Estimation in the convolution structure density model.

Oleg V. Lepski (Joint work with Thomas Willer)

Institut de Mathématiques de Marseille Aix-Marseille Université

CIRM, July 11, 2017

Convolution structure density model.

▶ Observation $Z^{(n)} = (Z_1, ..., Z_n)$, $Z_i \in \mathbb{R}^d$, i = 1, ..., n, are i.i.d. random vectors with common density \mathfrak{p} satisfying the following structural assumption

$$\mathfrak{p} = (1 - \alpha)f + \alpha[f \star g], \quad f \in \mathbb{F}_g(R), \quad \alpha \in [0, 1].$$

- $ightharpoonup g \in \mathbb{L}_1(\mathbb{R}^d)$ and $lpha \in [0,1]$ are known;
- ▶ $f \in \mathbb{F}_g(R)$, R > 1 to be estimated;

$$\mathbb{F}_{g}(R) = \left\{ f \in \mathbb{B}_{1,d}(R) : (1 - \alpha)f + \alpha[f \star g] \in \mathfrak{P}(\mathbb{R}^{d}) \right\}$$

- $\mathbb{B}_{1,d}(R)$ denotes the open ball of the radius R in $\mathbb{L}_1(\mathbb{R}^d)$;
- $\mathfrak{P}(\mathbb{R}^d)$ is the set of all probability densities on \mathbb{R}^d ;
- $[f \star g](\cdot) = \int_{\mathbb{R}^d} f(\cdot y)g(y)dy$

Particular case: $f,g\in\mathfrak{P}(\mathbb{R}^d)$

▶ Observation $Z^{(n)} = (Z_1, \ldots, Z_n)$

$$Z_i = X_i + \varepsilon_i Y_i, \quad i = 1, \ldots, n$$

- $X_i \in \mathbb{R}^d$, i = 1, ..., n are i.i.d. random vectors with common density f to be estimated;
- ▶ The noise variables $Y_i \in \mathbb{R}^d$, i = 1, ..., n, are i.i.d. random vectors with known common density g;
- $\mathbf{\varepsilon}_i \in \{0,1\}, i = 1, \dots, n, \text{ are i.i.d.}$ Bernoulli random variables with $\mathbb{P}(\varepsilon_1 = 1) = \alpha, \alpha \in [0,1]$ is supposed to be known;
- The sequences $\{X_i, i = 1, ..., n\}$, $\{Y_i, i = 1, ..., n\}$ and $\{\varepsilon_i, i = 1, ..., n\}$ are supposed to be mutually independent.
- $\alpha = 0$, direct observations $Z_i = X_i$;
- \blacksquare $\alpha = 1$, density deconvolution $Z_i = X_i + Y_i$;
- lacktriangledown $lpha\in(0,1)$, partially contaminated observations,[Hesse]

Particular case: $f,g \in \mathfrak{P}(\mathbb{R}^d)$

ightharpoonup Observation $Z^{(n)}=(Z_1,\ldots,Z_n)$

$$Z_i = X_i + \varepsilon_i Y_i, \quad i = 1, \ldots, n$$

- $X_i \in \mathbb{R}^d$, i = 1, ..., n are i.i.d. random vectors with common density f to be estimated;
- ▶ The noise variables $Y_i \in \mathbb{R}^d$, i = 1, ..., n, are i.i.d. random vectors with known common density g;
- ▶ $\varepsilon_i \in \{0,1\}, i = 1, ..., n$, are i.i.d. Bernoulli random variables with $\mathbb{P}(\varepsilon_1 = 1) = \alpha, \alpha \in [0,1]$ is supposed to be known;
- The sequences $\{X_i, i = 1, ..., n\}$, $\{Y_i, i = 1, ..., n\}$ and $\{\varepsilon_i, i = 1, ..., n\}$ are supposed to be mutually independent.
- $\alpha = 0$, direct observations $Z_i = X_i$;
- \blacksquare $\alpha = 1$, density deconvolution $Z_i = X_i + Y_i$;
- $lacktriangleq lpha \in (0,1)$, partially contaminated observations,[Hesse].

\mathbb{L}_p -risk.

Convolution structure density model

$$\mathfrak{p} = (1 - \alpha)f + \alpha[f \star g], \quad f \in \mathbb{F}_g(R), \quad \alpha \in [0, 1].$$

We want to estimate f using observations $Z^{(n)} = (Z_1, \dots, Z_n)$.

- ightharpoonup Estimator is $Z^{(n)}$ -measurable map $\hat{f}:(\mathbb{R}^d)^n o \mathbb{L}_p(\mathbb{R}^d)$.
- lacktriangle Accuracy of an estimator $\hat{m{f}}$ is measured by the $\mathbb{L}_{m{
 ho}}$ –risk

$$\mathcal{R}_{n}^{(p)}[\hat{f},f] := \left(\mathbb{E}_{f} \|\hat{f} - f\|_{p}^{q}\right)^{1/q}, \ q \geq 1$$

- \mathbb{E}_f denotes expectation with respect to the probability measure \mathbb{P}_f of the observations $Z^{(n)} = (Z_1, \dots, Z_n)$.
 - $\|\lambda\|_{p}^{p} = \int_{\mathbb{R}^{d}} |\lambda|^{p} \nu_{d}(\mathrm{d}x), \quad 1 \leq p < \infty;$
 - $\|\lambda\|_{\infty} = \sup_{x \in \mathbb{R}^d} |\lambda(x)|$.

Assumptions on the function g.

ightharpoonup Later on $reve{m{Q}}$ denotes the Fourier transform of $m{Q}$.

