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In 2014, Gracyzk and Ishi published an interesting paper on Wishart distributions
on homogeneous open convex cones.

Purpose of today’s talk is to

report some of the recent results about homogeneous open convex cones obtained
by Ishi, Nakashima, N. and others individually or with collaborations.



2

Homogeneous open convex cones (HOCC)

— V : a VS/R, dim V < +1, with unique LC topology (e.g. norm topology).

— ⌦ ⇢ V is an open convex cone, regular (proper) in the sense that

⌦ contains no entire line. (i.e., pointed at the origin like ice cream cones)

— GL(⌦) := {g 2 GL(V ) ; g(⌦) = ⌦}: the linear automorphism group of ⌦.

— GL(⌦) is a linear Lie group (as a closed subgroup of GL(V )).

— ⌦ is said to be homogeneous if GL(⌦) y ⌦ transitively:

8!1, !2 2 ⌦, 9g 2 GL(⌦) s.t. g!1 = !2.
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Example V = Sym(r, R), ⌦ = P(r, R) (positive definite matrices in V ).

We have a group homomorphism ⇢ : GL(r, R) ! GL(⌦) given by

⇢(g)x := g x tg (x 2 V ).

By Linear Algebra, any y 2 P(r, R) is written as

g tg 2 ⇢(GL(r, R))Ir = GL(⌦) · Ir,

so that ⌦ is homogeneous. (Note: GL(⌦) = ⇢(GL(r, R)) in this case.)

For x =

0
@x11 . . . xr1

... ...
xr1 . . . xrr

1
A 2 Sym(r, R), put

�1(x) := x11, �2(x) := det

✓
x11 x21

x21 xrr

◆
, . . . , �r(x) := det

0
@x11 . . . xr1

... ...
xr1 . . . xrr

1
A .

Then, ⌦ = {x 2 Sym(r, R) ; �1(x) > 0, �2(x) > 0, . . . , �r(x) > 0}.
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For general HOCC ⌦ ⇢ V , Vinberg (1963) found a ”coordinatization”

V =

0
@V11 . . . Vr1

... ...
Vr1 . . . Vrr

1
A ,

where Vjj = Rcj (j = 1, 2, . . . , ),
and r is called the rank of V ,

so that every v 2 V can be regarded as a symmetric “matrix” with vector entries.
Also a (non-associative) multiplication is introduced in V to view V as a ”matrix
algebra” without associative law:

an algebra called a clan, a left symmetric algebra with two additional conditions.

You have multiplication rules between the subspaces Vji like the ordinary matrices.

The first subject is about “principal minors” for HOCC.
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— Vinberg found polynomials p1(x), . . . , pr(x) on V , so that

⌦ = {x 2 V ; p1(x) > 0, p2(x) > 0, . . . , pr(x) > 0}.
However, these polynomials are, in general, reducible. In fact, for V = Sym(r, R),
we actually have pk(x) = �k(x) (k = 1, 2), and for k = 3

pk(x) = �1(x)2
k�3

�2(x)2
k�4 · · ·�k�2(x)�k(x).

In reality, we have deg pk(x) = 2k�1 for any HOCC ⌦.

— Ishi (2001) extracted inductively, through a kind of Euclidean algorithm,

irreducible polynomials �1(x), . . . , �r(x) from p1(x), . . . , pr(x), so that

⌦ = {x 2 V ; �1(x) > 0, �2(x) > 0, . . . , �r(x) > 0}.

Now there is a closed (and nice) formula of �k(x) in terms of pj(x) (j 5 k),

products, powers and quotients of them, due to Nakashima (2014)

(presented by poster session).
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— P(r, R) is a typical example of symmetric cones.

— OCC ⌦ is said to be selfdual if there is h · | · i s.t.

⌦ =
�
v 2 V ; h v |x i > 0 (8x 2 ⌦ \ {0}

 
— (the RHS is the dual cone ⌦⇤ of ⌦ w.r.t h · | · i; usually ⌦⇤ is taken in V ⇤).

— Selfdual HOCC is called a symmetric cone.

