Comparison of weak and strong moments for vectors with independent coordinates

Rafał Latała (based on a joint work with Marta Strzelecka)

University of Warsaw
Luminy, July 112017

Wstęp

In many problems arising in probability theory and mathematical statistics one needs to study variables of the form

$$
S=\sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|
$$

where X_{1}, \ldots, X_{n} are independent r.v's and T is a nonempty subset of \mathbb{R}^{n}.
In particular it is of interest to estimate tails of S (i.e. $\mathbb{P}(S \geq t)$, $t \geq 0)$. Such estimates are strictly related to bounds for L_{p}-norms of S (i.e. $\|S\|_{p}:=\left(\mathbb{E}|S|^{p}\right)^{1 / p}, p \geq 1$). There is a a trivial lower estimate:

Wstęp

In many problems arising in probability theory and mathematical statistics one needs to study variables of the form

$$
S=\sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|
$$

where X_{1}, \ldots, X_{n} are independent r.v's and T is a nonempty subset of \mathbb{R}^{n}.
In particular it is of interest to estimate tails of S (i.e. $\mathbb{P}(S \geq t)$, $t \geq 0)$. Such estimates are strictly related to bounds for L_{p}-norms of S (i.e. $\|S\|_{p}:=\left(\mathbb{E}|S|^{p}\right)^{1 / p}, p \geq 1$).

Wstęp

In many problems arising in probability theory and mathematical statistics one needs to study variables of the form

$$
S=\sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|
$$

where X_{1}, \ldots, X_{n} are independent r.v's and T is a nonempty subset of \mathbb{R}^{n}.
In particular it is of interest to estimate tails of S (i.e. $\mathbb{P}(S \geq t)$, $t \geq 0)$. Such estimates are strictly related to bounds for L_{p}-norms of S (i.e. $\|S\|_{p}:=\left(\mathbb{E}|S|^{p}\right)^{1 / p}, p \geq 1$).
There is a a trivial lower estimate:
$\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{1 / p} \geq \max \left\{\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|, \sup _{t \in T}\left(\mathbb{E}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{1 / p}\right\}$.
(1)

Wstęp

In many problems arising in probability theory and mathematical statistics one needs to study variables of the form

$$
S=\sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|
$$

where X_{1}, \ldots, X_{n} are independent r.v's and T is a nonempty subset of \mathbb{R}^{n}.
In particular it is of interest to estimate tails of S (i.e. $\mathbb{P}(S \geq t)$, $t \geq 0)$. Such estimates are strictly related to bounds for L_{p}-norms of S (i.e. $\|S\|_{p}:=\left(\mathbb{E}|S|^{p}\right)^{1 / p}, p \geq 1$).
There is a a trivial lower estimate:
$\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{1 / p} \geq \max \left\{\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|, \sup _{t \in T}\left(\mathbb{E}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{1 / p}\right\}$.
It turns out that in some situations this obvious lower bound may be reversed.

Gaussian case

Let $G=\left(g_{1}, \ldots, g_{n}\right)$, where g_{i} are i.i.d. $\mathcal{N}(0,1)$. Gaussian
concentration states that for any L-Lipschitz function f,

$$
\mathbb{P}(|f(G)-\mathbb{E} f(G)| \geq t) \leq \exp \left(-\frac{t^{2}}{2 L^{2}}\right)
$$

Integrating by parts we get for $p \geq 1$,

$$
\left(\mathbb{C}|f(G)-\mathbb{E} f(G)|^{p}\right)^{1 / p} \leq C \sqrt{p} L .
$$

Hence by the triangle inequality in L_{p},

$$
\|f(G)\|_{p} \leq|\mathbb{L} f(G)|+C \sqrt{p} L .
$$

The function $x \mapsto \sup _{t \in T}\left|\sum_{i} t_{i} x_{i}\right|$ has the Lipschitz constant $\sup _{t \in T}|t|_{2}$, moreover $\left\|\sum_{i} t_{i} g_{i}\right\|_{p}=|t|\left\|g_{1}\right\|_{p} \sim|t| \sqrt{p}$, therefore

Gaussian case

Let $G=\left(g_{1}, \ldots, g_{n}\right)$, where g_{i} are i.i.d. $\mathcal{N}(0,1)$. Gaussian concentration states that for any L-Lipschitz function f,

$$
\mathbb{P}(|f(G)-\mathbb{E} f(G)| \geq t) \leq \exp \left(-\frac{t^{2}}{2 L^{2}}\right)
$$

Integrating by parts we get for $p \geq 1$,

$$
\left(\mathbb{E}|f(G)-\mathbb{E} f(G)|^{p}\right)^{1 / p} \leq C \sqrt{p} L .
$$

