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Wstęp

In many problems arising in probability theory and mathematical
statistics one needs to study variables of the form

S = sup
t∈T

∣∣∣ n∑
i=1

tiXi
∣∣∣,

where X1, . . . ,Xn are independent r.v’s and T is a nonempty
subset of Rn.
In particular it is of interest to estimate tails of S (i.e. P(S ≥ t),
t ≥ 0). Such estimates are strictly related to bounds for Lp-norms
of S (i.e. ‖S‖p := (E|S|p)1/p, p ≥ 1).
There is a a trivial lower estimate:(
E sup

t∈T

∣∣∣ n∑
i=1

tiXi
∣∣∣p)1/p

≥ max
{
E sup

t∈T

∣∣∣ n∑
i=1

tiXi
∣∣∣, sup

t∈T

(
E
∣∣∣ n∑
i=1

tiXi
∣∣∣p)1/p}

.

(1)
It turns out that in some situations this obvious lower bound may
be reversed.
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Gaussian case
Let G = (g1, . . . , gn), where gi are i.i.d. N (0, 1). Gaussian
concentration states that for any L-Lipschitz function f ,

P(|f (G)− Ef (G)| ≥ t) ≤ exp(− t2

2L2 )

Integrating by parts we get for p ≥ 1,

(E|f (G)− Ef (G)|p)1/p ≤ C√pL.

Hence by the triangle inequality in Lp,

‖f (G)‖p ≤ |Ef (G)|+ C√pL.

The function x 7→ supt∈T |
∑

i tixi | has the Lipschitz constant
supt∈T |t|2, moreover ‖

∑
i tigi‖p = |t|‖g1‖p ∼ |t|

√p, therefore(
E sup

t∈T

∣∣∣ n∑
i=1

tigi
∣∣∣p)1/p

≤ E sup
t∈T

∣∣∣ n∑
i=1

tigi
∣∣∣+ C sup

t∈T

(
E
∣∣∣ n∑
i=1

tigi
∣∣∣p)1/p

.
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Rademachers and variables with log-concave tails

In the case when Xi is the Rademacher sequence (i.e. sequence of
i.i.d. symmetric ±1-valued r.v’s) Dilworth and Montgomery-Smith
(1993) showed that

(
E sup

t∈T

∣∣∣ n∑
i=1

tiXi
∣∣∣p) 1

p
≤ C1E sup

t∈T

∣∣∣ n∑
i=1

tiXi
∣∣∣+ C2 sup

t∈T

(
E
∣∣∣ n∑
i=1

tiXi
∣∣∣p) 1

p
.

This inequality was generalized (L’96) to the case when Xi are
symmetric with log-concave tails (i.e. t 7→ lnP(|Xi | ≥ t) is concave
from [0,∞) to [−∞, 0]).
Recently Strzelecka, Strzelecki and Tkocz showed that for
symmetric variables with log-concave tails the inequality holds with
C1 = 1.
Estimates discussed above are strictly connected with
concentration inequalities (two-level Talagrand’s concetration,
concentration for convex functions on discrete cube).
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Variables with sublinear growths of moments

One may show that for a r.v’s X with log-concave tails
‖X‖p ≤ 2p

q‖X‖q for p ≥ q ≥ 1.
L.-Tkocz’15 proved that if Xi are independent, centered and

‖Xi‖p ≤ α
p
q ‖Xi‖q for p ≥ q ≥ 1,

then(
E sup

t∈T

∣∣∣ n∑
i=1

tiXi
∣∣∣p) 1

p
≤ C1(α)E sup

t∈T

∣∣∣ n∑
i=1

tiXi
∣∣∣+C2(α) sup

t∈T

(
E
∣∣∣ n∑
i=1

tiXi
∣∣∣p) 1

p
.

Strzelecki, Strzelecka, Tkocz’17+ constructed an example showing
that C1(α) > 1 for α ≥ 3.
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Main result

Theorem

Let X1, . . . ,Xn be centered, independent and

‖Xi‖2p ≤ α‖Xi‖p for p ≥ 2 and i = 1, . . . , n, (2)

where α is a finite positive constant. Then for p ≥ 1 and T ⊂ Rn,

(
E sup

t∈T

∣∣∣ n∑
i=1

tiXi
∣∣∣p) 1

p
≤ C(α)

[
E sup

t∈T

∣∣∣ n∑
i=1

tiXi
∣∣∣+sup

t∈T

(
E
∣∣∣ n∑
i=1

tiXi
∣∣∣p) 1

p
]
,

(3)
where C(α) is a constant depending only on α.

Remark Symmetric r.v’s such that P(|Xi | ≥ t) = exp(−tr ),
r ∈ (0, 1) satisfy the asumptions, but do not have exponential
moments, so there are no dimension-free concentration inequalities
for (X1, . . . ,Xn).
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Ideas of the proof

Standard symmetrization argument shows that we may assume
that Xi are symmetric.
We have ‖Xi‖2kp ≤ αk‖Xi‖p so ‖Xi‖q ≤ α(q/p)log2 α‖Xi‖p for
q ≥ p ≥ 1.
Variables Yi = sgn(Xi)|Xi |r have sublinear growth of moments for
r = 1/ log2 α. This way we may get the assertion for unconditional
sets T .
The main tool to go from unconditional to the general case is
Talagrand’s contraction principle.