Just a digression;

it is an interesting Linear Algebra exercise to give a direct proof for

P(r, R) = {v 2 V ; tr(vx) > 0 for all positive semi-definte x 6= 0}.

Here, a direct proof means a proof without using GL(r, R)-action.
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Symmetric cones $ Euclidean Jordan algebras (up to isomorphisms)

Definition 1

V : a vector space over K (K = R or C) with a bilinear product x, y 7! xy.

V is a Jordan algebra
def()

(
(1) xy = yx,

(2) x2(xy) = x(x2y).

Associative law is not assumed.

A real Jordan algebra V with e is Euclidean if V has an associative inner product,

i.e., V has a positive definite symmetric bilinear form h · | · i such that

hxy | z i = hx | yz i (8x, y, z 2 V ).
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Classification of simple Euclidean Jordan algebras

(1) A Euclidean Jordan algebra is a direct sum of simple ideals.

(2) There are only 5 types of simple Euclidean Jordan algebras (of finite-dim.).

Sym(r, R), Herm(r, C), Herm(r, H), Herm(3, O), S (W ),

where H := {quaternions}, O := {octonions},

W is a real VS with h · | · iW , S (W ) := R�W with

(� + w)(�0 + w0) :=
�
��0 + hw |w0 iW

�
�
�
�w0 + �0w

�
.

S (W ) is called a spin factor, and is the scalar and the linear part

of Cli↵(W ) associated with h · | · iW
The corresponding symmetric cones are

P(r, R), P(r, C), P(r, H), P(3, O),

and Lorentz cones: {�� w ; � > kwkW}
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For Herm(r, K) (K = R, C, H, O): �1(x), . . . , �r(x) are principal minors
(for K = H, O, we must pay attention to the determinant; safer to say it’s the Jordan algebra

determinant),

For S (W ): �1(�� w) = �, �2(x) = �2 � kwk2
W .

— These are irreducible polynomials, and the notation is compatible with
the ones I used for general HOCC.

Anyway, we have deg �j(x) = j (j = 1, 2, . . . , r).

Question Is this characteristic of irreducible symmetric cones?

The answer is No!
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For any rank r = 3, there is an irreducible HOCC, non-selfdual, s.t. deg �j(x) = j
(j = 1, 2, . . . , r) (Nakashima–N., 2013, 2014).✓

These cones are systematically obtained as the dual cones of HOCC defined
by selfadjoint representations of simple Euclidean Jordan algebras.

◆

If we take ⌦⇤ into account as well as ⌦ itself, then we have the following theorem
due to Yamasaki and N. (2016).

Theorem 2

If �1(x), . . . , �r(x) for ⌦ and �⇤
1(x), . . . , �⇤

r(x) for ⌦⇤ are of degree 1, 2, . . . , r

up to permutations, then ⌦ is an irreducible symmetric cone.

— Nakashima gave an alternative proof of this theorem
(2017, to appear in September or so).
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Order defined by an open convex cone

Let S, T be selfadjoint operators on a Hilbert space H.

S = T
def() S � T is positive semi-definite.

The following is well-known.

Theorem 3

Let S, T be positive definite. Then, S = T () T�1 = S�1.

Proof Clear from

T�1 � S�1 = T�1/2
�
T 1/2S�1T 1/2

�1/2
T�1/2(S � T )T�1/2

�
T 1/2S�1T 1/2

�1/2
T�1/2.

— Let V be a Euclidean JA, and ⌦ the corresponding symmetric cone.

For a, b 2 ⌦, let a = b
def() a� b 2 ⌦.

Theorem 4

Let a, b 2 ⌦. Then, a = b () b�1 = a�1.

Proof. Just translate the proof of Theorem 3 into JA language. ⇤
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Can we generalize Theorem 4 to HOCC?

The answer is NO.

Let ⌦ be a HOCC, and ⌦⇤ ⇢ V ⇤ its dual cone:

⌦⇤ := {f 2 V ⇤ ; hy, fi > 0 (8y 2 ⌦ \ {0})}.

Let � be the characteristic function of ⌦: �(x) :=

Z
⌦⇤

e�hx,fi df (x 2 ⌦).

