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The problem

• We are given a multivariate r.v. X = (Xv , v ∈ V ) where V is a finite indexing
set. Assume that the distribution of X is Markov w.r.t. an undirected graph
G = (V ,E). Each node Xv takes values in a discrete set.

• The density of the distribution of X is of the form

f (x ; θ) = e{〈θ,t(x)〉−k(θ)}.

• Given the graph and the model, we want to compute the maximum likelihood
estimate of the parameter θ.

• When computing the mle, we are faced to two major problems.

In high-dimensions, k(θ) is intractable and it is impossible to compute the
mle.

In any dimension, if the data in the contingency table has zero counts, the
mle might not exist. How do we know if the mle exists and if it does not,
what should we do for inference?
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Ingredients of a hierarchical model

A discrete random variable X = (Xv , v ∈ V ), xv ∈ Iv = {0, 1, . . . , dv}.
Let G = (V ,E) an undirected graph. We have N sample points.

A p = |V |-dimensional contingency table. The set of cells is

I =
∏
v∈V

Iv = {i = (i1, . . . , ip), iv ∈ Iv}.

The support of i = (iv , v ∈ V ) ∈ I is

S(i) = {v ∈ V | iv 6= 0}.

Let ∆ be a set of subsets of V such that if D ∈ ∆ and D1 ⊂ D, then
D1 ∈ ∆.

J = {i ∈ I | S(i) ∈ ∆} ⊂ I . We use the notation j / i

j / i ⇐⇒ S(j) ⊂ S(i) and jS(j) = iS(j).
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The hierarchical model and the distribution of n(i), i ∈ I

log p(i) = θ0 +
∑

j/i θj , log p(0) = θ0. (baseline constraints for θj).

The multinomial distribution for the cell counts (n(i), i ∈ I ) is prop. to∏
i∈I

p(i)n(i) = exp{〈θ, t〉 − k(θ)}, where

θ = (θj , j ∈ J), t = (tj , j ∈ J), tj =
∑
i :j/i

n(i) = n(js(j)), k(θ) = log
(∑

i∈I
e
∑

j/i θj
)
.

For each i ∈ I , we define the vector fi ∈ RJ by

(fi )j =

{
1 if j / i

0 otherwise
.

Then we have{
L(θ) ∝ exp{〈θ, t〉 − log(

∑
i∈I e

〈θ,fi 〉)} the likelihood

t =
∑

i∈I n(i)fi the sufficient statistic
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Example: a graphical model

Let V = {a, b, c}, Ia = {0, 1} = Ib = Ic
G equal to a • • b • c.
Then ∆ = {a, b, c, ab, bc}, , J = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1)},

I = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)},
θ = (θ100, θ010, θ110, θ001, θ011).,
t = (n(1 + +), n(+1+), n(+ + 1), n(11+), n(+11))

The fi , i ∈ I are

f000 f100 f010 f110 f001 f101 f011 f111
a 0 1 0 1 0 1 0 1
b 0 0 1 1 0 0 1 1
ab 0 0 0 1 0 0 0 1
c 0 0 0 0 1 1 1 1
bc 0 0 0 0 0 0 1 1

The model is (log p(i)/p(000), i ∈ I \ {(000)}) = Atθ where A, the design matrix, is the matrix above and
θ = (θ100, θ010, θ110, θ001, θ011).

k(θ) = log
(

1 + eθ100 + eθ010 + eθ001 + eθ100+θ010+θ110 + eθ100+θ001 +

eθ010+θ001+θ011 + eθ100+θ010+θ001+θ110+θ110
)

.

The polytope P∆ with extreme points fi , i ∈ I is called the marginal polytope
of the model.
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A simpler example with its geometric representation

Let V = {a, b}, Ia = {0, 1} = Ib and let us consider the saturated model, that
is the graphical model with graph G equal to a • • b.
Then θ = (θ10, θ01, θ11),
∆ = {a, b, ab}, I = {(0, 0), (1, 0), (0, 1), (1, 1)} J = {(1, 0), (0, 1), (1, 1)}.

The fi , i ∈ I are

f00 f10 f01 f11

a 0 1 0 1
b 0 0 1 1
ab 0 0 0 1

The model is log p(10)/p(00)
log p(01)/p(00)
log p(11)/p(00)

 =

 θ10

θ01

θ10 + θ01 + θ11

 =

 f t10

f t01

f t11

 θ10

θ01

θ11

 = Atθ

A is the design matrix for the hierarchical model.

