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ARPEGE FRENCH METEOROLOGICAL DATA

At n = 259 locations,

- Temperature and Wind

- for 14 years

- hourly sample rate

- d = 122 712 points for raw
data

- 'Y data matrix (n x d)
-n<<d

Temporature 2001-2014 Wind 2001-2014.
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OBJECTIVE AND QUESTIONS :

Goals
m Segmentation of the country into regions using meteorological
data
m Temperature and/or Wind
m Study the Between Year variability
Methodological & Statistical Questions :

High dimensional data n =259, d =122 712, d >> n
Features extraction, Smoothing

[
[
m Representation of the data
m Modeling

m Mixtures, HMM

m Spectral clustering
Clustering algorithms :

m Hierarchical clustering, Kmeans
Kernel clustering
Spectral clustering
Number of clusters, Smoothing



WIND AND TEMPERATURE SPOTS FOR 2014
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NATURAL-TIME AGGREGATION SMOOTHING

year.

The data are observed hourly. It is commonly admitted to take
the average on a day : daily observed data T = 365 for one

year.

the average on a week : daily observed data T = 52 for one
year.

the average on a month : daily observed data T = 12 for one



PCA-REDUCTION

Projection of the observations using a data driven orthonormal
basis

X centered data matrix (n, d)
n =259, d >> n large

The Feature matrix (n, T) is computed by projection, T << d :
Ut is the matrix defined by the first eigenvectors of S, the
Variance-Covariance matrix.

T chosen so that? % = Kpca (0.95)

— Global linear method involving all the n = 259 spots to
compute Ut

— Is Ut similar between years?

o F = = £ DA



FUNCTIONAL SMOOTHING

Data are (in fact) functions of time regularly spaced.

X{ = fi(t/d) + e,
f'is unknow, ¢ ~ N(0,02), t=1,...,d.
Nonparametric estimation of £/ : £/ =5 Big
with D = {gl,

,8p} dictionary of functions.

How to choose T ? (more to come)
Here
i — NV B
Wenote X, ~ 52 By
- Al Al HX(i, )H2
with ‘5(1)’ > 2> ]ﬁ(n)\, and ——2

Da



KMEANS CLUSTERING

Choose k the number of clusters
Find the Arg min (in Gy,

.,Ck)OfZ

Zk: > Y-

r=1j#i",€Cr r=1jeC

- 1

I jec
Surrogate Model : i
Gaussian Variables

k
=23 > IV~ Yol

Maximum Likelihood approach in a Mixture of

g(x|0)

Z v gi(x|0)
where «; belongs to [0,1] and g is a gaussian density with
expectation 0;(€ R9) covariance matrix Iy

o

=

DA



KMEANS CLUSTERING

Choose k the number of clus-
ters
INPUT k centroids
Z1...Z (k points at
random)

Compute
> ket Xk 112 = Zell?

Reassign each item to its
nearest cluster centroid

Update the cluster
centroids after each
assignment.

REPEAT 2,3,4 with until
no further assignment of
items takes place.




STABILITY OF THE NUMBER OF CLUSTERS

over 14 years, for different temporal aggregation levels

Data : 14 x one year of data,
Kmeans algorithm

Temperature :
day (365) week (52) month (12)
PCA 95% 5 (0) 49(0.2) 4.7(04)
NP Reg. Trigo 5 (0) 48 (0.4) 4.7(0.4)
NP Reg. Haar 5 (0) 48 (0.4) 4.7(0.4)
Wind :
day (365) week (52) month (12)
Pca 90% 415(03) 423(04) 431(04)
NP Reg. Trigo 4.15(03) 4(0) 4.08 (0.2)
NP Reg. Haar 4.23(0.4) 4.31(04) 4.15(03)




SEGMENTATION FOR 2001, 2007, 2014 DAILY DATA, n = 259

Temperature

Wind
—
e N

Kmeans 4 ()

Wind day 2007 Thres 0.05 (dicoTA)

DA



QUESTIONS

What is better : raw data or smoothing ?

What conditions ? (sparsity, separation of clusters...)

How to smooth ? Does usual adaptation methods work as well
to detect clusters?

On-line (signal by signal smoothing) or off-line smoothing
(using a pre-process involving all the signals) ?
What are the rates?



