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@ Introduction



The mixture model

We have at our disposal a sample S = (X1, ..., X,) of i.i.d. random
variables (X; € RY), having a common density f*.

In an unsupervised classification context, f* can be considered of

the form
Z Ajo( = 1),

where ¢ is a known density, A7 € [0, 1], uf € R? and K are
unknown parameters.

Classical statistical issues
e estimation of the sequences ()\J*)jzl,,,,K and (uj)jzlm,K,

e estimation of the component number K (model selection task).



Mixture as an inverse problem

The estimation of the mixture parameters turns to be an inverse
(deconvolution) problem. Indeed,

Xi=U+e€, Vie{l,... n},

where €; ~ ¢ (error term) and U; are associated to the discrete
measure G = Zle Ai%- Then,

*=Gx¢.

In this contact, the 'classical’ deconvolution tools are not available.



Two component mixtures

In this talk, we consider the particular contamination case, namely
K=2 pu1=0and up = p*:

F* = fe(x) = (1 = \)o(x) + No(x — pu*) Vx € R,
The X; can be written
Xi=pVi+e, Vie{l,..., n},
where V; ~ Ber(\*), €¢; ~ ¢.
N.B. : Strong analogies with the sequence model
Yk =0k +nk, ke{l,....n}

where 0, € {0,0} and card{k : O # 0} = s (~ n\*).
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Outline

Goal of this contribution :

e provide an estimation of both A* and p* (¢ is known).

handle the case where \*, |u*| — 0 as n — +o0.
e discussion on the 'direct’ and 'inverse’ point of views.

establish lower bounds.

All the results are available in a multivariate setting. For the sake of
simplicity, we only consider the case d = 1 along this talk.
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@ Estimation of the mixture components



Existing results

e Likelihood methods : No available analytic expression for
mixture models : EM algorithms required.

e Initialisation of the EM 7
e Robustness issues for related models (see, e.g., Baraud, Birgé
and Sart (2017)).
e Avrias -Castro and Verzelen (2016) : estimation and clustering
in a multivariate setting. The parameter \* is fixed and known
(= 1/2). The density ¢ is available (Gaussian ?).

e Butucea and Vandekerkhove (2010) : Estimation of both ¢
(supposed to be symmetric) and the mixture parameters
(fixed). Asymptotic normality.



Existing results

e Collier, Comminges and Tsybakov (2017) : Estimation of linear
and quadratic functionals in the sequence model. The sparsity
parameter s(~ n\*) is assumed to be known.

e Heinrich and Kahn (2015) : Convergence rates with
Wasserstein distance when the component number is
unknown. The mixture components are fixed with respect to n.

e Bunea et als. (2010) : SPADES and mixture models. Algorithm
based on the L2 distance with a sparsity penalization. The
compatibility condition does not allow to handle situations
where the mixture parameters are close to each others.



An estimator based on the L2 distance
For all (A, i) € [0,1] x R, define
fap = (1= A)B(.) + Ad(. — p).

The term ||f, , — *||? can be estimated (with bias) by

2 n
Hf/\,qu T Z fk,u(Xi)-
i=1

Given a grid M on pu, we define

N 2
A fi) = ' Aal? = =D hulX)|
(A, ) arg i 13l n 2 2\ (Xi)

and f:fj\



An estimator based on the L2 distance

Our estimation strategy is based on the estimation of the
convoluted density 7* (direct problem). We expect to recover
informations on the underlying discrete mixture measure G*
(inverse problem).

Similar approaches (in different setting) in, e.g.,
e Laurent et al. (2011),
e Lepski (2016),
e Blanchard et al. (2016),
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© Upper bound



An estimator based on the L2 distance

Using classical tools, we can easily establish the following oracle
inequality :
Proposition
2
log”(| M)

BIF = P25 inf, (1, — 2+ 25520

Question : Can we retrieve convergence results from this
inequality 7



Minoration of the 1.2 distance

Using simple algebra
IF = £
= (1 =N+ Ad(. — ) = (1 = X — Xo(. — )%,



Minoration of the 1.2 distance

Using simple algebra
S
= (A=A +Ag(. — 1) = (1= A")¢ — Ag(. w17,
= IO = {e = o( = 1)} + X {o(. — 1) — & — ")}



Minoration of the 1.2 distance

Using simple algebra
S
= (A=A +Ag(. — 1) = (1= A")¢ — Ag(. w17,
1A = A = o = )} + Ao — f1) — & — PP,
= (V= AYllo — (. — I+ (WPllo( — ) — o — w)II?



