z̄k ||
2

3 Reassign each item to its
nearest cluster centroid

4 Update the cluster
centroids after each
assignment.

5 REPEAT 2,3,4 with until
no further assignment of
items takes place.
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Stability of the number of clusters

over 14 years, for different temporal aggregation levels

Data : 14 x one year of data,
Kmeans algorithm
Temperature :

day (365) week (52) month (12)
PCA 95% 5 (0) 4.9 (0.2 ) 4.7 (0.4)
NP Reg. Trigo 5 (0) 4.8 (0.4) 4.7 (0.4)
NP Reg. Haar 5 (0) 4.8 (0.4) 4.7 (0.4)

Wind :

day (365) week (52) month (12)
Pca 90% 4.15 ( 0.3 ) 4.23 ( 0.4 ) 4.31 ( 0.4 )
NP Reg. Trigo 4.15 ( 0.3 ) 4 ( 0 ) 4.08 ( 0.2 )
NP Reg. Haar 4.23 ( 0.4) 4.31 ( 0.4 ) 4.15 ( 0.3 )



Segmentation for 2001, 2007, 2014 daily data, n = 259

Temperature

Kmeans 5 (−)

Temp day 2001 Thres 0.05 (dicoTA)

Kmeans 5 (−)

Temp day 2007 Thres 0.05 (dicoTA)

Kmeans 5 (−)

Temp day 2014 Thres 0.05 (dicoTA)

Wind

Kmeans 4 (−)

Wind day 2001 Thres 0.05 (dicoTA)

Kmeans 4 (−)

Wind day 2007 Thres 0.05 (dicoTA)

Kmeans 5 (−)

Wind day 2014 Thres 0.05 (dicoTA)



Questions

1 What is better : raw data or smoothing ?

2 What conditions ? (sparsity, separation of clusters...)

3 How to smooth ? Does usual adaptation methods work as well
to detect clusters ?

4 On-line (signal by signal smoothing) or off-line smoothing
(using a pre-process involving all the signals) ?

5 What are the rates ?



Simpler framework

1 2 classes only

2 The change occurs on a time scale



Two classes Gaussian model

We observe Y1, . . . ,Yn n independent signals.
Each signal is observed discretely, i.e. Yj = (Y 1

j , . . . ,Y
d
j ),

Gaussian clustering :
There exists a set A ⊂ {1, . . . , n}, and two regular vectors of IRd

θ− and θ+ such that

Yj = θj + ηj , 1 ≤ j ≤ n, ηj i .i .d .N(0, σ2Id )

θj = θ−, ∀j ∈ A,

θj = θ+, ∀j ∈ Ac



Two classes K means algorithm

B̂ = ArgMinB⊂{1,...,n},nǫ≤#B≤n(1−ǫ)






∑

j∈B

∑

ℓ≤d

(Y ℓ
j −

1

#B

∑

j∈B

Y ℓ
j )

2 +
∑

j∈Bc

∑

ℓ≤d

(Y ℓ
j −

1

#Bc

∑

j∈Bc

Y ℓ
j )

2









Simplified two classes model : time change classification

Clustering with time scale :
There exits 0 < τ < 1 (change-point), and two regular vectors of
IRd : θ− and θ+ such that ,

θj = θ−, ∀j ≤ nτ

θj = θ+, ∀j > nτ

A = {1, . . . , nτ}



Example of time change classification
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2 The data are separated into different years n = 14
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1 We want to detect a change-point occurring at one precise
year.



Key parameters

→ The change point τ

→ The energy of the change τ, ∆2 := ‖θ− − θ+‖
2.



Two classes K means clustering algorithm in this context

τ̂ = ArgMint∈]ǫ,1−ǫ[






∑

j≤nt

∑

ℓ≤d

(Y ℓ
j −

1

nt

∑

j≤nt

Y ℓ
j )

2 +
∑

j≥nt+1

∑

ℓ≤d

(Y ℓ
j −

1

n(1− t)

∑

j≥nt+1

Y ℓ
j )

2









Change point : Questions

Our goal is to estimate τ and θ−, θ+.

Does smoothing help ? How ?

Sparsity conditions ?

What are the different rates of convergence ?

How to smooth optimally ?



Smoothing : simplified sparsity assumptions

For s > 0, we define

Θ(s, L) := {θ ∈ IRd , sup
K∈N∗

K 2s
∑

k≥K

(θk)2 ≤ L2}.