Assumption 1. $\forall t \in \mathbb{R}^d$

ullet If $lpha \in [0,1)$ then there exists arepsilon > 0 such that

$$|1-\alpha+\alpha\check{g}(t)|\geq\varepsilon.$$

• If lpha=1 then there exist $\Upsilon_0, \Upsilon_1>0$ and $ec{\mu}\in (0,\infty)^d$ s.t.

$$\Upsilon_0 \prod_{j=1}^d (1+t_j^2)^{-\frac{\mu_j}{2}} \leq |\check{g}(t)| \leq \Upsilon_1 \prod_{j=1}^d (1+t_j^2)^{-\frac{\mu_j}{2}}.$$

- Assumption 1 is very week if $\alpha \in [0,1)$ and it holds with $\varepsilon = 1 \alpha$ if \check{g} is a real positive function (in particular for centered multivariate Laplace and Gaussian laws).
- ▶ If g is a probability density then Assumption 1 always holds with $\varepsilon = 1 2\alpha$ if $\alpha < 1/2$.
- ▶ In the case $\alpha = 1$ this assumption is referred to **moderately** ill-posed statistical problem.

Family of kernel-based estimators.

lackbox For any $ec{m{h}} \in \mathcal{H}^{m{d}}$ let $m{M}(\cdot,ec{m{h}})$ satisfy the operator equation

$$K_{\vec{h}}(\cdot) = (1-lpha)M(\cdot,\vec{h}) + lpha\int_{\mathbb{R}^d} g(t-\cdot)M(t,\vec{h})dt$$

- \mathcal{H}^d is the diadic grid in $(0,\infty)^d$;
- $K_{\vec{h}}(y) = \left[\prod_{j=1}^d h_j^{-1}\right] K(y_1/h_1, \ldots, y_d/h_d), \ y \in \mathbb{R}^d$
- ullet Kernel $K\in\mathbb{C}(\mathbb{R}^d)\cap\mathbb{L}_1(\mathbb{R}^d)$ is such that $\int_\mathbb{R} K=1$ and

Assumption 2. $\exists k_1, k_2 > 0$ such that

$$\begin{array}{l} \mathbf{1}. \int_{\mathbb{R}^d} \left| \check{K}(t) \right| \prod_{j=1}^d (1+t_j^2)^{\frac{\mu_j(\alpha)}{2}} \mathrm{d}t \leq \mathsf{k}_1. \end{array}$$

$$2. \int_{\mathbb{R}^d} \left| \check{K}(t) \right|^2 \prod_{j=1}^d (1+t_j^2)^{\mu_j(\alpha)} \mathrm{d}t \leq \mathsf{k}_2^2.$$

 $\vec{\mu}(\alpha) = \vec{\mu}$ if $\alpha = 1$ and $\vec{\mu}(\alpha) = 0$ if $\alpha \neq 1$.

Family of kernel-based estimators.

lacksquare For any $ec{m{h}} \in \mathcal{H}^d$ let $m{M}(\cdot,ec{m{h}})$ satisfy the operator equation

$$K_{\vec{\pmb{h}}}(\cdot) = (1-lpha)M(\cdot,\vec{\pmb{h}}) + lpha\int_{\mathbb{R}^d}g(t-\cdot)M(t,\vec{\pmb{h}})\mathrm{d}t$$

- \mathcal{H}^d is the diadic grid in $(0,\infty)^d$;
- $K_{\vec{h}}(y) = \left[\prod_{j=1}^d h_j^{-1}\right] K(y_1/h_1, \ldots, y_d/h_d), \ y \in \mathbb{R}^d$
- Kernel-based estimator

$$|\widehat{f}_{\vec{\mathbf{h}}}(x) = n^{-1} \sum_{i=1}^{n} M(Z_i - x, \vec{\mathbf{h}})|$$

Objective is to propose for any given $x \in \mathbb{R}^d$ a data-driven selection rule from the family of kernel-based estimators

$$\mathcal{F}(\mathcal{H}^d) = \{\widehat{\mathbf{f}}_{\vec{\mathbf{h}}}(\cdot), \ \vec{\mathbf{h}} \in \mathbb{H}\}$$

• \mathbb{H} is an arbitrary subset of \mathcal{H}^d .

Pointwise selection rule.

▶ Set $\forall \vec{h} \in \mathbb{H}, \ \forall x \in \mathbb{R}^d$

$$\begin{split} \widehat{\mathcal{R}}_{\vec{h}}(x) &= \mathsf{sup}_{\vec{\eta} \in \mathbb{H}} \left[|\widehat{f}_{\vec{h} \vee \vec{\eta}}(x) - \widehat{f}_{\vec{\eta}}(x)| - 4\widehat{U}_n(x, \vec{h} \vee \vec{\eta}) - 4\widehat{U}_n(x, \vec{\eta}) \right]_+; \\ \vec{h}(x) &= \mathsf{arg} \, \mathsf{inf}_{\vec{h} \in \mathbb{H}} \left[\widehat{\mathcal{R}}_{\vec{h}}(x) + 8\widehat{U}_n^*(x, \vec{h}) \right]. \end{split}$$

