Parameter recovery in two-component contamination mixtures: the \mathbb{L}^2 strategy

S. Gadat ¹, J. Kahn ², C. Marteau ³ and Cathy Maugis-Rabusseau ⁴.

Mathematical Methods of Modern Statistics CIRM 2017

- 1. Université Toulouse I Toulouse School of Economics
- 2. Université Toulouse III IMT
- 3. Université Lyon I Institut Camille Jordan
- 4. INSA de Toulouse IMT

Outline

- 1 Introduction
- 2 Estimation of the mixture components
- 3 Upper bound
- 4 Discussion

Outline

1 Introduction

- 2 Estimation of the mixture components
- Opper bound
- 4 Discussion

The mixture model

We have at our disposal a sample $S = (X_1, ..., X_n)$ of i.i.d. random variables $(X_i \in \mathbb{R}^d)$, having a common density f^* .

In an unsupervised classification context, f^{\star} can be considered of the form

$$f^* = \sum_{j=1}^K \lambda_j^* \phi(.-\mu_j^*),$$

where ϕ is a **known** density, $\lambda_j^{\star} \in [0, 1]$, $\mu_j^{\star} \in \mathbb{R}^d$ and K are unknown parameters.

Classical statistical issues

- estimation of the sequences $(\lambda_j^{\star})_{j=1...,K}$ and $(\mu_j^{\star})_{j=1...,K}$,
- estimation of the component number K (model selection task).

Mixture as an inverse problem

The estimation of the mixture parameters turns to be an inverse (deconvolution) problem. Indeed,

$$X_i = U_i + \epsilon_i, \quad \forall i \in \{1, \ldots, n\},$$

where $\epsilon_i \sim \phi$ (error term) and U_i are associated to the discrete measure $G = \sum_{k=1}^K \lambda_k^* \delta_{\mu_k^*}$. Then,

$$f^{\star} = G * \phi.$$

In this contact, the 'classical' deconvolution tools are not available.

Two component mixtures

In this talk, we consider the particular contamination case, namely $K=2, \ \mu_1=0$ and $\mu_2=\mu^\star$:

$$f^* = f_{\lambda^*}(x) = (1 - \lambda^*)\phi(x) + \lambda^*\phi(x - \mu^*) \quad \forall x \in \mathbb{R}^d.$$

The X_i can be written

$$X_i = \mu^* V_i + \epsilon_i, \quad \forall i \in \{1, \dots, n\},$$

where $V_i \sim Ber(\lambda^*)$, $\epsilon_i \sim \phi$.

N.B.: Strong analogies with the sequence model

$$y_k = \theta_k + \eta_k, \quad k \in \{1, \dots, n\},$$

where $\theta_k \in \{0, \theta\}$ and $\operatorname{card}\{k : \theta_k \neq 0\} = s \ (\sim n\lambda^*)$.

References

- [1]J-M. Azais, E. Gassiat and C. Mercadier. The likelihood-ratio test for general mixture models with or without structural parameters, *ESAIM Probab. Stat.*, **13**, (2009) 301-327.
- [2] T. Cai, X. Jeng and J. Jin. Optimal detection of heterogeneous and heteroscedastic mixture, *J.R. Stat. Soc. Ser. B*, **73**, (2011) 629-662.
- [3] D. Donoho and J. Jin. Higher Criticism for detecting sparse heterogeneous mixtures, *Annals of Statistics*, **32**, (2004) 962-994.
- [4] B. Garel. Recent asymptotic results in testing for mixtures, *Comput. Statist. Data. Anal.*, **51** (2007) 5295-5304.
- [5] Y. Ingster. Minimax detection of a signal for I^n -balls, Mathematical Methods of Statistics, **7** (1999), 401-428.

Outline

Goal of this contribution:

- provide an estimation of both λ^* and μ^* (ϕ is known).
- handle the case where $\lambda^*, |\mu^*| \to 0$ as $n \to +\infty$.
- discussion on the 'direct' and 'inverse' point of views.
- establish lower bounds.

