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Convolution structure density model.

» Observation Z(" = (Zy,...,2Z,), Zi e R, i =1,...n, are
i.i.d. random vectors with common density p satisfying the
following structural assumption

p=QQ-a)f +a[f xg], feFg(R), ac[0,1].
» g € L1(RY) and o € [0, 1] are known;
» f €Fg(R), R>1 to be estimated;
Fg(R) = {f €Bra(R): (1 — a)f +aff xg] € m(Rd)}
e Bj 4(R) denotes the open ball of the radius R in ILI(R");

° ‘,]3(Rd) is the set of all probability densities on RY;

o [Frg]() = Jza (- — y)a(y)dy
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Particular case: f,g € P(RY)

» Observation Z(") = (Z,..., Z,)
Z;=X;+¢Y;,, i=1,...,n

» X; €R?,i=1,...,n arei.i.d. random vectors with common
density f to be estimated,

» The noise variables Y; € R4,i =1,...,n, are i.i.d. random
vectors with known common density g;

» ¢; €{0,1},i=1,...,n, arei.i.d. Bernoulli random variables
with P(e1 = 1) = o, a € [0, 1] is supposed to be known;

» The sequences {X;,i =1,...,n},{Y;,i=1,...,n} and
{ej,i =1,...,n} are supposed to be mutually independent.
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Particular case: f,g € P(RY)

» Observation Z(") = (Z,..., Z,)
Z;=X;+¢Y;,, i=1,...,n

» X; €R?,i=1,...,n arei.i.d. random vectors with common
density f to be estimated,

» The noise variables Y; € R4,i =1,...,n, are i.i.d. random
vectors with known common density g;

» ¢; €{0,1},i=1,...,n, arei.i.d. Bernoulli random variables
with P(e1 = 1) = o, a € [0, 1] is supposed to be known;

» The sequences {X;,i =1,...,n},{Y;,i=1,...,n} and
{ej,i =1,...,n} are supposed to be mutually independent.

B o = 0, direct observations Z; = X;;
B o =1, density deconvolution Z; = X; + Yj;;
B o € (0,1), partially contaminated observations,[Hesse].
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Lp-risk.

» Convolution structure density model

p=QAQ-a)f +af[f xg], feFg(R), ac]0,1].
We want to estimate f using observations Z(") = (Zy, ..., Z,).
» Estimator is Z("-measurable map f : (R9)" — ILP(R").
» Accuracy of an estimator f is measured by the Lp—risk
A A 1/q
RO, 1:= (BeIf - FI7) ", 9> 1

e [Ef denotes expectation with respect to the probability
measure Ps of the observations Z(" = (Z1,...,2Z,).

o [IAlIp = Jre [AIPra(dx), 1< p < oo;

* [[Alloo = supyepa [A(X)]-
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Assumptions on the function g.

» Later on @ denotes the Fourier transform of Q.

Assumption 1. Vt € RY

o If a € [0,1) then there exists € > 0 such that

11— o+ ag(t)| > e.
o If a =1 then there exist Tg, T3 > 0 and i € (0, 00)? s.t.

K i
TollL,(1+ €))7 < |g(t) < T1][L, (1 + ) 7.

» Assumption 1 is very week if a € [0,1) and it holds with

e =1 — aif g is a real positive function (in particular for
centered multivariate Laplace and Gaussian laws).

» If g is a probability density then Assumption 1 always holds
withe =1-2aifa < 1/2.

» In the case o = 1 this assumption is referred to moderately

ill-posed statistical problem. o
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Family of kernel-based estimators.

» For any he #H let M(-, I_;) satisfy the operator equation
h

Ki(-) = (1 — @)M (-, h) + o [oq g(t — -)M(t, h)dt
e H9 is the diadic grid in (0, c0)9;
o Kily) = [TI, by

Jj=1"%j

K(y1/M,-- -, ya/hd), y € RY
o Kernel K € C(RY) NL1(R?) is such that [, K =1 and

Assumption 2. ki, ky > 0 such that
. «)
L foa |R(®)| TIL, 1+ £) 72 dt < ky.

#;(
2

2 foa | RO TIE (1 + )45 de < K.

> (o) =pgifa=1and fi(a) =0if a # 1.
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Family of kernel-based estimators.