- lackbox Our final estimator is $\widehat{f}_{\vec{\mathsf{h}}(\mathsf{x})}(\mathsf{x}), \ \mathsf{x} \in \mathbb{R}^d$
- $\widehat{U}_n^*(x,\vec{h}) = \sup_{\vec{\eta} \in \mathbb{H}: \ \vec{\eta} \geq \vec{h}} \widehat{U}_n(x,\vec{\eta});$

$$\widehat{U}_n(x,\vec{\mathbf{h}}) = \sqrt{\frac{2\lambda_n(\vec{\mathbf{h}})\widehat{\sigma}^2(x,\vec{\mathbf{h}})}{n} + \frac{4M_\infty\lambda_n(\vec{\mathbf{h}})}{3n\prod_{j=1}^d \mathbf{h}_j(\mathbf{h}_j\wedge 1)^{\mu_j(\alpha)}}};$$

$$\hat{\sigma}^2(x, \vec{\mathbf{h}}) = \frac{1}{n} \sum_{i=1}^n M^2(Z_i - x, \vec{\mathbf{h}});$$

$$\mathit{M}_{\infty} = \left[(2\pi)^{-d} \left\{ \varepsilon^{-1} \big\| \check{K} \big\|_1 \mathbf{1}_{\alpha \neq 1} + \Upsilon_0^{-1} \mathbf{k}_1 \mathbf{1}_{\alpha = 1} \right\} \right] \vee \mathbf{1}.$$

$$\lambda_n(\vec{\mathbf{h}}) = 4 \ln(M_{\infty}) + 6 \ln(n) + (8p + 26) \sum_{j=1}^{d} [1 + \mu_j(\alpha)] |\ln(\mathbf{h}_j)|$$

Pointwise selection rule.

▶ Set $\forall \vec{h} \in \mathbb{H}, \ \forall x \in \mathbb{R}^d$

$$\begin{split} \widehat{\mathcal{R}}_{\vec{h}}(x) &= \mathsf{sup}_{\vec{\eta} \in \mathbb{H}} \left[|\widehat{f}_{\vec{h} \vee \vec{\eta}}(x) - \widehat{f}_{\vec{\eta}}(x)| - 4\widehat{U}_n(x, \vec{h} \vee \vec{\eta}) - 4\widehat{U}_n(x, \vec{\eta}) \right]_+; \\ \vec{h}(x) &= \mathsf{arg} \, \mathsf{inf}_{\vec{h} \in \mathbb{H}} \left[\widehat{\mathcal{R}}_{\vec{h}}(x) + 8\widehat{U}_n^*(x, \vec{h}) \right]. \end{split}$$

- $lackbox{ Our final estimator is } \widehat{f}_{ec{\mathsf{h}}(\mathsf{x})}(\mathsf{x}), \ \mathsf{x} \in \mathbb{R}^d$
- $\blacktriangleright \ \widehat{U}_{n}^{*}(x,\vec{h}) = \sup_{\vec{\eta} \in \mathbb{H}: \ \vec{\eta} \geq \vec{h}} \widehat{U}_{n}(x,\vec{\eta});$

$$\widehat{U}_n(x,\vec{\mathbf{h}}) = \sqrt{\frac{2\lambda_n(\vec{\mathbf{h}})\widehat{\sigma}^2(x,\vec{\mathbf{h}})}{n}} + \frac{4M_{\infty}\lambda_n(\vec{\mathbf{h}})}{3n\prod_{i=1}^d \mathbf{h}_j(\mathbf{h}_j\wedge 1)^{\mu_j(\alpha)}};$$

$$\widehat{\sigma}^2(x, \vec{\mathbf{h}}) = rac{1}{n} \sum_{i=1}^n M^2(Z_i - x, \vec{\mathbf{h}});$$

$$\mathbf{\textit{M}}_{\infty} = \left[(2\pi)^{-d} \left\{ \varepsilon^{-1} \big\| \check{\mathbf{\textit{K}}} \big\|_{1} \mathbf{1}_{\alpha \neq 1} + \Upsilon_{0}^{-1} \mathbf{k}_{1} \mathbf{1}_{\alpha = 1} \right\} \right] \vee 1.$$

$$\lambda_n(\vec{\mathbf{h}}) = 4 \ln(M_{\infty}) + 6 \ln(n) + (8p + 26) \sum_{j=1}^{d} [1 + \mu_j(\alpha)] |\ln(\mathbf{h}_j)|$$

\mathbb{L}_{p} -norm oracle inequality

•
$$B_{\vec{h}}(x, f) = \left| \int_{\mathbb{R}^d} K_{\vec{h}}(t - x) f(t) dt - f(x) \right|$$

•
$$U_n(x, \vec{h}) = \sqrt{\frac{2\lambda_n(\vec{h})\sigma^2(x, \vec{h})}{n} + \frac{4M_\infty\lambda_n(\vec{h})}{3n\prod_{j=1}^d h_j(h_j \wedge 1)^{\mu_j(\alpha)}}}$$

•
$$\sigma^2(x, \vec{h}) = \int_{\mathbb{R}^d} M^2(t - x, \vec{h}) \mathfrak{p}(t) \nu_d(\mathrm{d}t);$$

Theorem 1. Let Assumptions 1 and 2 be fulfilled.

Then $\forall \mathbb{H} \subseteq \mathcal{H}^d, n \geq 3, p \in [1, \infty), \ \forall f \in \mathbb{F}_{\boldsymbol{g}}(\infty)$

$$\mathcal{R}_n^{(p)}\big[\widehat{f}_{\vec{\mathsf{h}}(\cdot)};f\big] \leq \Big\|\inf_{\vec{\mathsf{h}}\in\mathbb{H}}\Big\{B_{\vec{\mathsf{h}}}^*(\cdot,f) + 49U_n^*(\cdot,\vec{\mathsf{h}})\Big\}\Big\|_p + \mathsf{C}_p n^{-1}.$$

 $ightharpoonup C_p$ is independent of f, n and \mathbb{H} (depend on K, g, p and d).

\mathbb{L}_p -norm oracle inequality

- - $B_{\vec{h}}(x,f) = \left| \int_{\mathbb{R}^d} K_{\vec{h}}(t-x)f(t)dt f(x) \right|$
- - $U_n(x, \vec{h}) = \sqrt{\frac{2\lambda_n(\vec{h})\sigma^2(x,\vec{h})}{n}} + \frac{4M_\infty\lambda_n(\vec{h})}{3n\prod_{j=1}^d h_j(h_j\wedge 1)^{\mu_j(\alpha)}}$
 - $\sigma^2(x, \vec{h}) = \int_{\mathbb{R}^d} M^2(t-x, \vec{h}) \mathfrak{p}(t) \nu_d(\mathrm{d}t)$;

Theorem 1. Let Assumptions 1 and 2 be fulfilled.