All the results are available in a multivariate setting. For the sake of simplicity, we only consider the case d=1 along this talk.

Outline

1 Introduction

- 2 Estimation of the mixture components
- 3 Upper bound
- 4 Discussion

Existing results

- Likelihood methods: No available analytic expression for mixture models: EM algorithms required.
 - Initialisation of the EM?
 - Robustness issues for related models (see, e.g., Baraud, Birgé and Sart (2017)).
- Arias -Castro and Verzelen (2016): estimation and clustering in a multivariate setting. The parameter λ^* is fixed and known (= 1/2). The density ϕ is available (Gaussian?).
- Butucea and Vandekerkhove (2010) : Estimation of both ϕ (supposed to be symmetric) and the mixture parameters (fixed). Asymptotic normality.

Existing results

- Collier, Comminges and Tsybakov (2017): Estimation of linear and quadratic functionals in the sequence model. The sparsity parameter $s(\sim n\lambda^*)$ is assumed to be known.
- Heinrich and Kahn (2015): Convergence rates with Wasserstein distance when the component number is unknown. The mixture components are fixed with respect to n.
- Bunea et als. (2010) : SPADES and mixture models. Algorithm based on the \mathbb{L}^2 distance with a sparsity penalization. The compatibility condition does not allow to handle situations where the mixture parameters are close to each others.

An estimator based on the \mathbb{L}^2 distance

For all $(\lambda,\mu)\in [0,1] imes \mathbb{R}$, define

$$f_{\lambda,\mu} = (1-\lambda)\phi(.) + \lambda\phi(.-\mu).$$

The term $||f_{\lambda,\mu} - f^{\star}||^2$ can be estimated (with bias) by

$$||f_{\lambda,\mu}||^2 - \frac{2}{n} \sum_{i=1}^n f_{\lambda,\mu}(X_i).$$

Given a grid \mathcal{M} on μ , we define

$$(\hat{\lambda}, \hat{\mu}) = \arg \min_{(\lambda, \mu) \in [0, 1] \times \mathcal{M}} \left[\|f_{\lambda, \mu}\|^2 - \frac{2}{n} \sum_{i=1}^n f_{\lambda, \mu}(X_i) \right],$$

and $\hat{f} = f_{\hat{\lambda},\hat{\mu}}$.

An estimator based on the \mathbb{L}^2 distance

Our estimation strategy is based on the estimation of the convoluted density f^* (direct problem). We expect to recover informations on the underlying discrete mixture measure G^* (inverse problem).

Similar approaches (in different setting) in, e.g.,

- Laurent et al. (2011),
- Lepski (2016),
- Blanchard et al. (2016),

Outline

1 Introduction

- 2 Estimation of the mixture components
- 3 Upper bound
- 4 Discussion

An estimator based on the \mathbb{L}^2 distance

Using classical tools, we can easily establish the following oracle inequality :

Proposition

$$\mathbb{E}\|\hat{f}-f^\star\|^2\lesssim \inf_{\lambda,\mu\in\mathcal{M}}\|f_{\lambda,\mu}-f^\star\|^2+\frac{\log^2(|\mathcal{M}|)}{n}.$$

Question: Can we retrieve convergence results from this inequality?

Using simple algebra

$$\|\hat{f} - f^*\|^2 = \|(1 - \hat{\lambda})\phi + \hat{\lambda}\phi(. - \hat{\mu}) - (1 - \lambda^*)\phi - \lambda^*\phi(. - \mu^*)\|^2,$$

Using simple algebra

$$\begin{split} &\|\hat{f} - f^{\star}\|^{2} \\ &= \|(1 - \hat{\lambda})\phi + \hat{\lambda}\phi(. - \hat{\mu}) - (1 - \lambda^{\star})\phi - \lambda^{\star}\phi(. - \mu^{\star})\|^{2}, \\ &= \|(\lambda^{\star} - \hat{\lambda})\{\phi - \phi(. - \mu^{\star})\} + \lambda^{\star}\{\phi(. - \hat{\mu}) - \phi(. - \mu^{\star})\}\|^{2}, \end{split}$$

