Bernstein-like inequality for Markov chains

Michał Lemańczyk (Warsaw Uniwersity)
CIRM (Marseille), 11.07.2017

Concentration inequalities

Classical Bernstein's inequality

If $\left(\xi_{i}\right)_{i}$ is a sequence of i.i.d. (independent, identically distributed) centered random variables such that $\sup _{i}\left\|\xi_{i}\right\|_{\infty} \leqslant M$ and $\sigma^{2}:=\mathbb{E} \xi_{i}^{2}$ then:

$$
\mathbb{P}\left(\left|\sum_{i=1}^{n} \xi_{i}\right| \geqslant t\right) \leqslant 2 \exp \left(-\frac{t^{2}}{2 n \sigma^{2}+\frac{2}{3} M t}\right) .
$$

Bernstein-like inequality for Markov chains

Main Theorem (Bernstein-like inequality for Markov chains)

Let X be a geometrically ergodic, irreducible Markov chain with state space \mathcal{X} and let π be its unique stationary measure. Moreover, let f be a bounded, Borel function $\left(\|f\|_{\infty}<\infty\right)$ defined on \mathcal{X} such that $\mathbb{E}_{\pi} f=0$. Then, for all $x \in \mathcal{X}$, there exists a constant $\tau=\tau(X, x)$ such that for all $t>0$, we have:

$$
\begin{gathered}
\mathbb{P}_{x}\left(\left|\sum_{i=0}^{n-1} f\left(X_{i}\right)\right|>t\right) \leqslant \\
K \exp \left(-\frac{t^{2}}{100 n \sigma_{M r v}^{2}+2100 \tau^{2}\|f\|_{\infty} \log (n)}\right),
\end{gathered}
$$

where $\sigma_{M r v}^{2}:=\operatorname{Var}_{\pi}\left(f\left(X_{0}\right)\right)+2 \sum_{i=1}^{\infty} \operatorname{Cov}_{\pi}\left(f\left(X_{0}\right), f\left(X_{i}\right)\right)$ denotes the asymptotic variance of Markov chain X.

Idea of the proof of the theorem

We have:

$$
\left|\sum_{i=0}^{n-1} f\left(X_{i}\right)\right| \leqslant U_{n}(f)+V_{n}(f)+W_{n}(f)
$$

where

$$
\begin{aligned}
& U_{n}(f):=\left|\sum_{k=0}^{\sigma_{0}} f\left(X_{k}\right)\right|, \\
& V_{n}(f):=\left|\sum_{i=1}^{N} s_{i-1}(f)\right|, \\
& W_{n}(f):=\left|\sum_{k=n}^{\sigma_{N}} f\left(X_{k}\right)\right|,
\end{aligned}
$$

Idea of the proof of the theorem

where

$$
\begin{aligned}
& s_{i}:=s_{i}(f):=\sum_{j=\sigma_{i}+1}^{\sigma_{i+1}} f\left(X_{j}\right) \\
& N:=\inf \left\{i \geqslant 0 \mid \sigma_{i} \geqslant n-1\right\} .
\end{aligned}
$$

Thus we must estimate the following probabilities:

$$
\mathbb{P}\left(U_{n}(f) \geqslant t\right), \mathbb{P}\left(V_{n}(f) \geqslant t\right), \mathbb{P}\left(W_{n}(f) \geqslant t\right)
$$

The crucial part lies in estimating:

$$
\mathbb{P}\left(V_{n}(f) \geqslant t\right)=\mathbb{P}\left(\left|\sum_{i=0}^{N} s_{i-1}(f)\right|>t\right) .
$$

It is known that the sequence $\left(s_{i}\right)_{i \geqslant 1}$ is 1-dependent and stationary. Moreover, it turns out that the problem of dealing with $\mathbb{P}\left(V_{n}(f) \geqslant t\right)$ reduces (up to technicalities) to the following lemma:

Idea of the proof of the theorem

where

$$
\begin{aligned}
& s_{i}:=s_{i}(f):=\sum_{j=\sigma_{i}+1}^{\sigma_{i+1}} f\left(X_{j}\right) \\
& N:=\inf \left\{i \geqslant 0 \mid \sigma_{i} \geqslant n-1\right\} .
\end{aligned}
$$

Thus we must estimate the following probabilities:

$$
\mathbb{P}\left(U_{n}(f) \geqslant t\right), \mathbb{P}\left(V_{n}(f) \geqslant t\right), \mathbb{P}\left(W_{n}(f) \geqslant t\right)
$$

The crucial part lies in estimating:

It is known that the sequence $\left(s_{i}\right)_{i \geqslant 1}$ is 1-dependent and stationary. Moreover, it turns out that the problem of dealing with $\mathbb{P}\left(V_{n}(f) \geqslant t\right)$ reduces (up to technicalities) to the following lemma:

Idea of the proof of the theorem

where

$$
\begin{aligned}
& s_{i}:=s_{i}(f):=\sum_{j=\sigma_{i}+1}^{\sigma_{i+1}} f\left(X_{j}\right) \\
& N:=\inf \left\{i \geqslant 0 \mid \sigma_{i} \geqslant n-1\right\} .
\end{aligned}
$$

Thus we must estimate the following probabilities:

$$
\mathbb{P}\left(U_{n}(f) \geqslant t\right), \mathbb{P}\left(V_{n}(f) \geqslant t\right), \mathbb{P}\left(W_{n}(f) \geqslant t\right)
$$

The crucial part lies in estimating:

$$
\mathbb{P}\left(V_{n}(f) \geqslant t\right)=\mathbb{P}\left(\left|\sum_{i=0}^{N} s_{i-1}(f)\right|>t\right)
$$

It is known that the sequence $\left(s_{i}\right)_{i \geqslant 1}$ is 1-dependent and stationary. Moreover, it turns out that the problem of dealing with $\mathbb{P}\left(V_{n}(f) \geqslant t\right)$ reduces (up to technicalities) to the following lemma:
where

$$
\begin{aligned}
& s_{i}:=s_{i}(f):=\sum_{j=\sigma_{i}+1}^{\sigma_{i+1}} f\left(X_{j}\right) \\
& N:=\inf \left\{i \geqslant 0 \mid \sigma_{i} \geqslant n-1\right\} .
\end{aligned}
$$

Thus we must estimate the following probabilities:

$$
\mathbb{P}\left(U_{n}(f) \geqslant t\right), \mathbb{P}\left(V_{n}(f) \geqslant t\right), \mathbb{P}\left(W_{n}(f) \geqslant t\right)
$$

The crucial part lies in estimating:

$$
\mathbb{P}\left(V_{n}(f) \geqslant t\right)=\mathbb{P}\left(\left|\sum_{i=0}^{N} s_{i-1}(f)\right|>t\right)
$$

It is known that the sequence $\left(s_{i}\right)_{i \geqslant 1}$ is 1-dependent and stationary. Moreover, it turns out that the problem of dealing with $\mathbb{P}\left(V_{n}(f) \geqslant t\right)$ reduces (up to technicalities) to the following lemma:

Idea of the proof of the theorem

Lemma

If $\left(\xi_{i}\right)_{i \in \mathbb{N}}$ is a stationary, 1-dependent Markov chain such that $\xi_{i} \in \mathbb{R}, \mathbb{E} \xi_{i}=0, \sup _{i}\left\|\xi_{i}\right\|_{\infty} \leqslant M$ and
$\sigma_{\infty}^{2}:=\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Var}\left(\sum_{i=1}^{n} \xi_{i}\right)=\mathbb{E} \xi_{1}^{2}+2 \mathbb{E} \xi_{1} \xi_{2}$, then:

$$
\mathbb{P}\left(\left|\sum_{i=1}^{n} \xi_{i}\right| \geqslant t\right) \leqslant 6 \exp \left(-\frac{t^{2}}{64 n \sigma_{\infty}^{2}+12 M t}\right) .
$$