Then $orall \mathbb{H} \subseteq \mathcal{H}^d, n \geq 3, p \in [1,\infty)$, $orall f \in \mathbb{F}_g(\infty)$

$$\mathcal{R}_n^{(p)}\big[\widehat{f}_{\vec{\mathsf{h}}(\cdot)};f\big] \leq \Big\|\inf_{\vec{\mathsf{h}}\in\mathbb{H}}\Big\{B_{\vec{\mathsf{h}}}^*(\cdot,f) + 49U_n^*(\cdot,\vec{\mathsf{h}})\Big\}\Big\|_p + \mathsf{C}_p n^{-1}.$$

 $ightharpoonup C_p$ is independent of f, n and \mathbb{H} (depend on K, g, p and d).

Let $\{\mathbb{F}_{\theta}\}_{\theta\in\Theta}$ be a collection of subsets of $\mathbb{F}_{\mathbf{g}}(\mathbf{R})$.

$$\qquad \qquad \boldsymbol{\varphi_{\boldsymbol{n}}}\big(\mathbb{F}_{\boldsymbol{\theta}}\big) = \inf_{\hat{\boldsymbol{f}}} \mathcal{R}_{\boldsymbol{n}}^{(\boldsymbol{\rho})}[\hat{\boldsymbol{f}},\mathbb{F}_{\boldsymbol{\theta}}] \ \ (\mathbb{L}_{\boldsymbol{p}}\text{-minimax risk})$$

•
$$\mathcal{R}_n^{(p)}[\hat{f}, \mathbb{F}_{\theta}] := \sup_{f \in \mathbb{F}_{\theta}} \mathcal{R}_n^{(p)}[\hat{f}, f]$$

• Infimum is taken over all possible estimators.

$$lackbox (heta,R)\in\Theta imes(1,\infty)$$
 –nuisance parameter.

$$\blacktriangleright \psi_n(\mathbb{F}_\theta) = \sup_{f \in \mathbb{F}_\theta} \quad \left\| \inf_{\vec{h} \in \mathbb{H}} \left\{ \mathcal{B}_{\vec{h}}(\cdot, f) + U_n(\cdot, \vec{h}) \right\} \right\|_{\rho} \quad + C_\rho n^{-1}.$$

main term in the r.h.s. of the oracle inequality

$$lackbox{To study the asymptotics } \psi_{m{n}}(m{\Sigma}_{m{ heta}})m{arphi}_{m{n}}^{-1}(m{\Sigma}_{m{ heta}}), \ m{n}
ightarrow\infty$$

Since the construction of the estimator $\widehat{f}_{\vec{h}(\cdot)}$ is independent of (θ,R) and p we can analyze its adaptivity under an arbitrary \mathbb{L}_p -loss over an arbitrary scale of functional classes $\{\mathbb{F}_{\theta}\}_{\theta\in\Theta}$. But $\sup_{f\in\mathbb{F}_{\theta}} \left\|\inf_{\vec{h}\in\mathbb{H}}\left\{\mathcal{B}_{\vec{h}}(\cdot,f)+\mathcal{U}_n(\cdot,\vec{h})\right\}\right\|_p$ is not easy to analyze!

Let $\{\mathbb{F}_{\theta}\}_{\theta\in\Theta}$ be a collection of subsets of $\mathbb{F}_g(R)$.

$$\blacktriangleright \ \varphi_n\big(\mathbb{F}_\theta\big) = \inf_{\hat{f}} \mathcal{R}_n^{(p)}[\hat{f},\mathbb{F}_\theta] \ (\mathbb{L}_p\text{-minimax risk})$$

•
$$\mathcal{R}_n^{(p)}[\hat{f}, \mathbb{F}_{\theta}] := \sup_{f \in \mathbb{F}_n} \mathcal{R}_n^{(p)}[\hat{f}, f]$$

Infimum is taken over all possible estimators.

$$lackbox (heta,R)\in m\Theta imes (1,\infty)$$
–nuisance parameter

$$\psi_n(\mathbb{F}_{\theta}) = \sup_{f \in \mathbb{F}_{\theta}} \quad \left\| \inf_{\vec{h} \in \mathbb{H}} \left\{ \mathcal{B}_{\vec{h}}(\cdot, f) + U_n(\cdot, \vec{h}) \right\} \right\|_{p} \quad + C_p n^{-1}.$$

main term in the r.h.s. of the oracle inequality

lacksquare To study the asymptotics $\psi_n(oldsymbol{\Sigma}_ heta)arphi_n^{-1}(oldsymbol{\Sigma}_ heta),\; \mathsf{n} o\infty$

Since the construction of the estimator $\widehat{f}_{\vec{h}(\cdot)}$ is independent of (θ, R) and p we can analyze its adaptivity under an arbitrary \mathbb{L}_p -loss over an arbitrary scale of functional classes $\{\mathbb{F}_\theta\}_{\theta\in\Theta}$. But

$$\sup_{f\in\mathbb{F}_{\theta}}\left\|\inf_{\vec{h}\in\mathbb{H}}\left\{\mathcal{B}_{\vec{h}}(\cdot,f)+U_{n}(\cdot,\vec{h})
ight\}
ight\|_{
ho}$$
 is not easy to analyze!