» Forany h € HY let M-, i_;) satisfy the operator equation
h

Ki(-) = (1 — @)M (-, h) + o [oq g(t — -)M(t, h)dt

o H9 is the diadic grid in (0, 00)9;
d -1
° Kply) = [Hj:l hj
» Kernel-based estimator

|K(y1/h1s ... y4/ha), y € RY

%(x) =n"13"  M(Z; — x,h)

Objective is to propose for any given x € RY a data-driven
selection rule from the family of kernel-based estimators
F(HY) = {£(-), h € H}

e His an arbitrary subset of H9.
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Pointwise selection rule.

> Set Vh € H, Vx € R?

ﬁﬁ(x) = SUPjch Ufﬁvﬁ(x) — fﬁ(x)| — 40,,(x, hv ) — 4Un(x,ﬁ)]+:

h(x) = arg infj {’ﬁ,ﬁ(x) + 8U*(x, I_r’)} .

» Our final estimator is fﬁ(x)(x), x € R
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Pointwise selection rule.

> Set Vh € H, Vx € R?

ﬁﬁ(x) = SUPjch U?,—;Vﬁ(x) — fﬁ(x)| — 40,,(x, hv ) — 4Un(x,ﬁ)]+:

h(x) = arg infj {’ﬁ,ﬁ(x) + 8U*(x, I_r’)} .

» Our final estimator is fﬁ(x)(x), x € R

> U; (x; E) = SUPgcw. >k Un(x’ 7);

P o[ 2xa (1) 52 (x,0) 4MooXn (B) .
> Unleh) = " 3n 15, hj(hjA1)Hi ()"

Ez(x,l_{) =1 S MZ(Z,- — x,ﬁ);

My = [(277)_d{6_1“k“11a¢1 + To_lkllo;l}] V1.
d

An(h) = 4In(Moo) + 61n (n) + (8p + 26) > [1 + ()] | In(hy)]
j=1

Oleg V. Lepski (Joint work with Thomas Willer)



L,-norm oracle inequality

Theorem 1. Let Assumptions 1 and 2 be fulfilled.

Then VH C H9,n > 3,p € [1,00), Vf € Fg(o0)
R [f

(i fl < “%ZL{BE(-,f) "'49”:(',’_")}”p+cpn‘1
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» C, is independent of f, n and H (depend on K, g, p and d).
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Lp,-norm oracle inequality
> B*(x f) = 2supjcn ‘B

hv"(x f) —
e Bp(x,f) = |fRd K-

ﬁ(xaf)’ +Bi{(x’ f);
(t — x)f(t)dt — f(x)!;
| 2 U*(X,h) —SUP—'Eer _'>hU ( ,77)

. Un(x, I_f) _ 220 () o2 (x,h)

o + 4Moon (F)

3n 1L, hi(hiA1)"i¢)
o o2 (x, I-;) = Jga Mz(t — X, i_;)p(t)l/d(dt);
Theorem 1. Let Assumptions 1 and 2 be fulfilled

Then VH C HY, n > 3,p € [1,00), Vf € F, ( )
RO [fii ) < | mf{B*( F) +49U; (- R) } | +Cpn™

h()’
» C, is independent of f,n and H (depend on K, g, p and d)
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Adaptive minimax approach.

Let {IFo}oco be a collection of subsets of Fg(R).
> on(Fg) = iqf’RS,p)[f,IFg] (Lp—minimax risk)
f
o R [F,Fo) := supRP)[F,f]
fclFg
e Infimum is taken over all possible estimators.
» (0,R) € © x (1, co)—nuisance parameter.
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> P (Fe) = sup

(B
fclFg

hG]HI{ h( f)+U

B,

main term in the r.h.s. of the oracle mequallty
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Adaptive minimax approach.

Let {IFo}oco be a collection of subsets of Fg(R).
> on(Fg) = iqf’RS,p)[f,IFg] (Lp—minimax risk)
f

o R [F,Fo) := supRP)[F,f]
fclFg
e Infimum is taken over all possible estimators.
» (0,R) € © x (1, co)—nuisance parameter.

>¢n(Fe)=fé‘I§6 ,1'2%{ Bi(, f) + Un(: }H

main term in the r.h.s. of the oracle inequality

» To study the asymptotics 1 (Zg) 0, 1 (Zg), n — o0
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Adaptive minimax approach.

Let {IFo}oco be a collection of subsets of Fg(R).
> on(Fg) = iqf’RS,p)[f,IFg] (Lp—minimax risk)
f
o R [F,Fo) := supRP)[F,f]
fclFg
e Infimum is taken over all possible estimators.
» (0,R) € © x (1, co)—nuisance parameter.