Idea of the proof of the theorem. Proof of the lemma

- Consider the natural filtration $\mathcal{F}_{i}:=\sigma\left\{\xi_{j} \mid j \leqslant i\right\}$ and $Z_{i}:=\xi_{i}+\mathbb{E}\left(\xi_{i+1} \mid \mathcal{F}_{i}\right)-\mathbb{E}\left(\xi_{i} \mid \mathcal{F}_{i-1}\right)$.
$1\left(Z_{i}\right)$ is 2-dependent
$2 \mathbb{E} Z_{i}=0$
(3 $\left\|Z_{i}\right\|_{\infty} \leqslant 3 M$
(4) $\mathbb{E} Z_{i}^{2}=\sigma_{\infty}^{2}$
$5 \sum_{i=1}^{n} Z_{i}=\left(\sum_{i=1}^{n} \xi_{i}\right)+\mathbb{E}\left(\xi_{n+1} \mid \mathcal{F}_{n}\right)-\mathbb{E}\left(\xi_{1} \mid \mathcal{F}_{0}\right)$
inequality for Z_{i} :

Idea of the proof of the theorem. Proof of the lemma

- Consider the natural filtration $\mathcal{F}_{i}:=\sigma\left\{\xi_{j} \mid j \leqslant i\right\}$ and $Z_{i}:=\xi_{i}+\mathbb{E}\left(\xi_{i+1} \mid \mathcal{F}_{i}\right)-\mathbb{E}\left(\xi_{i} \mid \mathcal{F}_{i-1}\right)$.
$1\left(Z_{i}\right)$ is 2-dependent
2 $\mathbb{E} Z_{i}=0$
3 $\left\|Z_{i}\right\|_{\infty} \leqslant 3 M$
(4) $\mathbb{E} Z_{i}^{2}=\sigma_{\infty}^{2}$
$5 \sum_{i=1}^{n} Z_{i}=\left(\sum_{i=1}^{n} \xi_{i}\right)+\mathbb{E}\left(\xi_{n+1} \mid \mathcal{F}_{n}\right)-\mathbb{E}\left(\xi_{1} \mid \mathcal{F}_{0}\right)$
■ Now, we proceed as follows. Firstly, we establish Bernstein's inequality for Z_{i} :

$$
\begin{aligned}
& \mathbb{P}\left(\left|\sum_{i=1}^{n} Z_{i}\right|\right.\geqslant t) \leqslant \mathbb{P}\left(\left|Z_{1}+Z_{4}+Z_{7}+\cdots\right| \geqslant t / 3\right)+ \\
& \mathbb{P}\left(\left|Z_{2}+Z_{5}+Z_{8}+\cdots\right| \geqslant t / 3\right)+\mathbb{P}\left(\left|Z_{3}+Z_{6}+Z_{9}+\cdots\right| \geqslant t / 3\right) \\
& \leqslant 6 \exp \left(-\frac{t^{2}}{18 n \sigma_{\infty}^{2}+6 M t}\right)
\end{aligned}
$$

Finally, without loss of generality $t \geqslant 6 M$ and:

$$
\begin{gathered}
\mathbb{P}\left(\left|\sum_{i=1}^{n} \xi_{i}\right| \geqslant t\right) \leqslant \mathbb{P}\left(\left|\sum_{i=1}^{n} Z_{i}\right| \geqslant t / 2\right)+ \\
\mathbb{P}\left(\left|\mathbb{E}\left(\xi_{n+1} \mid \mathcal{F}_{n}\right)-\mathbb{E}\left(\xi_{1} \mid \mathcal{F}_{0}\right)\right| \geqslant t / 2\right)= \\
\mathbb{P}\left(\left|\sum_{i=1}^{n} Z_{i}\right| \geqslant t / 2\right) \leqslant 6 \exp \left(-\frac{t^{2}}{64 n \sigma_{\infty}^{2}+12 M t}\right) .
\end{gathered}
$$