SIMPLER FRAMEWORK

2 classes only

The change occurs on a time scale

DA



TWO CLASSES (GAUSSIAN MODEL

We observe Yi,...,Y, nindependent signals.
Each signal is observed discretely, i.e. Y; = (Y},..., Y/),
Gaussian clustering :

There exists a set AC {1,...,n}, and two regular vectors of RY
f_ and 0 such that

Yi=0i+mn,1<j<n, u i.i.d.N(0,0?ly)
0 =0_, VjcA,
0; =04, Vje A°



TwoO CLASSES K MEANS ALGORITHM

B = ArgMing 1

2.2 Y

Z 2+ 0
jeB 1<d JEB

jeBe 1<d

n},ne<#B<n(1—¢)

= 0

JjeBe©



SIMPLIFIED TWO CLASSES MODEL

TIME CHANGE CLASSIFICATION

Clustering with time scale

There exits 0 < 7 < 1 (change-point), and two regular vectors of
RY : 6_ and 0 such that ,

0; =6_,Vj<nr
0; =0y, Vj>nr

A={L,.

.., nT}

DA



EXAMPLE OF TIME CHANGE CLASSIFICATION

Temperature 20012014

AVAAANA

Only one spot (Chamonix)
The data are separated into different years n = 14
Each year has d = 8760 points of observation
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}
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We want to detect a change-point occurring at one precise
year.



KEY PARAMETERS

— The change point 7

— The energy of the change 7, A% := [|0_ — 6, ||%.



TWwO CLASSES K MEANS CLUSTERING ALGORITHM IN THIS CONTEXT

- ArgMintG]e 1—¢[

{zz Ly yip, v Y
Jj<nt (<d _]<I7t

Jj=>nt+14<d



CHANGE POINT : QUESTIONS

Our goal is to estimate 7 and 6_, 0.
Does smoothing help ? How ?
Sparsity conditions ?

What are the different rates of convergence ?

How to smooth optimally ?



SMOOTHING : SIMPLIFIED SPARSITY ASSUMPTIONS

For s > 0, we define

O(s,L) :={6 € R?, sup K> ) (6% < [*}.
KeN* kSK

We will suppose that #_ and 6 are in O(s, L).

— Again, this kind of sparsity reflects an ordering in the
importance of the coefficients : the first ones are supposedly more
important than the last ones.

— Possible extensions to other kind of sparsity like for g < 1,

O(q,L) = {0 € R, 3 [0¥9 < L}.
k



CLUSTERING ALGORITHM : MLE - KMEANS

For 1 < T < d, let us consider
— T smooth data : Y;(T) = (le, c YJT) instead of
Yj=Y;(d) = (le>"'> de)r

7/;( T) - ArgMintE]e,l—e[

IDIUEED NI WD AT 27

Jj<nt¢<T J<nt Jj>nt+14<T j>nt+1



MISCLASSIFICATION RATE

How big is |7(T) — 7| ?
In a general context : Max{#{A° N A}, #{ANA°}}?

How does this depend on T, s, A2 = ||6_ —0,|>?



CHANGE POINT FRAMEWORK RATE FOR T

Proposition

Under the conditions above (©(s, L)). If we stop the observation at

T<d:Y{(T)= (le : YJT) and we assume that there exists a
constant R

o?T
A% > R[T >V —]
then there exists constants ¢, c3, such that for any k,

2
PU(T) — 7| > k7 0) < 2nlexp{~coRT} + exp{~csn T}




COROLLARY

Corollary
Under the conditions above, for

n._1.
TS = [;]14&57

if there exists R such that,

2
A% > R i,
n

then there exists constants ¢y, c3, such that for any k,

P(1#(T)—7| > s[—5]7% A~2) < 2n[exp{—c2RT:}+exp{—c3x T5}].
g




COMMENTS

o?T

=16 —0,||>> RT™%® , Rate
= | +] vZio TAZ

It is natural that the rate of convergence for 7 is decreasing in
A.

Advantage to smoothing : the rate is better

The conditions on A are less readable.

Condition A2 > [T‘25] is necessary for identifiability :
otherwise Z/<T( — 61)2? may be arbitrarily close to zero,
leading to a model on the Y;(T)'s observations in which 7 has
no proper meaning and cannot be estimated.

Condition : A? > ["QTT] is necessary for the MLE to converge.



COMPARISON

2T o?T
A2=0_ -0, P>RT>vZLl Rate L
lo- — 6,1 > T Rate 7T

In fact, the conditions on AZ2 are less restrictive, with better

rates, as soon as T decreases subject to the condition
T2 < A

: L g2 .
This leads to minimize % subject to 7725 < A?