Let $\{\mathbb{F}_{\theta}\}_{\theta\in\Theta}$ be a collection of subsets of $\mathbb{F}_{g}(R)$.

$$\blacktriangleright \ \varphi_{\textit{n}}\big(\mathbb{F}_{\theta}\big) = \inf_{\hat{\pmb{f}}} \mathcal{R}^{(\textit{p})}_{\textit{n}}[\hat{\pmb{f}},\mathbb{F}_{\theta}] \ (\mathbb{L}_{\textit{p}}\text{-minimax risk})$$

•
$$\mathcal{R}_n^{(p)}[\hat{f}, \mathbb{F}_{\theta}] := \sup_{f \in \mathbb{F}_{\theta}} \mathcal{R}_n^{(p)}[\hat{f}, f]$$

- Infimum is taken over all possible estimators.
- $lackbrack (heta,R)\in\Theta imes(1,\infty)$ -nuisance parameter.

$$\psi_{n}(\mathbb{F}_{\theta}) = \sup_{\mathbf{f} \in \mathbb{F}_{\theta}} \quad \left\| \inf_{\mathbf{\vec{h}} \in \mathbb{H}} \left\{ \mathcal{B}_{\mathbf{\vec{h}}}(\cdot, \mathbf{f}) + U_{n}(\cdot, \mathbf{\vec{h}}) \right\} \right\|_{\mathbf{p}} \quad + C_{\mathbf{p}} n^{-1}.$$

main term in the r.h.s. of the oracle inequality

lacksquare To study the asymptotics $\psi_{m{n}}(m{\Sigma}_{m{ heta}})m{arphi}_{m{n}}^{-1}(m{\Sigma}_{m{ heta}}),\;m{n} o\infty$

Since the construction of the estimator $\widehat{f}_{\vec{h}(\cdot)}$ is independent of (θ,R) and p we can analyze its adaptivity under an arbitrary \mathbb{L}_p -loss over an arbitrary scale of functional classes $\{\mathbb{F}_{\theta}\}_{\theta\in\Theta}$. But $\sup_{f\in\mathbb{F}_{\theta}} \left\|\inf_{\vec{h}\in\mathbb{H}}\left\{\mathcal{B}_{\vec{h}}(\cdot,f)+U_n(\cdot,\vec{h})\right\}\right\|_p$ is not easy to analyze!

Let $\{\mathbb{F}_{\theta}\}_{\theta\in\Theta}$ be a collection of subsets of $\mathbb{F}_{\mathbf{g}}(\mathbf{R})$.

$$\blacktriangleright \ \varphi_{\textit{n}}\big(\mathbb{F}_{\theta}\big) = \inf_{\hat{\pmb{f}}} \mathcal{R}^{(\textit{p})}_{\textit{n}}[\hat{\pmb{f}},\mathbb{F}_{\theta}] \ (\mathbb{L}_{\textit{p}}\text{-minimax risk})$$

•
$$\mathcal{R}_n^{(p)}[\hat{f}, \mathbb{F}_{\theta}] := \sup_{f \in \mathbb{F}_{\theta}} \mathcal{R}_n^{(p)}[\hat{f}, f]$$

- Infimum is taken over all possible estimators.
- ▶ $(\theta, R) \in \Theta \times (1, \infty)$ -nuisance parameter.

$$\psi_{n}(\mathbb{F}_{\theta}) = \sup_{\mathbf{f} \in \mathbb{F}_{\theta}} \quad \left\| \inf_{\mathbf{\vec{h}} \in \mathbb{H}} \left\{ \mathcal{B}_{\mathbf{\vec{h}}}(\cdot, \mathbf{f}) + U_{n}(\cdot, \mathbf{\vec{h}}) \right\} \right\|_{\mathbf{p}} \quad + C_{\mathbf{p}} n^{-1}.$$

main term in the r.h.s. of the oracle inequality

▶ To study the asymptotics $\psi_n(\Sigma_\theta)\varphi_n^{-1}(\Sigma_\theta)$, $\mathbf{n} \to \infty$

Since the construction of the estimator $\widehat{\mathbf{f}}_{\widehat{\mathbf{h}}(\cdot)}$ is independent of (θ, R) and \mathbf{p} we can analyze its adaptivity under an arbitrary $\mathbb{L}_{\mathbf{p}}$ -loss over an arbitrary scale of functional classes $\{\mathbb{F}_{\theta}\}_{\theta\in\Theta}$. But

$$\sup_{f \in \mathbb{F}_{\theta}} \left\| \inf_{\vec{h} \in \mathbb{H}} \left\{ \mathcal{B}_{\vec{h}}(\cdot, f) + U_n(\cdot, \vec{h}) \right\} \right\|_{p} \text{ is not easy to analyze!}$$

Objective.

To bound from above

$$\sup_{f\in\mathbb{F}}\Big\|\inf_{\vec{h}\in\mathbb{H}}\Big\{\mathcal{B}_{\vec{h}}(\cdot,f)+U_n(\cdot,\vec{h})\Big\}\Big\|_{p}$$

$$\forall \mathbb{F} \subset \mathbb{F}_{g,u}(R,D) \cap \mathbb{B}_{q,d}(D), \ q \geq p, \ u \geq q, D > 0.$$

- $\mathbb{F}_{g,u}(R,D) := \left\{ f \in \mathbb{F}_g(R) : \mathfrak{p} \in \mathbb{B}_{u,d}^{(\infty)}(D) \right\};$
- $\mathfrak{p} = (1 \alpha)f + \alpha[f \star g];$
- $\mathbb{B}_{\mathbf{u},d}^{(\infty)}(D)$ denotes the ball in the weak-type $\mathbb{L}_{\mathbf{u},\infty}(\mathbb{R}^d)$:

$$\mathbb{B}_{\mathsf{u},d}^{(\infty)}(D) = \{\lambda : \mathbb{R}^d \to \mathbb{R} : \|\lambda\|_{\mathsf{u},\infty} < D\};$$

$$\|\lambda\|_{\mathbf{u},\infty}=\inf\big\{\mathit{C}:\ \nu_{\mathit{d}}(\mathit{x}:|\mathit{T}(\mathit{x})|>\mathfrak{z})\leq\mathit{C}^{\mathbf{u}}\mathfrak{z}^{-\mathbf{u}},\ \forall \mathfrak{z}>0\big\}.$$

Important quantities.