We will suppose that θ− and θ+ are in Θ(s, L).
→ Again, this kind of sparsity reflects an ordering in the
importance of the coefficients : the first ones are supposedly more
important than the last ones.
→ Possible extensions to other kind of sparsity like for q < 1,

Θ(q, L) := {θ ∈ IRd ,
∑

k

|θk |q ≤ L}.



Clustering algorithm : MLE - Kmeans

For 1 ≤ T ≤ d , let us consider
→ T smooth data : Yj(T ) = (Y 1

j , . . . ,Y
T
j ) instead of

Yj = Yj(d) = (Y 1
j , . . . ,Y

d
j ),

τ̂(T ) = ArgMint∈]ǫ,1−ǫ[






∑

j≤nt

∑

ℓ≤T

(Y ℓ
j −

1

nt

∑

j≤nt

Y ℓ
j )

2 +
∑

j≥nt+1

∑

ℓ≤T

(Y ℓ
j −

1

n(1− t)

∑

j≥nt+1

Y ℓ
j )

2









Misclassification rate

1 How big is |τ̂(T )− τ | ?
In a general context : Max{#{Âc ∩ A},#{Â ∩ Ac}} ?

2 How does this depend on T , s, ∆2 = ‖θ− − θ+‖
2 ?



Change point framework rate for τ

Proposition

Under the conditions above (Θ(s, L)). If we stop the observation at
T ≤ d : Yj(T ) = (Y 1

j , . . . ,Y
T
j ), and we assume that there exists a

constant R

∆2 ≥ R [T−2s ∨
σ2T

n
],

then there exists constants c2, c3, such that for any κ,

P(|τ̂(T )− τ | ≥ κ
σ2T

n∆2
) ≤ 2n[exp{−c2RT}+ exp{−c3κT}].



Corollary

Corollary

Under the conditions above, for

Ts := [
n

σ2
]

1
1+2s ,

if there exists R such that,

∆2 ≥ R [
σ2

n
]

2s
1+2s ,

then there exists constants c2, c3, such that for any κ,

P(|τ̂(T )−τ | ≥ κ[
n

σ2
]
−2s
1+2s ∆−2) ≤ 2n[exp{−c2RTs}+exp{−c3κTs}].



Comments

∆2 = ‖θ− − θ+‖
2 ≥ RT−2s ∨

σ2T

n
, Rate

σ2T

n∆2

1 It is natural that the rate of convergence for τ is decreasing in
∆.

2 Advantage to smoothing : the rate is better

3 The conditions on ∆ are less readable.

4 Condition ∆2 & [T−2s ], is necessary for identifiability :
otherwise

∑

l≤T (θ
l
− − θ1+)

2 may be arbitrarily close to zero,
leading to a model on the Yj(T )’s observations in which τ has
no proper meaning and cannot be estimated.

5 Condition : ∆2 & [σ
2T
n

] is necessary for the MLE to converge.



Comparison

∆2 = ‖θ− − θ+‖
2 ≥ RT−2s ∨

σ2T

n
, Rate

σ2T

n∆2

1 In fact, the conditions on ∆2 are less restrictive, with better
rates, as soon as T decreases subject to the condition
T−2s . ∆2.

2 This leads to minimize σ2T
n

subject to T−2s . ∆2

→ Topt = Ts := [ n
σ2 ]

1
1+2s



Corollary

Corollary

Under the conditions above, for

Ts := [
n

σ2
]

1
1+2s ,

if there exists R such that,

∆2 ≥ R [
σ2

n
]

2s
1+2s ,

then there exists constants c2, c3, such that for any κ,

P(|τ̂(T )−τ | ≥ κ[
n

σ2
]
−2s
1+2s ∆−2) ≤ 2n[exp{−c2RTs}+exp{−c3κTs}].



Discussion

∆2 & [
n

σ2
]
−2s
1+2s , Rate [

n

σ2
]
−2s
1+2s ∆−2

Rate and conditions could seem quite poor, but observe that

very often σ2 is of the form
σ2
0
d
.

In this case

∆2 & [
nd

σ2
0

]
−2s
1+2s , Rate [

nd

σ2
0

]
−2s
1+2s ∆−2

Topt = Ts := [
nd

σ2
0

]
1

1+2s



Choice of T : on-line ? off-line ?

In particular case where σ2 is of the form
σ2
0
d

the optimal
smoothing is

Topt = Ts := [
nd

σ2
0

]
1

1+2s

This proves that any (on-line) adaptive smoothing on each
individual signal Yj (thresholding or whatever) would give a
rate -at best- of the form :

Topt = Ts := [
d

σ2
0

]
1

1+2s

→ loosing the factor n in the rate of misclassification.