Using simple algebra

$$\begin{split} \|\hat{f} - f^*\|^2 &= \|(1 - \hat{\lambda})\phi + \hat{\lambda}\phi(. - \hat{\mu}) - (1 - \lambda^*)\phi - \lambda^*\phi(. - \mu^*)\|^2, \\ &= \|(\lambda^* - \hat{\lambda})\{\phi - \phi(. - \mu^*)\} + \lambda^*\{\phi(. - \hat{\mu}) - \phi(. - \mu^*)\}\|^2, \\ &= (\lambda^* - \hat{\lambda})^2\|\phi - \phi(. - \hat{\mu})\|^2 + (\lambda^*)^2\|\phi(. - \hat{\mu}) - \phi(. - \mu^*)\|^2 \end{split}$$

Using simple algebra

$$\begin{split} \|\hat{f} - f^*\|^2 &= \|(1 - \hat{\lambda})\phi + \hat{\lambda}\phi(. - \hat{\mu}) - (1 - \lambda^*)\phi - \lambda^*\phi(. - \mu^*)\|^2, \\ &= \|(\lambda^* - \hat{\lambda})\{\phi - \phi(. - \mu^*)\} + \lambda^*\{\phi(. - \hat{\mu}) - \phi(. - \mu^*)\}\|^2, \\ &= (\lambda^* - \hat{\lambda})^2 \|\phi - \phi(. - \hat{\mu})\|^2 + (\lambda^*)^2 \|\phi(. - \hat{\mu}) - \phi(. - \mu^*)\|^2 \\ &+ 2(\lambda^* - \hat{\lambda})\langle\phi - \phi_{\hat{\mu}}, \phi_{\hat{\mu}} - \phi_{\mu}\rangle, \\ &\geq ?? \end{split}$$

Question: How can we handle the scalar product in the last equality?

Assumptions

Assumption $\mathcal{H}_S: \phi \in C^3(\mathbb{R}) \cap L^2(\mathbb{R})$

Assumption \mathcal{H}_{Lip} : There exists $g \in L^2(\mathbb{R})$ s.t.

$$|\phi(x) - \phi(x - \mu)| \le |\mu|g(x) \quad \forall x \in \mathbb{R}, \ \forall \mu \in [-\mu_{max}; \mu_{max}],$$

where

$$J:=\int_{\mathbb{R}}g^2(x)\phi^{-1}(x)dx<+\infty.$$

Assumptions satisfies by, e.g., Gaussian, Cauchy, Laplace (with slight modification), ...

Proposition

If the shape ϕ satisfies \mathcal{H}_S and \mathcal{H}_{Lip} , then, for all $a,b\in\mathbb{R}$

$$|\langle \phi - \phi_{\mathsf{a}}, \phi_{\mathsf{a}+\mathsf{b}} - \phi_{\mathsf{a}} \rangle| \le \|\phi - \phi_{\mathsf{a}}\| \|\phi_{\mathsf{a}+\mathsf{b}} - \phi_{\mathsf{a}}\| (1 - c\|\phi - \phi_{\mathsf{a}+\mathsf{b}}\|).$$

for some positive constant c.

Remark: The classical Cauchy-Schwarz inequality provides c = 0. It is improved if a + b is 'far away' from 0 ('correlation' property).

Using the previous inequality with $a = \hat{\mu}$ and $b = \mu^* - \hat{\mu}$, we get

$$\begin{aligned} \|\hat{f} - f^{\star}\|^{2} &= (\lambda^{\star} - \hat{\lambda})^{2} \|\phi - \phi(. - \hat{\mu})\|^{2} + (\lambda^{\star})^{2} \|\phi(. - \hat{\mu}) - \phi(. - \mu^{\star})\|^{2} \\ &+ 2(\lambda^{\star} - \hat{\lambda}) \langle \phi - \phi_{\hat{\mu}}, \phi_{\hat{\mu}} - \phi_{\mu} \rangle, \end{aligned}$$

