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The discrete graphical loglinear model

The problem

e We are given a multivariate r.v. X = (X,,v € V) where V is a finite indexing
set. Assume that the distribution of X is Markov w.r.t. an undirected graph
G = (V,E). Each node X, takes values in a discrete set.

e The density of the distribution of X is of the form

F(x: 0) = el N —KO

e Given the graph and the model, we want to compute the maximum likelihood
estimate of the parameter 6.

e When computing the mle, we are faced to two major problems.

m In high-dimensions, k(@) is intractable and it is impossible to compute the
mle.

® In any dimension, if the data in the contingency table has zero counts, the
mle might not exist. How do we know if the mle exists and if it does not,
what should we do for inference?



The discrete graphical loglinear model

Ingredients of a hierarchical model

A discrete random variable X = (X,,v € V), x, € I, ={0,1,...,d,}.
Let G = (V, E) an undirected graph. We have N sample points.

A p = |V/|-dimensional contingency table. The set of cells is

I=1]t={i=(. i) iv€L}

vev

m The support of i = (i,,v € V) € | is
S(y={veV]i #0}

m Let A be a set of subsets of V such that if D € A and D; C D, then
D; € A.

J={iel|5(i) € A} C I. We use the notation j </

j<i <= 5() C S(i) and js) = is(y)-



The discrete graphical loglinear model

The hierarchical model and the distribution of n(i),i € |

log p(i) = 6o + >, 6, logp(0) = bh. (baseline constraints for ¢;).
m The multinomial distribution for the cell counts (n(i),i € I) is prop. to

Hp(i)"(i) = exp{(0,t) — k(0)}, where

icl
0=(0,j€J), t=(t.jeJ), =" n(i)=n(jsp), k(6)=log (Zezﬂ“ 9’)
iijai iel
m For each i € I, we define the vector f; € R’ by

(f,-),-_{l ifj<ai

0 otherwise

Then we have
L(0) o exp{(0, t) — log(>";c, e™)}  the likelihood
t=73 i, n(i)f the sufficient statistic



The discrete graphical loglinear model

Example: a graphical model

Let V = {a,b,c},la = {0,1} = Iy = Ic
Gequalto ae ob ec.
Then A = {a, b, c, ab, bc}, . J={(1,0,0), (0,1,0), (0,0,1), (1,1,0), (0,1,1)},

I'={(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (1,1,1)},
0 = (6100 6010~ 0110~ 0001 - O011) .

t = (n(1++), n(+1+), n(+ + 1), n(11+), n(+11))

The f;, i € I are

| fo00 flo0 fo10 fl10  foo1 flor  foug f11

a 0 1 0 1 0 1 0 1
b 0 0 1 1 0 0 1 1
ab 0 0 0 1 0 0 0 1
c 0 0 0 0 1 1 1 1
bc 0 0 0 0 0 0 1 1

The model is (log p(i)/p(000), i € I\ {(000)}) = A6 where A, the design matrix, is the matrix above and
6 = (8100- P010 #110- 001> Po11)-

k(6) = log (1 4+ 9100 + £9010 + 9001 + 9100+0010+0110 + 01006001 +
e9010+0001+0011 4 59100+9010+9001+9110+9110)A

The polytope Pa with extreme points fi,i € | is called the marginal polytope
of the model.



The discrete graphical loglinear model

A simpler example with its geometric representation

Let V = {a, b}, I = {0,1} = I, and let us consider the saturated model, that
is the graphical model with graph Gequaltoae_ e b.