1
— Topt f— TS = [(7—’72]1+25

o F = = £ DA



COROLLARY

Corollary
Under the conditions above, for

n._1.
TS = [;]14&57

if there exists R such that,

2
A% > R i,
n

then there exists constants ¢y, c3, such that for any k,

P(1#(T)—7| > s[—5]7% A~2) < 2n[exp{—c2RT:}+exp{—c3x T5}].
g




DISCUSSION

2 n . =2 n,=2s . ._-
A > [;]1&5’ Rate [;]1+25A

2
%
m In this case

m Rate and conditions could seem quite poor, but observe that
very often o2 is of the form =

22 (M55, Rate [29]75 A2
90 90

nd
Topt f— TS = [—2]1+25

40

DA



CHOICE OF T

ON-LINE ? OFF-LINE 7

2
m In particular case where o2 is of the form — the optimal
smoothing is

nd, 1
Topt f— TS = [—2]1+25

o
0
This proves that any (on-line) adaptive smoothing on each
individual signal Y; (thresholding or whatever) would give a
rate -at best- of the form

d, 1
Topt = TS = [?]1+25
0

globally (off-line)

— loosing the factor n in the rate of misclassification.
m Meaning that the adaptive smoothing needs to be performed

Da



ADAPTATIVE CHOICE FOR T

Form the following (off-line) pseudo-data in R : Z(1)

n n/2
1
== Y -
j=1

2
—§ Yit=1,..,d
n
Jj=1
It has as mean

(1= 7)[04 — 0_J{r > 1/2} + 1[04 — 0_]I{r < 1/2},



ADAPTATIVE CHOICE FOR T

Consider the Lepski smoothers (c is a tuning constant)

! 2
7= min{k, Y [Z1)P < c/a7 log[d \V n], ¥I > K > k},
{=k’



ADAPTATIVE CHOICE FOR T

We assume that 0, is in ©(s, L). We suppose that there exists a
contant a > 0 such that

n
2 > alogd.

Then, if there exists a constant R = R(L, €) such that

10— —604]2 = A%, A% > R

o2 log[d Vv n]]%
n
then for any ~,

M
P(#(T) ~ 7| > ]

2
> wl? Iog[d\/n]]li%A
n

)< [dVn]".

()




ADAPTATION RATE FOR #_ AND 6., CASE o

_ %
d
— We first detect the change using the procedure above, using T
— 7 =7(T).

7/:(7/\_) - ArgMintE]e 1—¢[
IDIA S D7
Jjsnt o<

¢ £\2
S S X )
_]<I7t Jj>nt+1 <T j>nt+1
— Then we estimate 0., with the following procedure
Ok =0y 4 1{k < T}
. 1S s
0—7/( = n—7,: YJ 0+,k
j=1

ZY"
/

_/ nT+1

2
T* := min{k 2[0_7,]2 < c(/ep)l% log[d V n], VI > k + 2}
k+1

o

=



ADAPTATION RATE FOR 6_ AND 0

m With the estimates defined above, then, for 0 < s, with the
property O(s, L), we have

Elldx — 0+]3 < {

nd =25
e } T12s
log[n V d]

Minimax rate - No condition on A2 needed.

(3)




How TO CHOOSE THE NUMBER OF CLUSTERS 7

ko number of clusters :
Many methods already in the litera- with Ax = pr+1 — Pk
ture : ko = arg min{k, Ay <
Calinsky et al. 1974, Gap Statistic 5%}
Friedman et al. 2000, ... Most of them
based on :

Variance Decomposition :
T = W, + By

Total T:%Z,-HX,-—)_(H2

Between By = %Zk el X — X2 ~
Within Wi =257, S0 || X (i) — X

Quantification/ modeling indicator ]
ratio : 1

e—n—="

Pk:%E[O;l]




STABILITY OF THE NUMBER OF CLUSTERS

over 14 years, for different temporal aggregation levels

Data : 14 x one year of data,
Kmeans algorithm with p, < 5% criteria

Temperature :
day (365) week (52) month (12)
PCA 95% 5 (0) 49(0.2) 4.7(04)
NP Reg. Trigo 5 (0) 48 (0.4) 4.7(0.4)
NP Reg. Haar 5 (0) 48 (0.4) 4.7(0.4)
Wind :
day (365) week (52) month (12)
Pca 90% 415(03) 423(04) 431(04)
NP Reg. Trigo 4.15(03) 4(0) 4.08 (0.2)
NP Reg. Haar 4.23(0.4) 4.31(04) 4.15(03)




	Clustering Algorithm