Minoration of the 1.2 distance

Using simple algebra
el
= [(@A=X+Ag(. — a) — (1= A)¢p — X¢(. — )|,
IO = 3){p = ¢(- — ")} + N {o(. — ) — (. — ")},
= (=Xl — o — AP+ (Wl — a) — ¢ — )P
F2(N = N6 — dp, dp — Pu)s

> n

Question : How can we handle the scalar product in the last
equality ?



Assumptions

Assumption Hs : ¢ € C3(R) N L%(R)
Assumption H,j, : There exists g € L3(R) s.t.

|¢(X) - ¢(X - ,U)‘ < ‘M‘g(x) Vx € R, VM € [_Mmax;ﬂmax]g

where
J = / g2(x)p 1 (x)dx < +oo.
R

Assumptions satisfies by, e.g., Gaussian, Cauchy, Laplace (with
slight modification), ...



Consequence

Proposition
If the shape ¢ satisfies Hs and Hjp, then, for all a,b € R

(¢ = @a; Parb — Ga)| < ||¢ = Pallllfats — ¢all(1 = cll¢ — daysll)-

for some positive constant c.

Remark : The classical Cauchy-Schwarz inequality provides ¢ = 0.
It is improved if a + b is 'far away’ from 0 ('correlation’ property).



Consequence

Using the previous inequality with a = fi and b = p* — [i, we get
I — 12
= (V=226 — o — DI+ NPl — ) — & — ph)IP
2N =A@ — dp, dp — Do),



Consequence

Using the previous inequality with a = fi and b = p* — [i, we get

IF =
= (V=22 — o — M)IP+ WVl — ) — o — w)IP
+2(N = X)(d — b, b — du),
> (M =A[l6—o(.— )P+ (A)2e(. — a) — (. — )P
—2[A = A6 = dallllon — dur (1 = cllé — b ),



Consequence

Using the previous inequality with a = fi and b = p* — [i, we get
I — 12
= (M= o~ MIZ+ WPlo( = p) = o — )|
2N =A@ — dp, dp — Do),
(N =226 = o = D)IIP + (o — ) — (. — )1
=2\ = AN = dalllldn — dusll(L = cll — e ),
(X =316 = 6allPllé = due 12 + (Xl = By Pl — e |

v

vV



Consequence

Gathering the previous result and the oracle inequality obtained few
slides ago, we get, with an appropriate choice for the grid M

*x 3 * log?(n
(A= A20-03P16—pe [2+ (00— [Pl e |2 5 251,
The Gaussian case :

2
_ (p1—m2)
4

1612 = pall® = lg]1*(1 — & ) Vpapz €R.

In particular,

B[O = 02(u)* + (P20 = 2] 5



The Gaussian case

B [ = 02+ (20— aPey] < B,

In particular

or equivalently



The Gaussian case

. [<ﬂ_1>2] o _log’(n)
= a

In particular, we have a consistant estimation as soon as

2
S
—~
p

*
~—

N
—~
=
~—

N

1
*\2(, x\4 x|, %2
I & A —.
n(A")* ()" >> ’“|>>ﬁ
In a similar setting, Donoho and Jin (2004) test
* 1
Ho : 2* :8 against Hy @ N |u*| > 7

In some sense, the detection problem is easier.
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@ Discussion



Additional result

The LL? distance between two mixture densities fy, ,,,, f, 4, Can be
related to the Wasserstein distance between the discrete mixture
distribution Gy, ., Gx,, s

The Wasserstein ILP-transportation distances between two
probability measures m; and m» on Q are defined as

WE (s me) = _inf / Ix - ylBdr(x, ),

7r€|'|(m1,m2

where (my, my) is the set of probability measures on Q x Q
having marginals m; and m.



Additional result

Proposition
For any density that satisfies (Hs) and (Hjjp), there exists a
constant ¢y such that

Hf/\l,ul - f)\zyqu > C¢W22(G17 G2)>
for all A1, A2 € (0,1), p1, u2 € [—M; M], where

G = (1 — )\1)(50 + )\15;11 and Gp = (1 - )\1)(50 + )‘15111‘

In some sense, the direct problem allows to recover informations on
the inverse problem.



Conclusion

In order to complete this discussion, it is possible to obtain
corresponding lower bounds (not trivial : the loss is not symmetric).

Possible outcomes
e Higher number (unknown) of components?

e Unknown shape ¢7

S. Gadat, J. Kahn, C. Marteau and C. Maugis-Rabusseau. Parameter recovery
in two-component contamination mixtures : the L? strategy. arXiv :1604.00306.
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