The Vinberg ⇤-map ⌦ 3 x 7! x⇤ 2 ⌦⇤ is defined as x⇤ := � grad log �(x), i.e.,

hv, x⇤i := � d
dt

log �(x + tv)
��
t=0

(v 2 V ).

Note that (�x)⇤ = ��1x⇤ (� > 0).

The following theorem is due to C. Kai (2008).

Theorem 5

⌦ is a symmetric cone () ⌦ has the following property:

for x, y 2 ⌦, one has x = y w.r.t. ⌦ () y⇤ = x⇤ w.r.t. ⌦⇤.
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For a symmetric cone, ⇤-map is the JA inverse under a suitable identification of
V ⇤ with V . The function � can be replaced by a more general semi-invariant
function on ⌦.

Indeed Kai (2008) showed more.

The pair (x, y), where x, y 2 ⌦, is said to be ⌦-comparable if x = y or y = x.

Theorem 6

⌦ is a symmetric cone () ⌦ has the following property:

for x, y 2 ⌦, the pair (x, y) is ⌦-comparable

() the pair (x⇤, y⇤) is ⌦⇤-comparable.

Miscellaneous results

• In any rank = 3, 9 irreducible non-selfdual HOCC linearly isomorphic to

the dual cone (Ishi–N. 2009).

• Reducible such cones are easy to construct: just take ⌦� ⌦⇤.
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Minimal matrix realization of HOCC

By a matrix realization of ⌦, we mean a realization as a slice V0 \P(N, R),
i.e., positive definite matrices in a subspace V0 ⇢ Sym(N, R).

• Graczyk–Ishi’s presentations of HOCC (2014) based on Ishi (2006)

Take a partition N = n1 + · · · + nr, and
consider a system of vector spaces Zlk ⇢ Mat(nl ⇥ nk; R) s.t.

(V1) z 2 Zlk, z0 2 Zkj =) zz0 2 Zlj (1 5 j < k < l 5 r),
(V2) z 2 Zlj, z0 2 Zkj =) z tz0 2 Zlk (1 5 j < k < l 5 r),
(V3) z 2 Zlk =) z tz 2 RInl

(1 5 k < l 5 r).

With this system we set

Z :=

8>><
>>:z =

0
BB@

�1In1
tz21 · · · tzr1

z21 �2In2
tzr2

... ... . . . ...
zr1 zr2 · · · �rInr

1
CCA ;

�k 2 R (k = 1, 2, . . . , r),

zlk 2 Zlk (1 5 k < l 5 r)

9>>=
>>;

⇢ Sym(N, R).

Take the slice PZ := Z \P(N, R).
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• PZ is a regular open convex cone in Z .

HZ :=

8>><
>>:T =

0
BB@

t1In1 0
T21 t2In2... ... . . .
Tr1 Tr2 · · · trInr

1
CCA ;

tk > 0 (k = 1, 2, . . . , r),

Tlk 2 Zlk (1 5 k < l 5 r)

9>>=
>>; .

• The Lie group HZ acts on PZ simply transitively by z 7! T z tT .

• Every HOCC arises in this way.

Recall the coordinatization of HOCC ⌦ ⇢ V : V =

0
BBB@

Rc1 V21 · · · Vr1

V21 Rc2 Vr2
... . . . ...

Vr1 Vr2 · · · Rcr

1
CCCA.

We call nj the repetition number of cj in the above realization PZ of ⌦.
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In Ishi’s LN (2014), one finds the following proposition.

Proposition 7

There is a realization of ⌦ ,! Sym(N, R) with N 5 dim V for any ⌦.

However, the inequality N 5 dim V is very rough in general.

For example, if ⌦ = P(r, R), then dim V = r + 1
2r(r � 1),

although the N we really need in this case is just r.

Question Can we find the formula for the minimum of such N?

The answer is Yes.
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• Let dji := dim Vji (j > i), and draw a weighted oriented graph by defining
the set V of vertices and the set A of arcs by

V := {1, . . . , r}, A := {[j ! i] ; i < j, and dji > 0}.
[j ! i] or simply j ! i denotes the arc leaving j and enters i. Thus

j�
dji�! i� if dim Vji > 0.