> n(o) = swp | i (B0 )+ U )}

main term in the r.h.s. of the oracle inequality
» To study the asymptotics 1 (Zg) 0, 1 (Zg), n — o0
Since the construction of the estimator l/rl:;(_) is independent of
(0, R) and p we can analyze its adaptivity under an arbitrary
[Lp-loss over an arbitrary scale of functional classes {Fg}gco. But

Supfer, || infroy {B,;(-, f)+ Un(-, ﬁ)}Hp is not easy to analyze!
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Objective.

» To bound from above

sup
feF

{Br,(-,f) + u,,(-,ﬁ)}Hp

h€

VF C Fgu(R,D) NBqa(D), g > p,u>q,D > 0.

o Fgu(R, D) := {f EFL(R): p€ B(‘"’)(D)}

o p=(1-a)f +alf gl

* B3 (D) denotes the ball in the weak-type Lu,o0 (RY):
BP(D) = {(A:RY 5 R : [Alluco < D}

[[A]lu,00 = inf{C : I/d(X | T(x)| > 3) < CY7Y, V3 > 0}.
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Important quantities.

> Quantities related to "approximation error” Bp(-, f):

Assumption 3.

K : R — Ris a compactly supported, bounded and [ K =1

K(x) = TIL, K(x)), Vx € RY
b\,,f’J'(X) = sup
heH: h<v

° (el,.

/RKZ(u)f(x + uhe;j)vy(du) — F(x)|;

.,e4) denotes the canonical basis of R,
e H is the diadic grid in (0, co)

Bjs,r(v) = sup ||byr || > s € [1,00].
feF
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Important quantities.

» Quantities related to " upper function” Up(-, h):

\/Inn+zj 1 | Inhj| '
VATTL, b (hy A 1)

Fa(h) =

o Inn+ Z | In h;|
Gn(h) = =1 “J(a).
n j=1 hj(hj A 1)%i
o ji(fa)=fifa=1and fi(ae) =0if a # 1.
» Sets of bandwidths: for any v,z > 0

-,

H(v)={heH?: G,(h)
H(v,2z) = {h € H(v): Fa(h )

e a > 0 is explicitly known constant.

av};

<
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Important quantities.

» "Mixed’ quantities: for any § € [1,00)%,u>1,v >0

I\g‘(V, = inf [Zv sj Bj,s;,F J):|sj+v_2F3<H):|;

hef)(v)

d
Ag(v,F,u) = inf _ inf [Z Bj,s;.F j)]si + z_”] ;

z>2 he.s")(v z)

Define finally forany 0 < v < v < o0

Toolv, v, u) = / VPNV, Fy u) A Ag(v, F)] dv

» "Tail" quantity: £pa(v) = vP~1(1 + |In(v))9~1,v > 0.
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Abstract Maximal Theorem

» Maximal risk of the p.s.r run over H = #¢

o~

Rn(F) = SuUpfcr ’R'frp) [fﬁ’(.); f]

Foranyn >3,p€[1,00),R >0,D >0,q>1u>q,
0<v<v<oo §FE(l,00) q€[p,o0) and any
F C Bqa(D) N Fgu(R, D) 1
Ra(F) < Al£pa(v) + s s(v, v, u) + VPAg(V,F,u)|» + Cn~".
If additionally g > p then
Ra(F) < A[£p,a(v) + T (v, v, u) +¥P~]5 + Cn~ 1,

At last if ¢ = oo then

Ra(F) < Allp.a(v) + Tr (v, v, u) + Ns(V, F, u)]

=

+Cn L.

e C dependsonlyon g, IC, p,d.
e A dependsonlyong,R,D,IC,p,d,u,q,5,q.
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Problems solved by application of AM theorem

Adaptive estimation over the scale of anisotropic Nikol’skii classes

19. Case a = 0 (classical density model)

Fo = Nﬁd(ﬁa D’ 0 = (/g’ Ea ?)

B Full characterization of minimax rates. We discovered 7!
different regimes of the asymptotics of minimax risk, including
inconsistency zone.

B We proved that our pointwise selection rule leads to
optimally-adaptive (in some regimes) or nearly
optimally-adaptive estimator (up to logarithmic factor).