Theorem
Let ϕi be 1-Lipschitz functions on R such that ϕi(0) = 0. Then for
any set T

E sup
t∈T

n∑
i=1

ϕi(ti)εi ≤ E sup
t∈T

n∑
i=1

tiεi .
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Optymality of the assumptions

It turns out that in the i.i.d case the main theorem may be
reversed.
Theorem
Let X1,X2, . . . be i.i.d. random variables. Assume that there exists
a constant L such that for every p ≥ 1, every n and every
non-empty set T ⊂ Rn we have
(
E sup

t∈T

∣∣∣ n∑
i=1

tiXi
∣∣∣p)1/p

≤ L
[
E sup

t∈T

∣∣∣ n∑
i=1

tiXi
∣∣∣+sup

t∈T

(
E
∣∣∣ n∑
i=1

tiXi
∣∣∣p)1/p]

.

(4)
Then

‖X1‖2p ≤ α(L)‖X1‖p for p ≥ 2, (5)

where α(L) is a constant which depends only on L ≥ 1.



Optymality of the assumptions - idea of the proof
Comparison of weak and strong moments for T = {e1, . . . , en}
gives

(Emax
i≤n
|Xi |p)1/p ≤ L

(
Emax

i≤n
|Xi |+ (E|Xi |p)1/p

)
. (6)

Fix p ≥ 2 and set n := b(4L)2pc+ 1, A := n1/p‖X1‖p. Then
P(|X1| ≥ A) ≤ 1/n.
Standard bound on the tail of maxima
1
3 min

{
1, nP

(
|X1| ≥ t

)}
≤ P

(
max
i≤n
|Xi | ≥ t

)
≤ min

{
1, nP

(
|X1| ≥ t

)}
.

together with integration by parts yield

Emax
i≤n
|Xi | ≤ A+n

1
p ‖X1‖p, (Emax

i≤n
|Xi |2p)

1
2p ≥ (n3 )

1
2p (‖X1‖2p−A).

Simple calculations show that (6) with 2p instead of p implies

‖X1‖2p ≤
(
4 + 1

2L

)(
16L2 + 1

)
‖X1‖p.
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16L2 + 1

)
‖X1‖p.



Weak and strong tails

Under the assumptions of the main theorem one may also compare
weak and strong tails.

Corollary

Assume that Xi , 1 ≤ i ≤ n are centered, independent and
‖Xi‖2p ≤ α‖Xi‖p for p ≥ 1. Then for u ≥ 0 and T ⊂ Rn,

P
(
sup
t∈T

∣∣∣ n∑
i=1

tiXi
∣∣∣ ≥ C1(α)

[
E sup

t∈T

∣∣∣ n∑
i=1

tiXi
∣∣∣+ u

])

≤ C2(α) sup
t∈T

P
(∣∣∣ n∑

i=1
tiXi

∣∣∣ ≥ u
)
, (7)

where constants C1(α) and C2(α) depend only on α.



From comparison of moments to comparison of tails

Chebyshev’s inequality implies

P(|Y | ≥ e‖Y ‖p) ≤ e−p for p ≥ 1.

One may reverse this inequality for regular random variables. Using
the Paley-Zygmund inequality

P(Z ≥ 1
2EZ ) ≥ (EZ )2

4EZ 2

for Z = |Y |q and choosing in a right way q one may show that if
‖Y ‖2p ≤ α‖Y ‖p for p ≥ 1, then

P(|Y | ≥ c(α)‖Y ‖p) ≥ e−p for p ≥ C(α).
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Khinchine-Kahane type inequalities

Corollary

Assume that independent, centered random variables Xi satisfy
‖Xi‖2p ≤ α‖Xi‖p for p ≥ 1. Then for p ≥ q ≥ 2 and T ⊂ Rn we
have(
E sup

t∈T

∣∣∣ n∑
i=1

tiXi
∣∣∣p) 1

p
≤ C3(α)

(p
q

)max{ 1
2 ,log2 α}(

E sup
t∈T

∣∣∣ n∑
i=1

tiXi
∣∣∣q) 1

q
,

where a constant C3(α) depends only on α.

Remark. Exponent max{1/2, log2 α} is optimal. Indeed, since
‖g‖p ∼

√
p/e as p →∞ one cannot go below 1/2 by the Central

Limit Theorem. Moreover, symmetric r.v’s with tails exp(−tr ) have
moments of order p1/r and one may check that satisfy the
assumptions with α = 21/r , so exponent cannot be lower than
log2 α.
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Proof of the Khinchine-Kahane inequality

Comparison of weak and strong moments implies that it is enough
to show for t ∈ Rn and p ≥ q ≥ 2,

∥∥∥ n∑
i=1

tiXi
∥∥∥

p
≤ C3(α)

(p
q

)β∥∥∥ n∑
i=1

tiXi
∥∥∥

q
,

where β = max{1/2, log2 α}.
It is enough to establish the bound in the case when p = 2k,
q = 2l , where k ≥ l are positive integers and Xi are symmetric.
By hypercontractivity method it is enough to show that for any
u ∈ R and all i ,

‖1 + σk,l(α)uXi‖2k ≤ ‖1 + uXi‖2l ,

where σk,l(α)−1 ≤ C(α)(k/l)β
One may show it with C(α) = 2

√
2eα expanding even moments

and using the standard estimates.
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