The graph � = �(V ) = (V , A ) is clearly oriented:

we do not have both j ! i and i ! j. Moreover no i ! i exists.

Example If dji = 1, we do not write 1 in the graph for simplicity.

1

23

4

5

2
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! 2 V is called a source if there is no [v ! !] 2 A .
Let S be the set of sources �. Note S 6= ?, since we always have r 2 S .

Let N in(j) = {k ; [k ! j] 2 A }, N in[j] := N in(j) [ {j} for j = 1, 2, . . . , r.

The minimum n0
j of the repetition number of cj is given by

n0
j =

P
!2S\N in[j]

dim V!j,

and the minimum N 0 of N is given by N 0 := n0
1 + · · · + n0

r.
Thus, if ! 2 S , then N in[!] = {!}, so that n0

! = dim V!! = 1.

If j /2 S , then we just have n0
j =

P
!2S\N in(j)

V!j.

Since dim V =
P

15i5j5r

dim Vji, it is a usual phenomenon that

S ⌧ rank V =) N 0 � dim V (but not always).

For example, if ⌦ = P(r, R), then S = {r}, and S \N in[j] = r (8j).
Thus n0

j = dim Vrj = 1 (8j), so that N 0 = r.

The above claims are based on Yamasaki–N. (2015), and carried out by S. Tanaka
in his master thesis (February, 2017).
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How to get a realization?
We have S = {4, 5}, and n1 = 3, n2 = n3 = 2, n4 = n5 = 1.

1

23

4

5

2

1

23

4 1

23

5

2

� �[4] �[5]

From �[5] we proceed as follows:

V[5] =

1 2 3 5

5

3

2

1 � E[5] := the shaded part, dim E[5] = 5.

V[5] is a subalgebra of V , and

E[5] is a 2-sided ideal of V[5].

Let '[5](x)⌘ := R(x)⌘ (x 2 V[5], ⌘ 2 E[5]).

Rc1

{0}
{0} V31 V51

Rc2 V32 V52

V31 V32 Rc3 V53

V51 V52 V53 Rc5
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The matrix for '[5](x) is

0
BB@

�1I2 02 x31e1 x51
t02 �2 x32 x52

x31
te1 x32 �3 x53

tx51 x52 x53 �5

1
CCA (5⇥5 matrix), e1 :=

✓
1
0

◆

Similarly, from �[4], we get the matrix for '[4](x) is

0
BB@

�1 0 x31 x41

0 �2 x32 x42

x31 x32 �3 x43

x41 x42 x43 �4

1
CCA.

Put these two matrices in a direct sum form  9⇥ 9 matrix acting on R9.
Carry out a base permutation in R9 to get to the Graczyk–Ishi presentation.



21

⌦ =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

0
BBBBBBBBBBBBB@

�1 0 0 0 0 x31 0 x41 0

0 �1 0 0 0 0 x31 0 x(1)
51

0 0 �1 0 0 0 0 0 x(2)
51

0 0 0 �2 0 x32 0 x42 0
0 0 0 0 �2 0 x32 0 x52

x31 0 0 x32 0 �3 0 x43 0
0 x31 0 0 x32 0 �3 0 x53

x41 0 0 x42 0 x43 0 �4 0

0 x(1)
51 x(2)

51 0 x52 0 x53 0 �5

1
CCCCCCCCCCCCCA

� 0

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;
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• We have ⌦ 7! �(V ): HOCC 7! weighted oriented graph.
(1) Not every oriented graph comes from a HOCC.

3

2

1

d

d

d

This comes from a HOCC () d = 1, 2, 4, 8.

These are P(3, K); K = R, C, H, O.

(2) We have continuously many linearly inequivalent HOCCs of dim = 11
with the same oriented graph.

3

2

1

4

2

2
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There are still other theorems we have obtained for homogeneous tube domains
⌦ + iV , and for the homogeneous Siegel domains D(⌦, Q).