• Quantities related to "approximation error" $\mathcal{B}_{\vec{h}}(\cdot, f)$:

Assumption 3.

 $\mathcal{K}: \mathbb{R} \to \mathbb{R}$ is a compactly supported, bounded and $\int \mathcal{K} = 1$. $\mathcal{K}(x) = \prod_{i=1}^d \mathcal{K}(x_i), \ \forall x \in \mathbb{R}^d$

$$b_{\mathbf{v},f,j}(x) = \sup_{\mathbf{h} \in \mathcal{H}: \ \mathbf{h} \leq \mathbf{v}} \left| \int_{\mathbb{R}} \mathcal{K}(\mathbf{u}) f(x + \mathbf{u} h \mathbf{e}_j) \nu_1(\mathrm{d}\mathbf{u}) - f(x) \right|;$$

- $(\mathbf{e}_1, \dots, \mathbf{e}_d)$ denotes the canonical basis of \mathbb{R}^d .
- \mathcal{H} is the diadic grid in $(0,\infty)$

$$igg|_{\mathbf{B}_{j,s,\mathbb{F}}(\mathsf{v}) = \sup_{f \in \mathbb{F}} ig\| oldsymbol{b}_{\mathsf{v},f,j} ig\|_s, \ s \in [1,\infty].$$

Important quantities.

▶ Quantities related to "upper function" $U_n(\cdot, \vec{h})$:

$$\textbf{\textit{F}}_{\textbf{\textit{n}}}(\vec{\textbf{\textit{h}}}) = \frac{\sqrt{\ln n + \sum_{j=1}^{d} |\ln h_{j}|}}{\sqrt{n} \prod_{j=1}^{d} h_{j}^{\frac{1}{2}} (h_{j} \wedge 1)^{\mu_{j}(\alpha)}};$$

$$G_n(\vec{h}) = \frac{\ln n + \sum_{j=1}^d |\ln h_j|}{n \prod_{j=1}^d h_j (h_j \wedge 1)^{\mu_j(\alpha)}}.$$

- $\vec{\mu}(\alpha) = \vec{\mu}$ if $\alpha = 1$ and $\vec{\mu}(\alpha) = 0$ if $\alpha \neq 1$.
- ightharpoonup Sets of bandwidths: for any v,z>0

$$\mathfrak{H}(v) = \{ \vec{h} \in \mathcal{H}^d : G_n(\vec{h}) \le av \};$$

$$\mathfrak{H}(v,z) = \{ \vec{h} \in \mathfrak{H}(v) : F_n(\vec{h}) \le avz^{-1/2} \}.$$

• a > 0 is explicitly known constant.

Important quantities.

lacksquare "Mixed" quantities: for any $ec{s} \in [1,\infty)^d, \mathtt{u} \geq 1, \mathtt{v} > 0$

$$\Lambda_{\vec{s}}(v,\mathbb{F}) = \inf_{\vec{h} \in \mathfrak{H}(v)} \left[\sum_{j=1}^{d} v^{-s_j} \left[\mathsf{B}_{j,s_j,\mathbb{F}}(h_j) \right]^{s_j} + v^{-2} F_n^2(\vec{h}) \right];$$

$$\Lambda_{\vec{s}}(\mathbf{v},\mathbb{F},\mathbf{u}) = \inf_{\mathbf{z} \geq 2} \inf_{\vec{h} \in \mathfrak{H}(\mathbf{v},\mathbf{z})} \bigg[\sum_{j=1}^d \mathbf{v}^{-s_j} \big[\mathsf{B}_{j,s_j,\mathbb{F}}(\mathbf{h}_j) \big]^{s_j} + \mathbf{z}^{-\mathbf{u}} \bigg];$$

Define finally for any $0<\underline{{\it v}}<\overline{{\it v}}\leq\infty$

ightharpoonup "Tail" quantity: $\ell_{p,d}(v) = v^{p-1}(1+|\ln{(v)}|)^{d-1}, v>0$.

Abstract Maximal Theorem

lackbox Maximal risk of the p.s.r run over $\mathbb{H}=\mathcal{H}^d$

$$R_n(\mathbb{F}) = \sup_{f \in \mathbb{F}} \mathcal{R}_n^{(p)} [\widehat{f}_{\vec{h}(\cdot)}; f]$$

Theorem 2. Let Assumptions 1, 2 and 3 be fulfilled. Then

For any
$$n \geq 3$$
, $p \in [1, \infty)$, $R > 0$, $D > 0$, $q \geq 1$, $u \geq q$, $0 < \underline{v} \leq \overline{v} \leq \infty$, $\vec{s} \in (1, \infty)^d$, $\vec{q} \in [p, \infty)^d$ and any $\mathbb{F} \subset \mathbb{B}_{q,d}(D) \cap \mathbb{F}_{g,u}(R,D)$

$$R_n(\mathbb{F}) \leq A \left[\ell_{p,d}(\underline{v}) + \mathcal{I}_{\mathbb{F},\vec{s}}(\underline{v},\overline{v},\underline{u}) + \overline{v}^p \Lambda_{\vec{q}}(\overline{v},\mathbb{F},\underline{u})\right]^{\frac{1}{p}} + Cn^{-1}.$$
 If additionally $q > p$ then

$$R_n(\mathbb{F}) \leq A \left[\ell_{p,d}(\underline{v}) + \mathcal{I}_{\mathbb{F},\overline{s'}}(\underline{v},\overline{v},u) + \overline{v}^{p-q}\right]^{\frac{1}{p}} + Cn^{-1}.$$

At last if $q = \infty$ then

$$R_n(\mathbb{F}) \leq A \left[\ell_{p,d}(\underline{v}) + \mathcal{I}_{\mathbb{F},\vec{s}}(\underline{v},\overline{v},\underline{u}) + \Lambda_{\vec{s}}(\overline{v},\mathbb{F},\underline{u}) \right]^{\frac{1}{p}} + Cn^{-1}.$$

- C depends only on g, \mathcal{K}, p, d .
- A depends only on $g, R, D, \mathcal{K}, p, d, u, q, \vec{s}, \vec{q}$.