Then 0 = (610, fo1, 611),

A ={a b,ab}, 1={(0,0), (1,0), (0,1), (1,1)} J={(1,0), (0,1), (1,1)}.

| fo fo fu  fu
. a 0 1 0 1
The fi,i € | are b 0 0 1 1
ab | 0 0 0 1
The model is
log p(10)/p(00) 610 fio b10
log p(01)/p(00) | = { fo =| fa or | = A0
log p(11)/p(00) 610 + Oo1 + 011 fiy 011
A is the design matrix for the hierarchical model.
11 11 log p(00)
i 0 1 0 1 . |og p(lO) Xt 000
We also have A = 00 1 1 with log p(01) =A 0 .
0 0 01 log p(11)
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The discrete graphical loglinear model

The marginal polytope

Two binary variables example,
V ={a, b}

*———o
& b

Figure 1: The simplicial complex

A = {0, {a},{b},{a, b}}

The facets are

Foo : 1 — ton — tio + tun > 0,
Fo1 : tor — t11 > 0,
Fio : tio — t1n > 0,
Fi1:tin > 0.

€ab fir(1,1,1)

[
f00(0,0,0)

€a

fio(1,0,0)

Figure 2: The marginal polytope



When the mle does not exist

The maximum likelihood estimate 6 for this example

m The model is saturated. The solution to the likelihood equations is just
the empirical distribution; that is, p.(i) = %

m Suppose t € Fo (i.e. n = (0, no1, mo, n1) with n(01), n(10), n(11) > 0).
The solution gives a sequence of values 8) such that p,()(00) — 0, while
all other probabilities converge to a non-zero value. It follows that

05 = log py(=(00) — —o0,

S 01)
6% = log Po (01) — 400,

o Po(s) (00)

,(10)

60 = log P20,

10 & by (00)

s 5(11)pyis) (00
9%1) = log Po) (11)py(=) (00) o

Pos)(01) pyis) (10)

The mle § does not exist but p. (i) = # is well-defined.
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When the mle does not exist

Erroneous inference

9(()51) + 9[();) = log py(+ (01)

m 0 does not exist but ... all
9%) + 9(();) = log pg(s)(lo)

05 + 05 = log Py (11)/ Py (10)
converge to a finite value.

However the computer will give unreliable values of HJ(-S) such that
log py(s) (i) do not converge to the right values.
m Moreover to test model My vs. model M> where d = dim(My) — dim(M>),
if t belongs to a face of the marginal polytope for at least one of the

models, then the asymptotic distribution of

=2 n(i)log 2 — D
iel P (I)

Indeed, instead G® — x% where d’ = di — dj with dj, k = 1,2 being the
dimension of the face Fx of M that t belongs to.



When the mle does not exist

Conditions for the existence of the mle

Haberman (1974), Erikson et al. (2006), Fienberg and Rinaldo (2013):
the mle exists iff the data vector t belongs to the interior of the marginal
polytope with extreme points f;,i € /.

or equivalently

The mle does not exist iff the data vector belongs to a proper face (i.e. not the
interior) of the marginal polytope.

We therefore have to identify the smallest face F;: of the marginal polytope of
the model containing the data vector t

10 /34



Identifying F¢

The facial set

m A face F of the marginal polytope P is identified by its facial set
F={iel|fieF}.

Since t =, n(i)fi = >_,c,, n(i)fi, the facial set F; of F. is thus such
that

F: DIy ={iel|n(i) >0} crucial property

m Recall t € R’ and so the hyperplane containing F; will be defined by some
g € R’ (one or more) such that

i

<g7f>:07 VIEFH

So, for sure if A; is the matrix with the columns indexed by I, and A is
the sub-matrix with columns indexed by / \ I+ and g defines a supporting
hyperplane, we have

g'A. =0 and g'Ay > 0.

m Moreover, we want to find g such that, for all f; & F;, then g'f; > 0.
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Identifying F¢

Linear Programming for Computing F; (Fienberg & Rinaldo, 2012)

Let Ay and Ao be as above. Solution g* of the non-linear problem

MaXgcpi1  Z = llgtAllo
s.t. ng+ =0 (1)
gtAo Z 0

defines F, the smallest face containing t. The corresponding facial set is
Fe =1\ supp(g*A).