We also have Ã =


1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

 with


log p(00)
log p(10)
log p(01)
log p(11)

 = Ãt

(
θ00

θ

)
.
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The marginal polytope

Two binary variables example,
V = {a, b}

a b

Figure 1: The simplicial complex
∆ = {∅, {a}, {b}, {a, b}}

The facets are

F00 : 1− t01 − t10 + t11 ≥ 0,

F01 : t01 − t11 ≥ 0,

F10 : t10 − t11 ≥ 0,

F11 : t11 ≥ 0.

ea

eb

eab

f00(0, 0, 0)
f10(1, 0, 0)

f01(0, 1, 0)

f11(1, 1, 1)

t1

t2

t3

Figure 2: The marginal polytope
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The maximum likelihood estimate θ̂ for this example

The model is saturated. The solution to the likelihood equations is just
the empirical distribution; that is, p∗(i) = n(i)

N
.

Suppose t ∈ F00 (i.e. n = (0, n01, n10, n11) with n(01), n(10), n(11) > 0).
The solution gives a sequence of values θ(s) such that pθ(s) (00)→ 0, while
all other probabilities converge to a non-zero value. It follows that

θ
(s)
00 = log pθ(s) (00)→ −∞,

θ
(s)
01 = log

pθ(s) (01)

pθ(s) (00)
→ +∞,

θ
(s)
10 = log

pθ(s) (10)

pθ(s) (00)
→ +∞,

θ
(s)
11 = log

pθ(s) (11)pθ(s) (00)

pθ(s) (01)pθ(s) (10)
→ −∞.

The mle θ̂ does not exist but p∗(i) = n(i)
N

is well-defined.
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Erroneous inference

θ̂ does not exist but ...



θ
(s)
01 + θ

(s)
00 = log pθ(s) (01)

θ
(s)
10 + θ

(s)
00 = log pθ(s) (10)

θ
(s)
11 + θ

(s)
01 = log pθ(s) (11)/pθ(s) (10)

all

converge to a finite value.

However the computer will give unreliable values of θ
(s)
j such that

log pθ(s) (i) do not converge to the right values.

Moreover to test model M1 vs. model M2 where d = dim(M1)− dim(M2),
if t belongs to a face of the marginal polytope for at least one of the
models, then the asymptotic distribution of

G 2 = 2
∑
i∈I

n(i) log
p̂1(i)

p̂2(i)
6→ χ2

d .

Indeed, instead G 2 → χ2
d′ where d ′ = d ′1 − d ′2 with d ′k , k = 1, 2 being the

dimension of the face Fk of Mk that t belongs to.
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Conditions for the existence of the mle

Haberman (1974), Erikson et al. (2006), Fienberg and Rinaldo (2013):
the mle exists iff the data vector t belongs to the interior of the marginal
polytope with extreme points fi , i ∈ I .

or equivalently

The mle does not exist iff the data vector belongs to a proper face (i.e. not the
interior) of the marginal polytope.

We therefore have to identify the smallest face Ft of the marginal polytope of
the model containing the data vector t
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The facial set

A face F of the marginal polytope P is identified by its facial set
F = {i ∈ I | fi ∈ F}.
Since t =

∑
i∈I n(i)fi =

∑
i∈I+ n(i)fi , the facial set Ft of Ft is thus such

that
Ft ⊃ I+ = {i ∈ I | n(i) > 0}. crucial property

Recall t ∈ RJ and so the hyperplane containing Ft will be defined by some
g ∈ RJ+1 (one or more) such that

〈g , f̃i 〉 = 0, ∀i ∈ Ft ,

So, for sure if A+ is the matrix with the columns indexed by I+, and A0 is
the sub-matrix with columns indexed by I \ I+ and g defines a supporting
hyperplane, we have

g tÃ+ = 0 and g tÃ0 > 0.

Moreover, we want to find g such that, for all fi 6∈ Ft , then g t fi > 0.
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Linear Programming for Computing Ft (Fienberg & Rinaldo, 2012)

Lemma 1

Let A+ and A0 be as above. Solution g∗ of the non-linear problem

maxg∈RJ+1 z = ‖g tÃ‖0

s.t. g tÃ+ = 0

g tÃ0 > 0

(1)

defines Ft , the smallest face containing t. The corresponding facial set is
Ft = I \ supp(g∗A).

The above optimization problem is highly non-linear and non-convex: it can be
solved by repeatedly solving the associated `1-norm optimization problem:

maxg∈RJ+1 z = ‖g tÃ0‖1

s.t. g tÃ+ = 0

g tÃ0 ≥ 0

g tÃ0 ≤ 1

(2)

Here, we notice that only the support of data I+ is needed to compute the
facial set containing t, we don’t need to know the exact cell counts.
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Facial set approximation

When p, the number of factors (or variables) is greater than 16, it is
impossible to use linear programming to identify Ft .
So, we will try to find approximations to Ft .