Hence by the triangle inequality in L_{p},

$$
\|f(G)\|_{p} \leq|\mathbb{C} f(G)|+C \sqrt{p} L .
$$

The function $x \mapsto \sup _{t \in T}\left|\sum_{i} t_{i} x_{i}\right|$ has the Lipschitz constant $\sup _{t \in T}|t|_{2}$, moreover $\left\|\sum_{i} t_{i} g_{i}\right\|_{p}=|t|\left\|g_{1}\right\|_{p} \sim|t| \sqrt{p}$, therefore

Gaussian case

Let $G=\left(g_{1}, \ldots, g_{n}\right)$, where g_{i} are i.i.d. $\mathcal{N}(0,1)$. Gaussian concentration states that for any L-Lipschitz function f,

$$
\mathbb{P}(|f(G)-\mathbb{E} f(G)| \geq t) \leq \exp \left(-\frac{t^{2}}{2 L^{2}}\right)
$$

Integrating by parts we get for $p \geq 1$,

$$
\left(\mathbb{E}|f(G)-\mathbb{E} f(G)|^{p}\right)^{1 / p} \leq C \sqrt{p} L .
$$

Hence by the triangle inequality in L_{p},

$$
\|f(G)\|_{p} \leq|\mathbb{E} f(G)|+C \sqrt{p} L
$$

The function $x \mapsto \sup _{t \in T}\left|\sum_{i} t_{i} x_{i}\right|$ has the Lipschitz constant $\sup _{t \in T}|t|_{2}$, moreover $\left\|\sum_{i} t_{i} g_{i}\right\|_{p}=|t|\left\|g_{1}\right\|_{p} \sim|t| \sqrt{p}$, therefore

Let $G=\left(g_{1}, \ldots, g_{n}\right)$, where g_{i} are i.i.d. $\mathcal{N}(0,1)$. Gaussian concentration states that for any L-Lipschitz function f,

$$
\mathbb{P}(|f(G)-\mathbb{E} f(G)| \geq t) \leq \exp \left(-\frac{t^{2}}{2 L^{2}}\right)
$$

Integrating by parts we get for $p \geq 1$,

$$
\left(\mathbb{E}|f(G)-\mathbb{E} f(G)|^{p}\right)^{1 / p} \leq C \sqrt{p} L
$$

Hence by the triangle inequality in L_{p},

$$
\|f(G)\|_{p} \leq|\mathbb{E} f(G)|+C \sqrt{p} L .
$$

The function $x \mapsto \sup _{t \in T}\left|\sum_{i} t_{i} x_{i}\right|$ has the Lipschitz constant $\sup _{t \in T}|t|_{2}$, moreover $\left\|\sum_{i} t_{i} g_{i}\right\|_{p}=|t|\left\|g_{1}\right\|_{p} \sim|t| \sqrt{p}$, therefore

$$
\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} g_{i}\right|^{p}\right)^{1 / p} \leq \mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} g_{i}\right|+C \sup _{t \in T}\left(\mathbb{E}\left|\sum_{i=1}^{n} t_{i} g_{i}\right|^{p}\right)^{1 / p} .
$$

Rademachers and variables with log-concave tails

In the case when X_{i} is the Rademacher sequence (i.e. sequence of i.i.d. symmetric ± 1-valued r.v's) Dilworth and Montgomery-Smith (1993) showed that
$\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C_{1} \mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|+C_{2} \sup _{t \in T}\left(\mathbb{E}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}}$.

This inequality was generalized (L'96) to the case when X_{i} are symmetric with log-concave tails (i.e. $t \mapsto \ln \mathbb{P}\left(\left|X_{i}\right| \geq t\right)$ is concave from $[0, \infty)$ to $[-\infty, 0]$).
Recently Strzelecka, Strzelecki and Tkocz showed that for
symmetric variables with log-concave tails the inequality holds with
$C_{1}=1$
Estimates discussed above are strictly connected with
concentration inequalities (two-level Talagrand's concetration,
concentration for convex functions on discrete cube)

Rademachers and variables with log-concave tails

In the case when X_{i} is the Rademacher sequence (i.e. sequence of i.i.d. symmetric ± 1-valued r.v's) Dilworth and Montgomery-Smith (1993) showed that
$\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C_{1} \mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|+C_{2} \sup _{t \in T}\left(\mathbb{E}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}}$.