The above optimization problem is highly non-linear and non-convex: it can be
solved by repeatedly solving the associated ¢1-norm optimization problem:

MaXgepiin  Z = gt Aol
s.t. gtA+ =0 2)
g'A >0
gtAo < 1
Here, we notice that only the support of data /1 is needed to compute the
facial set containing t, we don’t need to know the exact cell -counts.



Identifying F¢

Facial set approximation

m When p, the number of factors (or variables) is greater than 16, it is
impossible to use linear programming to identify F;.
So, we will try to find approximations to F;.

=
For the model generated by A and canonical statistic t, we define Fa(/+) to be
the smallest facial set containing /.. Thus

Fi = Fa(ly).

m We use two principles for this approximation:
reducibility of A
If A’ C A, then Fy = Fa(l+) C F' = Fas(I4)
Principle 2 above yields an inner and an outer approximation to F;.
outer approximation: If Ay C A, then F; = Fa(l+) C Fo = Fa,(14)
inner approximation:If A C Ay, then F1 = Fa, (1) C Fr = Fa(l4).
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Identifying F¢

Reducible simplicial complex

Assume a simplicial complex A consists of some separable components, i.e.
A=A1UAU...UA, and the separator As; = A; N A is complete.

m any facet of some component Pj; is a facet of Pa. That is true because if
A’ C A, then f/ is the projection of an f;. Moreover, several f; could be
projected onto the same ;.

m any face of Pa is either a face of a Pa; or the intersection of the faces of
some components: this is true because if A; = A}y, with Vi C V, then
each face of PA|V1 corresponds to an inequality

> glyza

J€aly,

The same inequality also defines a face of Pa.

m . =N, F; where t; is the projection of t onto the model with simplicial
complex A;. Erikson et al. (2006)
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Identifying F¢

If A’ C A, then Fa(lL) C Far(ly).

Let A, A’ be two simplicial
complexes with A’ C A.

The polytope Pa: is the
projection of P and the f/ are
the projections of f;.

If S ={2,3}, we see that

Fa(S) =1{2,3},
Far(S) ={1,2,3,4,5}.

f3

We illustrated that if A’ C A,
for S C I, we have

FA(S) C FA/(S).

15 /34



Identifying F¢

outer approximation

To get F» D F:, we need Ay C A.
For a large simplicial complex, we use sub-complexes defined by complete
separators if they exist. We can prove that if no complete separators can be
found, we can still work on a induced sub-simplicial complex.
Choose a subset of V: a C V. Apply LP on {Pa,, l,4+} and get a local
facial set F,,
F. is a subset of /,, we can extend F, to a subset of / by adding all the
configuration of Xy\,: FF=F.® Ia-

F. CF;,

Choose another subset of V: b C V, Repeat first two steps and get
another outer approximation: F; C F2,

@ Improve the outer approximation by taking the intersection of all the outer
approximation _
F: CNiF;
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Identifying F¢

Inner approximation

To get F1 C F¢, we need A1 D A.
We can find and complete a proper separator to create a reducible simplicial
complex.

Find and complete a separator set S1, apply LP to get a facial set F7,
Fl1 g Ft7

Use another separator set Sy, apply LP, but replace /1 by F} to get
another facial set F?
FFCFCF

Find other separator sets or repeat the first two steps iteratively, and we
are getting closer and closer to the F;:

FFCFC---CFCF



Examples
[ Jolelele}

5 X 10 grid graph

Model description

m 50 binary random variables and 135 parameters, 135 x 2°° design matrix,

m Sample from log-linear model whose parameters are randomly assigned as
+0.5.
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Examples
[e] lelele}

5 X 10 grid graph

Outer approximation

1 6 11 11 16 21 21 26 31 31 36 41 41 46

5 10 15 15 20 25 25 30 35 35 40 45 45 50

Figure 3: The 5 induced sub simplicial complexes for outer approximation
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Examples
[e]e] lele}