Definition

For the model generated by ∆ and canonical statistic t, we define F∆(I+) to be
the smallest facial set containing I+. Thus

Ft = F∆(I+).

We use two principles for this approximation:
1 reducibility of ∆
2 If ∆′ ⊂ ∆, then Ft = F∆(I+) ⊆ F ′ = F∆′ (I+)

Principle 2 above yields an inner and an outer approximation to Ft .
outer approximation: If ∆2 ⊂ ∆, then Ft = F∆(I+) ⊆ F2 = F∆2 (I+)
inner approximation:If ∆ ⊂ ∆1, then F1 = F∆1 (I+) ⊆ Ft = F∆(I+).

13 / 34



The discrete graphical loglinear model When the mle does not exist Identifying Ft Examples

Reducible simplicial complex

Assume a simplicial complex ∆ consists of some separable components, i.e.
∆ = ∆1 ∪∆2 ∪ . . . ∪∆n and the separator ∆Sij = ∆i ∩∆j is complete.

any facet of some component P∆i is a facet of P∆. That is true because if
∆′ ⊂ ∆, then f ′i is the projection of an fi . Moreover, several fi could be
projected onto the same f ′i .

any face of P∆ is either a face of a P∆i or the intersection of the faces of
some components: this is true because if ∆1 = ∆|V1

with V1 ⊂ V , then
each face of P∆|V1

corresponds to an inequality∑
j∈J∆|V1

g
(1)
j tj ≥ c1.

The same inequality also defines a face of P∆.

Ft = ∩n
i=1Fti where ti is the projection of t onto the model with simplicial

complex ∆i . Erikson et al. (2006)

14 / 34



The discrete graphical loglinear model When the mle does not exist Identifying Ft Examples

If ∆′ ⊂ ∆, then F∆(I+) ⊂ F∆′(I+).

Let ∆,∆′ be two simplicial
complexes with ∆′ ⊂ ∆.

The polytope P∆′ is the
projection of P∆ and the f ′i are
the projections of fi .
If S = {2, 3}, we see that

F∆(S) = {2, 3},
F∆′(S) = {1, 2, 3, 4, 5}.

We illustrated that if ∆′ ⊂ ∆,
for S ⊂ I , we have

F∆(S) ⊂ F∆′(S).

0 1 2 3 4 5

1

2

3

4

5

f1

f2

f3

f4

f5

f ′4

f ′3

f ′2

f ′5 , f
′

1
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outer approximation

To get F2 ⊃ Ft , we need ∆2 ⊂ ∆.
For a large simplicial complex, we use sub-complexes defined by complete
separators if they exist. We can prove that if no complete separators can be
found, we can still work on a induced sub-simplicial complex.

1 Choose a subset of V : a ⊂ V . Apply LP on {P∆a , Ia+} and get a local
facial set Fa,

2 Fa is a subset of Ia, we can extend Fa to a subset of I by adding all the
configuration of XV\a: F 1

2 = Fa ⊕ IV\a.

Ft ⊆ F 1
2 ,

3 Choose another subset of V : b ⊂ V , Repeat first two steps and get
another outer approximation: Ft ⊆ F 2

2 ,

4 Improve the outer approximation by taking the intersection of all the outer
approximation

Ft ⊆ ∩iF
i
2
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Inner approximation

To get F1 ⊂ Ft , we need ∆1 ⊃ ∆.
We can find and complete a proper separator to create a reducible simplicial
complex.

1 Find and complete a separator set S1, apply LP to get a facial set F 1
1 ,

F 1
1 ⊆ Ft ,

2 Use another separator set S2, apply LP, but replace I+ by F 1
1 to get

another facial set F 2
1

F 1
1 ⊆ F 2

1 ⊆ Ft

3 Find other separator sets or repeat the first two steps iteratively, and we
are getting closer and closer to the Ft :

F 1
1 ⊆ F 2

1 ⊆ · · · ⊆ F n
1 ⊆ Ft
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5 × 10 grid graph

Model description

50 binary random variables and 135 parameters, 135× 250 design matrix,

Sample from log-linear model whose parameters are randomly assigned as
±0.5.
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5 × 10 grid graph

Outer approximation
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Figure 3: The 5 induced sub simplicial complexes for outer approximation
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5 × 10 grid graph