119, Case a = 1 (density deconvolution)

Fg = NF,d(B: D’ 0 = (5’ Ea F)

B Under additional assumption ||g]lcc < o0 we obtained full
characterization of minimax rates (5 regimes, including
inconsistency zone). Also we prove that our estimator is
optimally or nearly-optimally adaptive.
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Problems solved by application of AM theorem

Adaptive estimation over the scale of anisotropic Nikol’skii classes

I11°. Case « € [0,1] (convolution structure density model)
Fog = Nr"’,d(ﬁ? E) N IBgoo,d(D)’ 0= (57 l_:a F’ D)

B We obtained full characterization of minimax rates (4 regimes).
Also we prove that our estimator is optimally or
nearly-optimally adaptive.
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Adaptive estimation. Unbounded case, a = 1.

» Collection of classes: u=00 < ||g * f||lcc < D.
Nr.4(B,L, R, D) := Nz.4(B, L) N Fg.o0(R, D).
» Nuisance parameter: (,5, r, E, R, D)

» Important quantities: for any s € [1,00] and a € [0, 1]

7(s) =1 —1/w(0) + 1/(8(0)s) || a(s) = w(@) (2 + 1/8(e)) — s

L 2 1 sd 2me)l

® Bla) T L=l T f 0 w(e) T 4=l By

o ji()=f, =1, ji(x) =(0,...,0), « €[0,1).

o p*=pVmaxj=y . .dfj
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Adaptive estimation. Unbounded case, a = 1.

» Important quantities: for any s € [1, 00] and a € [0, 1]

7(s) =1 —1/w(0) + 1/(8(0)s) || a(s) = w(@) (2 + 1/8(c)) — s

1 . —d 2pj(a)+1 1 . xd 2pj(a)+l
Bla) = 2j=1" g 0 Gl T 2=l By

o ji(e)=f, a=1, ji(x) =(0,...,0), x €[0,1).

o p*=pVmaxj_y .4l

> Different regimes of the behavior of the minimax risk
corresponds to the following relations

Ka(p) > pw(a), 0 < ka(p) < pw(a);
ka(p) < 0,7(p*) >0, ka(p) <0,7(p*) <0p*>p
B-tail zone, B-dense zone, M-sparse zone 1, B-sparse zone 2.
B-inconsistency zone: kq(p) < 0,7(p*) < 0p* = p.
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Adaptive upper bound, a = 1.

> If Ko (p) < 0 (the sparse zone)
sup d)n(NF',d(ﬁ;’ l_—: Ra D)) < C < oo.
n>1 QOH(NF‘,d(/B? LR, D))

We assert that the proposed estimator is optimally adaptive on the
whole sparse zone.

> If 0 < Ko(p) < pw(a) (the dense zone)
1»bn(NF',d(59 Ea Ra D))
¢n(Nﬁd(g7 Ea R7 D))

> If ka(p) > pw(a) (the tail zone)
"zbn(NF’,d(B; Ea Ra D))

$n (Nf’,d(ﬁ’ Ev R? D))

We assert that the proposed estimator is nearly-optimally adaptive
on the dense and tail zones.

< C(Inn)P @ vn>1

< C(In n)p(a)+%, Vn>1
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Lower bound in unbounded case. ||g||o < oo.

For any (5, 7,L,R, D)

Qon(Nr_",d (57 l: R’ M)) Z 6£(a)

H-tail zone, B-dense zone, M-sparse zone 1, B-sparse zone 2.

1-1/ _
—i/o(@) H/A@) ka(p) > pw(a);
@) BT 0 < ra(p) < pw(@);
pla) =
7(p) * .
@r1/A@) (o) +1/e(@pE)  Fe(P) =0, 7(p%) > 0;
\ e ka(p) <0, T(p*) < 0.

E) —{ n~l, ka(p) > 0;
| n7lin(n), ka(p) <O.
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Anisotropic Nikolskii classes

Let (e1, ..., eq) denote the canonical basis of R¥. For function

g : R? — R and real number u € R define the first order

difference operator with step size u in direction of the variable x;
Au,jg(x) = g(x + uej) - g(x)7 .I = ]-a s ’d'

The k-th order difference operator is defined as

k— k
Ak g(x) = Dy B g (x) = i (- 1)FF(5) Burig(x).
Definition

For given numbers F = (ry,...,rq) €[1, oo]d,
= (B, Ba) € (0,00) and L = (L1 . Ld) € (0, )¢
we say that g : RY — R! belongs to di(ﬁ,

> lgll; < Lj, Vi=1,d;
» Vj=1,d 3k; > Bj such that
|a¥el, <Llul%, vueRd, vj=1.4d.
u,j rl
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