5 X 10 grid graph

Inner approximation

1 6 11 16 21 26 31 36 41 46

5 10 15 20 25 30 35 40 45 50

Figure 4: The 5 x 10 grid with blue separators completed

Figure 5: The 5 sub simplicial complexes after completing the separators



Examples
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5 X 10 grid graph

Applying two separator sets iteratively

data 1

[+ on 5 x 10 grid




Examples
[e]o]e]e] }

5 X 10 grid graph

Numerical results

Table 1: facial set approximation of 5 x 10 grid graph

samplesize F#Il F[=F

50 100.0%  94.3%
100 100.0%  82.5%
150 99.9% 76.5%
200 99.6% 81.2%
300 96.4% 87.7%
400 92.9% 91.5%
500 84.8% 93.9%
1000 44.7% 99.9%




Examples
®00000000000

US Senate Voting Records Data

Real data: data description and model selection

We consider the voting record of all 100 US senators on 309 bills from January
1 to November 19 2015. The votes are "yes” or "no".

m Dataset: 309 sample points of 100 binary random variables,

m We choose a model: we use the ¢1-regularized logistic regression to identify
the neighbours of each variable and construct an Ising model. We set the
penalty parameter to A = 324/log p/n ~ 0.35, resulting in a sparse graph.

23/34



Examples

US Senate Voting Records Data

O®0000000000

Simplicial complex of the fitted model

Mcncndcx

a.m
Buukn r

Figure 7: The golden nodes are independent senators, blue nodes are democratic and
red nodes are republican.



Examples

O0@000000000

US Senate Voting Records Data

Two prime components

G\Il\bmml

1 Ma,rkey Bmwn
‘ . Mcncndcz
[Wyden]
’ V\ ;\rrm Cmd.m Blumcmhal
U
4‘

Hoinrich
Mcrklcy [Booker|

Figure 8: The simplicial complexes after cutting off the small prime components:
(a) the republican party prime component A,. (b) the democratic party prime
component Ay. The yellow and pink nodes are the two separator sets we found to
compute the approximation to the facial set.



Examples

000800000000

US Senate Voting Records Data

Face computation of the republican party prime component

m A, includes 20 variables and 46
parameters, 46 x 2?° design
matrix

m Choose separators:
{" Cassidy"," Fisher","” Blunt" }

m Complete the separators, we will
apply LP on two separable local
simplicial complexes: As, Ag,

m Both of the two local data
la+, I3+ falls in the relative
interior of the two marginal
polytope Pa,, PAB'

Figure 9: the republican party prime
component A,

m The original data /, falls in the
relative interior of the original
marginal polytope Pa, .
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Examples

0000@0000000
US Senate Voting Records Data

Face computation of the democratic party prime component

Feinstein

Figure 10: the democratic party prime component Ay

m Ay includes 26 variables and 77 parameters, 77 X 2% design matrix,

m Separators: {" Markey"," Merkley”,” Nelson" } and
{" Murphy" " Cardin” ;" Udall" ;" Whitehouse” }.
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Examples

000008000000

US Senate Voting Records Data

ID  Senator ID  Senator ID  Senator ID  Senator
22 Nelson 37 Cardin 52 Murphy 61 Whitehouse
23  Reed 41  Markey 53  Hirono 87 Warren
26 Schumer 47  Udall 56  Gillibrand 70  Merkley

Table 2: Numbering of some senators



Examples

000000e00000
US Senate Voting Records Data

Outer approximation

Follow the separators, we choose three induced sub simplicial complexes from
left to the right: A., Ag and A, and split the original dataset into three local
data Ia+. IB+ and I’Y+:

m Local data /4 lies in the relative interior of Pa,,

m Local data /g lies on a face of Pa,:
twarren — tGillibrand ,warren = 07
m Local data /, lies on a face of Pa:
treed — treed,Hirono =0.