Meaning that the adaptive smoothing needs to be performed
globally (off-line)



Adaptative choice for T

Form the following (off-line) pseudo-data in IRd : Z (1)

Z ℓ(1) =
1

n

n
∑

j=1

Y ℓ
j −

2

n

n/2
∑

j=1

Y ℓ
j , ℓ = 1, . . . , d

It has as mean

(1− τ)[θ+ − θ−]I{τ ≥ 1/2} + τ [θ+ − θ−]I{τ < 1/2},



Adaptative choice for T

Consider the Lepski smoothers (c is a tuning constant)

T̂ := min{k ,
l

∑

ℓ=k′

[Z ℓ(1)]2 ≤ cl
σ2

n
log[d ∨ n], ∀l ≥ k ′ ≥ k},



Adaptative choice for T

Theorem

We assume that θ±, is in Θ(s, L). We suppose that there exists a
contant a > 0 such that

n

σ2
≥ a log d .

Then, if there exists a constant R = R(L, ǫ) such that

‖θ− − θ+‖
2 = ∆2, ∆2 ≥ R [

σ2 log[d ∨ n]

n
]

2s
1+2s , (1)

then for any γ,

P(|τ̂(T̂ )− τ | ≥ κ[
σ2 log[d ∨ n]

n
]

2s
1+2s ∆−2) ≤ [d ∨ n]−γ . (2)



Adaptation rate for θ− and θ+, case σ2 =
σ2
0
d

→ We first detect the change using the procedure above, using T̂
→ τ̂ = τ̂(T̂ ).

τ̂(T̂ ) = ArgMint∈]ǫ,1−ǫ[






∑

j≤nt

∑

ℓ≤T̂

(Y ℓ
j −

1

nt

∑

j≤nt

Y ℓ
j )

2 +
∑

j≥nt+1

∑

ℓ≤T̂

(Y ℓ
j −

1

n(1− t)

∑

j≥nt+1

Y ℓ
j )

2







→ Then we estimate θ±, with the following procedure :

θ̂k± := θ̂±,k I{k ≤ T̂ ∗}

θ̂−,k :=
1

nτ̂

nτ̂
∑

j=1

Y k
j θ̂+,k :=

1

n(1− τ̂)

n
∑

j=nτ̂+1

Y k
j

T̂ ∗ := min{k ,
l

∑

k+1

[θ̂−,l ]
2 ≤ c(lep)l

σ2

n
log[d ∨ n], ∀l ≥ k + 2}.



Adaptation rate for θ− and θ+

Theorem

With the estimates defined above, then, for 0 < s, with the
property Θ(s, L), we have

E‖θ̂± − θ±‖
2
2 . {

nd

log[n ∨ d ]
}

−2s
1+2s (3)

Minimax rate - No condition on ∆2 needed.



How to choose the number of clusters ?

Many methods already in the litera-
ture :
Calinsky et al. 1974, Gap Statistic
Friedman et al. 2000, ... Most of them
based on :

Variance Decomposition :
T = Wk + Bk

Total T = 1
n

∑

i ||Xi − X̄ ||2

Between Bk = 1
n

∑

k nk ||X̄k − X̄ ||2

Within Wk = 1
n

∑

k

∑nk
ik
||Xk(ik)− X̄k ||

2

Quantification/ modeling indicator
ratio :

ρk = Bk

T
∈ [0, 1]

k0 number of clusters :
with ∆k = ρk+1 − ρk
k0 = arg min{k , ∆k <
5%}
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Stability of the number of clusters

over 14 years, for different temporal aggregation levels

Data : 14 x one year of data,
Kmeans algorithm with ρk < 5% criteria
Temperature :

day (365) week (52) month (12)
PCA 95% 5 (0) 4.9 (0.2 ) 4.7 (0.4)
NP Reg. Trigo 5 (0) 4.8 (0.4) 4.7 (0.4)
NP Reg. Haar 5 (0) 4.8 (0.4) 4.7 (0.4)

Wind :

day (365) week (52) month (12)
Pca 90% 4.15 ( 0.3 ) 4.23 ( 0.4 ) 4.31 ( 0.4 )
NP Reg. Trigo 4.15 ( 0.3 ) 4 ( 0 ) 4.08 ( 0.2 )
NP Reg. Haar 4.23 ( 0.4) 4.31 ( 0.4 ) 4.15 ( 0.3 )


	Clustering Algorithm