Using the previous inequality with $a = \hat{\mu}$ and $b = \mu^* - \hat{\mu}$, we get

$$\begin{split} \|\hat{f} - f^*\|^2 \\ &= (\lambda^* - \hat{\lambda})^2 \|\phi - \phi(. - \hat{\mu})\|^2 + (\lambda^*)^2 \|\phi(. - \hat{\mu}) - \phi(. - \mu^*)\|^2 \\ &+ 2(\lambda^* - \hat{\lambda}) \langle \phi - \phi_{\hat{\mu}}, \phi_{\hat{\mu}} - \phi_{\mu} \rangle, \\ &\geq (\lambda^* - \hat{\lambda})^2 \|\phi - \phi(. - \hat{\mu})\|^2 + (\lambda^*)^2 \|\phi(. - \hat{\mu}) - \phi(. - \mu^*)\|^2 \\ &- 2|\lambda^* - \hat{\lambda}|\lambda^*\|\phi - \phi_{\hat{\mu}}\| \|\phi_{\hat{\mu}} - \phi_{\mu^*}\| (1 - c\|\phi - \phi_{\mu^*}\|), \end{split}$$

Using the previous inequality with $a = \hat{\mu}$ and $b = \mu^* - \hat{\mu}$, we get

$$\begin{split} \|\hat{f} - f^{\star}\|^{2} &= (\lambda^{\star} - \hat{\lambda})^{2} \|\phi - \phi(. - \hat{\mu})\|^{2} + (\lambda^{\star})^{2} \|\phi(. - \hat{\mu}) - \phi(. - \mu^{\star})\|^{2} \\ &+ 2(\lambda^{\star} - \hat{\lambda})\langle\phi - \phi_{\hat{\mu}}, \phi_{\hat{\mu}} - \phi_{\mu}\rangle, \\ &\geq (\lambda^{\star} - \hat{\lambda})^{2} \|\phi - \phi(. - \hat{\mu})\|^{2} + (\lambda^{\star})^{2} \|\phi(. - \hat{\mu}) - \phi(. - \mu^{\star})\|^{2} \\ &- 2|\lambda^{\star} - \hat{\lambda}|\lambda^{\star} \|\phi - \phi_{\hat{\mu}}\| \|\phi_{\hat{\mu}} - \phi_{\mu^{\star}}\| (1 - c\|\phi - \phi_{\mu^{\star}}\|), \\ &\gtrsim (\lambda^{\star} - \hat{\lambda})^{2} \|\phi - \phi_{\hat{\mu}}\|^{2} \|\phi - \phi_{\mu^{\star}}\|^{2} + (\lambda^{\star})^{2} \|\phi_{\hat{\mu}} - \phi_{\mu^{\star}}\|^{2} \|\phi - \phi_{\mu^{\star}}\|^{2}. \end{split}$$

Gathering the previous result and the oracle inequality obtained few slides ago, we get, with an appropriate choice for the grid ${\cal M}$

$$(\lambda^{\star} - \hat{\lambda})^{2} \|\phi - \phi_{\hat{\mu}}\|^{2} \|\phi - \phi_{\mu^{\star}}\|^{2} + (\lambda^{\star})^{2} \|\phi_{\hat{\mu}} - \phi_{\mu^{\star}}\|^{2} \|\phi - \phi_{\mu^{\star}}\|^{2} \lesssim \frac{\log^{2}(n)}{n}.$$

The Gaussian case:

$$\|\phi_{\mu_1} - \phi_{\mu_2}\|^2 = \|\phi\|^2 (1 - e^{-\frac{(\mu_1 - \mu_2)^2}{4}}) \quad \forall \mu_1, \mu_2 \in \mathbb{R}.$$

In particular,

$$\mathbb{E}\left[(\lambda^{\star}-\hat{\lambda})^2(\mu^{\star})^4+(\lambda^{\star})^2(\mu^{\star}-\hat{\mu})^2(\mu^{\star})^2\right]\lesssim \frac{\log^2(n)}{n}.$$

The Gaussian case

$$\mathbb{E}\left[(\lambda^{\star}-\hat{\lambda})^2(\mu^{\star})^4+(\lambda^{\star})^2(\mu^{\star}-\hat{\mu})^2(\mu^{\star})^2\right]\lesssim \frac{\log^2(n)}{n}.$$