Inner approximation

1

5

6

10

11

15

16

20

21

25

26

30

31

35

36

40

41

45

46

50

Figure 4: The 5× 10 grid with blue separators completed

Figure 5: The 5 sub simplicial complexes after completing the separators
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5 × 10 grid graph

Applying two separator sets iteratively

data I+ on 5× 10 grid

marginalize

I5+ := πV5 (I+)I3+ = πV3 (I+)I1+ = πV1 (I+) I7+ = πV7 (I+) I9+ = πV9 (I+)

G1,V1
G1,V3

G1,V5
G1,V7

G1,V9

marginalize
and glue

marginalize
and glue

marginalize
and glue

marginalize
and glue

G1,V2
G1,V4

G1,V6
G1,V8

G1,V0

marginalize

G′
1,V0

G′
1,V2

G′
1,V4

G′
1,V6

G′
1,V8

...
...

...
...

...

LP

LP

LP

LP

LP

LP

LP

LP

LP

LP

Figure 6: The flowchart of iterative steps
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5 × 10 grid graph

Numerical results

Table 1: facial set approximation of 5× 10 grid graph

sample size F2 6= I F1 = F2

50 100.0% 94.3%
100 100.0% 82.5%
150 99.9% 76.5%
200 99.6% 81.2%
300 96.4% 87.7%
400 92.9% 91.5%
500 84.8% 93.9%

1000 44.7% 99.9%
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US Senate Voting Records Data

Real data: data description and model selection

We consider the voting record of all 100 US senators on 309 bills from January
1 to November 19 2015. The votes are ”yes” or ”no”.

Dataset: 309 sample points of 100 binary random variables,

We choose a model: we use the `1-regularized logistic regression to identify
the neighbours of each variable and construct an Ising model. We set the
penalty parameter to λ = 32

√
log p/n ≈ 0.35, resulting in a sparse graph.
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US Senate Voting Records Data

Simplicial complex of the fitted model
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Figure 7: The golden nodes are independent senators, blue nodes are democratic and
red nodes are republican.
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US Senate Voting Records Data

Two prime components
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Figure 8: The simplicial complexes after cutting off the small prime components:
(a) the republican party prime component ∆r . (b) the democratic party prime
component ∆d . The yellow and pink nodes are the two separator sets we found to
compute the approximation to the facial set.
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US Senate Voting Records Data

Face computation of the republican party prime component
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Figure 9: the republican party prime
component ∆r

∆r includes 20 variables and 46
parameters, 46× 220 design
matrix

Choose separators:
{”Cassidy”, ”Fisher”, ”Blunt”}
Complete the separators, we will
apply LP on two separable local
simplicial complexes: ∆α̃, ∆β̃ ,

Both of the two local data
Iα+, Iβ+ falls in the relative
interior of the two marginal
polytope P∆α̃ ,P∆

β̃
,

The original data Ir falls in the
relative interior of the original
marginal polytope P∆r .
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US Senate Voting Records Data

Face computation of the democratic party prime component
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Figure 10: the democratic party prime component ∆d

∆d includes 26 variables and 77 parameters, 77× 226 design matrix,

Separators: {”Markey”, ”Merkley”, ”Nelson”} and
{”Murphy”, ”Cardin”, ”Udall”, ”Whitehouse”}.

27 / 34



The discrete graphical loglinear model When the mle does not exist Identifying Ft Examples

US Senate Voting Records Data

ID Senator ID Senator ID Senator ID Senator

22 Nelson 37 Cardin 52 Murphy 61 Whitehouse
23 Reed 41 Markey 53 Hirono 87 Warren
26 Schumer 47 Udall 56 Gillibrand 70 Merkley

Table 2: Numbering of some senators
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US Senate Voting Records Data

Outer approximation

Follow the separators, we choose three induced sub simplicial complexes from
left to the right: ∆α, ∆β and ∆γ , and split the original dataset into three local
data Iα+, Iβ+ and Iγ+:

Local data Iα+ lies in the relative interior of P∆α

Local data Iβ+ lies on a face of P∆β :

twarren − tGillibrand,warren = 0,

Local data Iγ+ lies on a face of P∆γ :

treed − treed,Hirono = 0.

Therefore the outer approximation is the intersection of the above two faces:{
twarren − tGillibrand,warren = 0,

treed − treed,Hirono = 0.
(3)

We denote this face as F2
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US Senate Voting Records Data

Inner approximation

We complete the two separator sets respectively, and end up with three sub
simplicial complexes from left to right: ∆α̃, ∆β̃ and ∆γ̃ , and the same local
data Iα+, Iβ+ and Iγ+:

Local data Iα+ lies on a facet of P∆α̃ :

〈g1, tα̃〉 = t41 − t22,41 − t41,70 + t22,41,70 = 0.