Problems solved by application of AM theorem

Adaptive estimation over the scale of anisotropic Nikol'skii classes

 I^0 . Case $\alpha = 0$ (classical density model)

$$\mathbb{F}_{\theta} = \mathbb{N}_{\vec{r}, d}(\vec{\beta}, \vec{L}), \ \theta = (\vec{\beta}, \vec{L}, \vec{r}).$$

- Full characterization of minimax rates. We discovered **7**! different regimes of the asymptotics of minimax risk, including inconsistency zone.
- We proved that our pointwise selection rule leads to optimally-adaptive (in some regimes) or nearly optimally-adaptive estimator (up to logarithmic factor).
- II^0 . Case $\alpha = 1$ (density deconvolution)

$$\mathbb{F}_{\theta} = \mathbb{N}_{\vec{r}, d}(\vec{\beta}, \vec{L}), \ \theta = (\vec{\beta}, \vec{L}, \vec{r}).$$

■ Under additional assumption $\|g\|_{\infty} < \infty$ we obtained full characterization of minimax rates (5 regimes, including inconsistency zone). Also we prove that our estimator is optimally or nearly-optimally adaptive.

Problems solved by application of AM theorem

Adaptive estimation over the scale of anisotropic Nikol'skii classes

III⁰. Case $\alpha \in [0,1]$ (convolution structure density model)

$$\mathbb{F}_{\theta} = \mathbb{N}_{\vec{r},d}(\vec{\beta},\vec{L}) \cap \mathbb{B}_{\infty,d}(D), \ \theta = (\vec{\beta},\vec{L},\vec{r},D).$$

We obtained full characterization of minimax rates (4 regimes). Also we prove that our estimator is optimally or nearly-optimally adaptive.

Adaptive estimation. Unbounded case, $\alpha = 1$.

▶ Collection of classes: $\mathbf{u} = \infty \Leftrightarrow \|\mathbf{g} \star \mathbf{f}\|_{\infty} \leq \mathbf{D}$.

$$\mathbb{N}_{\vec{r},d}(\vec{\beta},\vec{L},R,D) := \mathbb{N}_{\vec{r},d}(\vec{\beta},\vec{L}) \cap \mathbb{F}_{g,\infty}(R,D).$$

- Nuisance parameter: $(\vec{\beta}, \vec{r}, \vec{L}, R, D)$
- lacksquare Important quantities: for any $s\in [1,\infty]$ and $lpha\in [0,1]$

$$\tau(s) = 1 - 1/\omega(0) + 1/(\beta(0)s)$$
 $\kappa_{\alpha}(s) = \omega(\alpha)(2 + 1/\beta(\alpha)) - s$

- $\frac{1}{\beta(\alpha)} := \sum_{j=1}^d \frac{2\mu_j(\alpha)+1}{\beta_j}$, $\frac{1}{\omega(\alpha)} := \sum_{j=1}^d \frac{2\mu_j(\alpha)+1}{\beta_j r_j}$.
- $\vec{\mu}(\alpha) = \vec{\mu}, \ \alpha = 1, \ \vec{\mu}(\alpha) = (0, \dots, 0), \ \alpha \in [0, 1).$
- $p^* = p \vee \max_{j=1,\ldots,d} r_j$

Adaptive estimation. Unbounded case, $\alpha = 1$.

lacktriangle Important quantities: for any $s\in [1,\infty]$ and $lpha\in [0,1]$

$$\boxed{\tau(s) = 1 - 1/\omega(0) + 1/(\beta(0)s)} \boxed{\kappa_{\alpha}(s) = \omega(\alpha)(2 + 1/\beta(\alpha)) - s}$$

- $\frac{1}{\beta(\alpha)} := \sum_{j=1}^d \frac{2\mu_j(\alpha)+1}{\beta_j}$, $\frac{1}{\omega(\alpha)} := \sum_{j=1}^d \frac{2\mu_j(\alpha)+1}{\beta_j r_j}$.
- $\vec{\mu}(\alpha) = \vec{\mu}, \ \alpha = 1, \ \vec{\mu}(\alpha) = (0, \dots, 0), \ \alpha \in [0, 1).$
- $p^* = p \vee \max_{j=1,\ldots,d} r_j$.
- ▶ Different regimes of the behavior of the minimax risk corresponds to the following relations

$$egin{aligned} \kappa_{lpha}(extbf{ extit{p}}) > extbf{ extit{p}}\omega(lpha), & 0 < \kappa_{lpha}(extbf{ extit{p}}) \leq extbf{ extit{p}}\omega(lpha); \ \kappa_{lpha}(extbf{ extit{p}}) \leq 0, au(extbf{ extit{p}}^*) > 0, & \kappa_{lpha}(extbf{ extit{p}}) \leq 0, au(extbf{ extit{p}}^*) \leq 0 extbf{ extit{p}}^* > extbf{ extit{p}} \end{aligned}$$

- **■-tail zone**, **■-dense zone**, **■-sparse zone** 1, **■-sparse zone** 2.
- **\blacksquare**-inconsistency zone: $\kappa_{\alpha}(p) \leq 0, \tau(p^*) \leq 0 \ p^* = p$.