In particular

$$\mathbb{E}\left[(\lambda^{\star})^{2}(\mu^{\star})^{2}(\mu^{\star}-\hat{\mu})^{2}\right]\lesssim \frac{\log^{2}(n)}{n},$$

or equivalently

$$\mathbb{E}\left[\left(\frac{\hat{\mu}}{\mu^{\star}}-1\right)^2\right]\lesssim \frac{\log^2(n)}{n(\lambda^{\star})^2(\mu^{\star})^2}.$$

The Gaussian case

$$\mathbb{E}\left[\left(\frac{\hat{\mu}}{\mu^{\star}}-1\right)^2\right]\lesssim \frac{\log^2(n)}{n(\lambda^{\star})^2(\mu^{\star})^2}.$$

In particular, we have a consistant estimation as soon as

$$n(\lambda^{\star})^2(\mu^{\star})^4 >> 1 \quad \Leftrightarrow \quad \lambda^{\star}|\mu^{\star}|^2 >> \frac{1}{\sqrt{n}}.$$

In a similar setting, Donoho and Jin (2004) test

$$H_0: \left| \begin{array}{c} \lambda^* = 0 \\ \mu^* = 0 \end{array} \right| \quad \mathrm{against} \quad H_1: \ \lambda^* |\mu^*| \gtrsim \frac{1}{\sqrt{n}}$$

In some sense, the detection problem is easier.

Outline

1 Introduction

- 2 Estimation of the mixture components
- Opper bound
- 4 Discussion

Additional result

The \mathbb{L}^2 distance between two mixture densities $f_{\lambda_1,\mu_1}, f_{\lambda_2,\mu_2}$ can be related to the Wasserstein distance between the discrete mixture distribution $G_{\lambda_1,\mu_1}, G_{\lambda_2,\mu_2}$.

The Wasserstein \mathbb{L}^p -transportation distances between two probability measures m_1 and m_2 on Ω are defined as

$$W_p^p(m_1, m_2) := \inf_{\pi \in \Pi(m_1, m_2)} \int \|x - y\|_p^p d\pi(x, y),$$

where $\Pi(m_1, m_2)$ is the set of probability measures on $\Omega \times \Omega$ having marginals m_1 and m_2 .

Additional result

Proposition

For any density that satisfies (\mathbf{H}_S) and (\mathbf{H}_{Lip}) , there exists a constant c_{ϕ} such that

$$||f_{\lambda_1,\mu_1}-f_{\lambda_2,\mu_2}|| \geq c_{\phi}W_2^2(G_1,G_2),$$

for all $\lambda_1, \lambda_2 \in (0,1)$, $\mu_1, \mu_2 \in [-M; M]$, where

$$G_1 = (1 - \lambda_1)\delta_0 + \lambda_1\delta_{\mu_1}$$
 and $G_1 = (1 - \lambda_1)\delta_0 + \lambda_1\delta_{\mu_1}$.

In some sense, the direct problem allows to recover informations on the inverse problem.

Conclusion

In order to complete this discussion, it is possible to obtain corresponding lower bounds (not trivial: the loss is not symmetric).

Possible outcomes

- Higher number (unknown) of components?
- Unknown shape ϕ ?

S. Gadat, J. Kahn, C. Marteau and C. Maugis-Rabusseau. Parameter recovery in two-component contamination mixtures : the \mathbb{L}^2 strategy. arXiv :1604.00306.

Parameter recovery in two-component contamination mixtures: the \mathbb{L}^2 strategy

S. Gadat ⁵, J. Kahn ⁶, C. Marteau ⁷ and Cathy Maugis-Rabusseau ⁸.

Mathematical Methods of Modern Statistics CIRM 2017

^{5.} Université Toulouse I - Toulouse School of Economics

^{6.} Université Toulouse III - IMT

^{7.} Université Lyon I - Institut Camille Jordan

^{8.} INSA de Toulouse - IMT