Local data Iβ+ lies on a face of P∆
β̃

:

〈g2, tβ̃〉 = t87 − t56,87 = 0

〈g3, tβ̃〉 = t47,52,61 + t37,52 − t37,52,61 − t37,47,52 = 0

〈g4, tβ̃〉 = t37,47,52,61 − t47,52,61 = 0

〈g5, tβ̃〉 = t37,52 + t26 − t26,52 − t26,37 = 0

〈g6, tβ̃〉 = t41 − t22,41 − t41,70 + t22,41,70 = 0

.

Local data Iγ+ lies on a face of P∆γ̃ :
〈g7, tγ̃〉 = t47,52,61 + t37,52 − t37,52,61 − t37,47,52 = 0

〈g8, tγ̃〉 = t37,47,52,61 − t47,52,61 = 0

〈g9, tγ̃〉 = t23 − t23,53 = 0

.
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US Senate Voting Records Data

Taking the intersection of faces of three simplicial complexes, we get the inner
approximation:

〈g ′1, td̃〉 = t41 − t22,41 − t41,70 + t22,41,70 = 0

〈g ′2, td̃〉 = t87 − t56,87 = 0

〈g ′3, td̃〉 = t47,52,61 + t37,52 − t37,52,61 − t37,47,52 = 0

〈g ′4, td̃〉 = t37,47,52,61 − t47,52,61 = 0

〈g ′5, td̃〉 = t37,52 + t26 − t26,52 − t26,37 = 0

〈g ′9, td̃〉 = t23 − t23,53 = 0

,

This is the smallest face of P∆
d̃

containing I+. We denote it by Ft
d̃
, which is

also the inner approximation F1.
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Now we have F1 ⊂ F2, but Ft
?
= F2.

Observe:
∆d̃ = ∆d + added edges
P∆

d̃
= P∆d + some more dimensions

same data I+, but different sufficient statistics td and td̃ .
Conclude:

Any face of P∆d containing I+ is also a face of P∆
d̃

containing I+,

〈g , td〉 ≥ c ⇒ 〈g̃ , td̃〉 ≥ c,where g̃ = [g , 0t
d̃
\td ]

For any vector g that is perpendicular to Ftd , g̃ is perpendicular to Ft
d̃
. i.e.

g̃ = k1g
′
1 + k2g

′
2 + k3g

′
3 + k4g

′
4 + k5g

′
5 + k6g

′
6

the values of k have to satisfy k1 = k3 = k4 = k5 = 0, since
t22,41,70, t37,52,61, t37,47,52,61and t37,52 are added dimensions,

The equation of Ft can only be{
t87 − t56,87 = 0,

t23 − t23,53 = 0

Ft = F2.
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Now what?

Now that we have found the equations of the face containing t, how do we
draw correct inference?
We want to write the exponential model on the face Ft . To do so:

we have the equation 〈g1, t〉 = t87 − t56,87 = 0, 〈g2, t〉 = t23 − t23,53 = 0.
So, in principle we can identify all the i ∈ I such that 〈g1, fi 〉 = 〈g2, fi 〉 = 0
i.e. all the fi ∈ Ft and build the new model log p = At

newθnew but there are
many such i ’s.

we use the parametrization µi = log p(i)
p(0)

= 〈θ, fi 〉, i ∈ Ft ∩ J. These are
identifiable and estimable parameters using the likelihood function

L(µ) = exp
∑

j∈Ft∩J
µj(

∑
k∈Ft |j/k

n(k))− N log(
∑
i∈Ft

eµi )

where those µi , i ∈ Ft \ J are functions of µi , i ∈ Ft ∩ J. This is so because
the fi , i ∈ Ft \ J are function of fi , i ∈ Ft ∩ J.

the combinations of θj(in the old model) that are estimable are the 〈θ, fi 〉,
which, as we know, are equal to µi , i ∈ Ft ∩ J.
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Now what? Continued

when we compare two models for model selection, using the likelihood
ratio statistic G 2 or the chi-square statistics χ2, the degrees of freedom for
the asymptotic distribution is the difference in the dimension of the faces
containing the data vector in the two models.

When we work with the parametrization µi , i ∈ Ft ∩ J, the matrix of
second derivatives (i.e. the Hessian) estimated at the mle is nonsingular
and we can give the usual confidence region for the parameter µ.
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