Therefore the outer approximation is the intersection of the above two faces:

twarren — tGillibrand ,warren = 07 (3)

treed — treed ,Hirono =0.
We denote this face as F»
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Examples

0000000 e0000
US Senate Voting Records Data

Inner approximation

We complete the two separator sets respectively, and end up with three sub
simplicial complexes from left to right: As, Az and Aj, and the same local
data lo+, Ig4+ and [y
m Local data /o lies on a facet of Pa,:
(g1, ta) = ta1 — too,41 — ta1,70 + t22,41,70 = 0.

m Local data /g lies on a face of Pag:

(82, tz) = ter — ts,57 = 0

(g3, t5) = tar,52,61 + t37,520 — t37,52,61 — 37,4752 = 0
(ga, tz) = tsr,47,52,61 — tar,52,61 = 0

(gs, t"> = t37,50 + tog — tre520 — ts 37 =0

(86, tg) = tar — 241 — tar,70 + t2,41,70 = 0

m Local data /.4 lies on a face of PA;/:

(g7, ty) = tars2,61 + t37,52 — t37,52,61 — t37,47,52 = O
<g8, t«',) = t37,47,52,61 — ta7,5261 = 0
(go, ty) = toz — t2353 =0
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O0000000e000

US Senate Voting Records Data

Taking the intersection of faces of three simplicial complexes, we get the inner
approximation:

~
2

= ta1 — ta1 — tar;70 + t2241,70 = 0

~
2

= tg7 — tse,87 = 0

= ta7,52,61 + 37,52 — t37,52,61 — t37,4752 = 0

~
2

= t37,47,52,61 — ta752,61 = 0

~+
?
T T

~
2

= t37,52 + tog — tog,52 — to37 =0

DR OB R

=t —t3s53 =0

~
Q.
~

This is the smallest face of PA& containing /1. We denote it by th, which is
also the inner approximation Fj.
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US Senate Voting Records Data

Now we have F; C F», but F; Z F>.
Observe:

A; = Ay+ added edges
PAJ = Pa, + some more dimensions

same data /1, but different sufficient statistics tq and tj.
Conclude:

m Any face of Pa, containing /1 is also a face of P4 containing I+,
<g7 td> >c= <g7 tJ) > c, where g = [ga Otg\td]

m For any vector g that is perpendicular to Fy,, & is perpendicular to F,. i.e.

g = kigi + kogy + ksgs + kagy + ksgs + kege

m the values of k have to satisfy k1 = ks = ks = ks = 0, since
t22,41,70, t37,52,61, t37,47,52,61and 37,52 are added dimensions,

m The equation of F; can only be
ts7 — ts6,87 = 0,
tr3 — ta3,53 =0

.Fg:FQ.
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US Senate Voting Records Data

Now what?

Now that we have found the equations of the face containing t, how do we
draw correct inference?
We want to write the exponential model on the face F;. To do so:

m we have the equation <g1, t> = tg7 — tse,87 = 0, <g2, t> = tr3 — tr3,53 = 0.
So, in principle we can identify all the i € I such that (g1, fi) = (g, f) =0
i.e. all the f; € F; and build the new model log p = AL, 0new but there are
many such ;'s.

m we use the parametrization u; = log g((é)) =(0,f),i € FeN J. These are

identifiable and estimable parameters using the likelihood function

Lp)=exp > w( > n(k))— Nlog(>_ e")

JEFNJ kEF:|jak i€Ft

where those pi, i € F; \ J are functions of u;, i € F; N J. This is so because
the fi,i € F: \ J are function of fi,i € F, N J.

m the combinations of 6;(in the old model) that are estimable are the (0, f;),
which, as we know, are equal to ui,i € Fr N J.

33/34



Examples

00000000000 e
US Senate Voting Records Data

Now what? Continued

m when we compare two models for model selection, using the likelihood
ratio statistic G2 or the chi-square statistics x?, the degrees of freedom for
the asymptotic distribution is the difference in the dimension of the faces
containing the data vector in the two models.

m When we work with the parametrization ui,i € F; N J, the matrix of
second derivatives (i.e. the Hessian) estimated at the mle is nonsingular
and we can give the usual confidence region for the parameter p.
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