Adaptive upper bound, $\alpha = 1$.

▶ If $\kappa_{\alpha}(p) \leq 0$ (the sparse zone)

$$\sup_{n\geq 1} \ \frac{\psi_n\big(\mathbb{N}_{\vec{r},d}\big(\vec{\beta},\vec{L},R,D\big)\big)}{\varphi_n\big(\mathbb{N}_{\vec{r},d}\big(\vec{\beta},\vec{L},R,D\big)\big)} \leq C < \infty.$$

We assert that the proposed estimator is optimally adaptive on the whole sparse zone.

▶ If $0 < \kappa_{\alpha}(p) \le p\omega(\alpha)$ (the dense zone)

$$\frac{\psi_{\textit{\textbf{n}}}\big(\mathbb{N}_{\vec{\textit{\textbf{r}}},\textit{\textbf{d}}}\big(\vec{\beta},\vec{\textit{\textbf{L}}},\textit{\textbf{R}},\textit{\textbf{D}}\big)\big)}{\varphi_{\textit{\textbf{n}}}\big(\mathbb{N}_{\vec{\textit{\textbf{r}}},\textit{\textbf{d}}}\big(\vec{\beta},\vec{\textit{\textbf{L}}},\textit{\textbf{R}},\textit{\textbf{D}}\big)\big)} \leq \textit{\textbf{C}}(\ln\textit{\textbf{n}})^{\rho(\alpha)}, \ \, \forall \textit{\textbf{n}} \geq 1$$

▶ If $\kappa_{\alpha}(p) > p\omega(\alpha)$ (the tail zone)

$$\frac{\psi_{\boldsymbol{n}}(\mathbb{N}_{\vec{\boldsymbol{r}},\boldsymbol{d}}(\vec{\boldsymbol{\beta}},\vec{\boldsymbol{L}},\boldsymbol{R},\boldsymbol{D}))}{\varphi_{\boldsymbol{n}}(\mathbb{N}_{\vec{\boldsymbol{r}},\boldsymbol{d}}(\vec{\boldsymbol{\beta}},\vec{\boldsymbol{L}},\boldsymbol{R},\boldsymbol{D}))} \leq C(\ln n)^{\rho(\alpha) + \frac{d-1}{p}}, \ \forall \boldsymbol{n} \geq 1$$

We assert that the proposed estimator is nearly-optimally adaptive on the dense and tail zones.

Lower bound in unbounded case. $\|g\|_{\infty} < \infty$.

For any $(\vec{\beta}, \vec{r}, \vec{L}, R, D)$

$$oxed{arphi_{m{n}}ig(ar{eta},m{ec{L}},m{R},m{M}ig)}\gtrsim \delta_{m{n}}^{
ho(lpha)}$$

■-tail zone, **■-dense zone**, **■-sparse zone** 1, **■-sparse zone** 2.

$$\rho(\alpha) = \begin{cases} \frac{1 - 1/p}{1 - 1/\omega(\alpha) + 1/\beta(\alpha)}, & \kappa_{\alpha}(p) > p\omega(\alpha); \\ \frac{\beta(\alpha)}{2\beta(\alpha) + 1}, & 0 < \kappa_{\alpha}(p) \leq p\omega(\alpha); \\ \frac{\tau(p)}{(2 + 1/\beta(\alpha))\tau(\infty) + 1/[\omega(\alpha)\beta(0)]}, & \kappa_{\alpha}(p) \leq 0, & \tau(p^*) > 0; \\ \frac{\omega(\alpha)(1 - p^*/p)}{\kappa_{\alpha}(p^*)}, & \kappa_{\alpha}(p) \leq 0, & \tau(p^*) \leq 0. \end{cases}$$

$$\delta_{n} = \begin{cases} n^{-1}, & \kappa_{\alpha}(p) > 0; \\ n^{-1} \ln(n), & \kappa_{\alpha}(p) \leq 0. \end{cases}$$

Anisotropic Nikolskii classes

Let (e_1, \ldots, e_d) denote the canonical basis of \mathbb{R}^d . For function $g: \mathbb{R}^d \to \mathbb{R}^1$ and real number $u \in \mathbb{R}$ define the first order difference operator with step size u in direction of the variable x_j

$$\Delta_{u,j}g(x)=g(x+ue_j)-g(x), \quad j=1,\ldots,d.$$

The k-th order difference operator is defined as

$$\Delta_{u,j}^k g(x) = \Delta_{u,j} \Delta_{u,j}^{k-1} g(x) = \sum_{l=1}^k (-1)^{l+k} \binom{k}{l} \Delta_{ul,j} g(x).$$

Definition

For given numbers $\vec{r}=(r_1,\ldots,r_d)\in[1,\infty]^d$, $\vec{\beta}=(\beta_1,\ldots,\beta_d)\in(0,\infty)^d$ and $\vec{L}=(L_1,\ldots,L_d)\in(0,\infty)^d$ we say that $g:\mathbb{R}^d\to\mathbb{R}^1$ belongs to $\mathbb{N}_{\vec{r},d}(\vec{\beta},\vec{L})$ if

$$||g||_{r_i} \leq L_j, \ \forall j = \overline{1,d};$$

$$\forall j = \overline{1,d} \ \exists k_j > eta_j \ ext{such that}$$

$$\|\Delta_{u,j}^{k_j}g\|_{r_i} \leq L_j|u|^{\beta_j}, \quad \forall u \in \mathbb{R}^d, \quad \forall j = \overline{1,d}.$$