This inequality was generalized (L'96) to the case when X_{i} are symmetric with log-concave tails (i.e. $t \mapsto \ln \mathbb{P}\left(\left|X_{i}\right| \geq t\right)$ is concave from $[0, \infty)$ to $[-\infty, 0]$).
Recently Strzelecka, Strzelecki and Tkocz showed that for
symmetric variables with log-concave tails the inequality holds with
$C_{1}=1$.
Estimates discussed above are strictly connected with concentration inequalities (two-level Talagrand's concetration, concentration for convex functions on discrete cube)

Rademachers and variables with log-concave tails

In the case when X_{i} is the Rademacher sequence (i.e. sequence of i.i.d. symmetric ± 1-valued r.v's) Dilworth and Montgomery-Smith (1993) showed that
$\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C_{1} \mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|+C_{2} \sup _{t \in T}\left(\mathbb{E}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}}$.

This inequality was generalized (L'96) to the case when X_{i} are symmetric with log-concave tails (i.e. $t \mapsto \ln \mathbb{P}\left(\left|X_{i}\right| \geq t\right)$ is concave from $[0, \infty)$ to $[-\infty, 0]$).
Recently Strzelecka, Strzelecki and Tkocz showed that for symmetric variables with log-concave tails the inequality holds with $C_{1}=1$.
Estimates discussed above are strictly connected with concentration inequalities (two-level Talagrand's concetration, concentration for convex functions on discrete cube)

Rademachers and variables with log-concave tails

In the case when X_{i} is the Rademacher sequence (i.e. sequence of i.i.d. symmetric ± 1-valued r.v's) Dilworth and Montgomery-Smith (1993) showed that
$\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C_{1} \mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|+C_{2} \sup _{t \in T}\left(\mathbb{E}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}}$.

This inequality was generalized (L'96) to the case when X_{i} are symmetric with log-concave tails (i.e. $t \mapsto \ln \mathbb{P}\left(\left|X_{i}\right| \geq t\right)$ is concave from $[0, \infty)$ to $[-\infty, 0]$).
Recently Strzelecka, Strzelecki and Tkocz showed that for symmetric variables with log-concave tails the inequality holds with $C_{1}=1$.
Estimates discussed above are strictly connected with concentration inequalities (two-level Talagrand's concetration, concentration for convex functions on discrete cube).

Variables with sublinear growths of moments

One may show that for a r.v's X with log-concave tails $\|X\|_{p} \leq 2 \frac{p}{q}\|X\|_{q}$ for $p \geq q \geq 1$.

then

Strzelecki, Strzelecka, Tkocz'17+ constructed an example showing that $C_{1}(\alpha)>1$ for $\alpha \geq 3$.

Variables with sublinear growths of moments

One may show that for a r.v's X with log-concave tails $\|X\|_{p} \leq 2 \frac{p}{q}\|X\|_{q}$ for $p \geq q \geq 1$.
L.-Tkocz' 15 proved that if X_{i} are independent, centered and

$$
\left\|X_{i}\right\|_{p} \leq \alpha \frac{p}{q}\left\|X_{i}\right\|_{q} \text { for } p \geq q \geq 1
$$

then

$$
\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C_{1}(\alpha) \mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|+C_{2}(\alpha) \sup _{t \in T}\left(\mathbb{E}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

Variables with sublinear growths of moments

One may show that for a r.v's X with log-concave tails $\|X\|_{p} \leq 2 \frac{p}{q}\|X\|_{q}$ for $p \geq q \geq 1$.
L.-Tkocz' 15 proved that if X_{i} are independent, centered and

$$
\left\|X_{i}\right\|_{p} \leq \alpha \frac{p}{q}\left\|X_{i}\right\|_{q} \text { for } p \geq q \geq 1
$$

then

$$
\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C_{1}(\alpha) \mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|+C_{2}(\alpha) \sup _{t \in T}\left(\mathbb{E}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}} .
$$

Strzelecki, Strzelecka, Tkocz'17+ constructed an example showing that $C_{1}(\alpha)>1$ for $\alpha \geq 3$.

Main result

Theorem

Let X_{1}, \ldots, X_{n} be centered, independent and

$$
\begin{equation*}
\left\|X_{i}\right\|_{2 p} \leq \alpha\left\|X_{i}\right\|_{p} \quad \text { for } p \geq 2 \text { and } i=1, \ldots, n \tag{2}
\end{equation*}
$$

where α is a finite positive constant. Then for $p \geq 1$ and $T \subset \mathbb{R}^{n}$,
$\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C(\alpha)\left[\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|+\sup _{t \in T}\left(\mathbb{E}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}}\right]$,
where $C(\alpha)$ is a constant depending only on α.
Remark Symmetric r.v's such that $\mathbb{P}\left(\left|X_{i}\right| \geq t\right)=\exp \left(-t^{r}\right)$, $r \in(0,1)$ satisfy the asumptions, but do not have exponential
moments, so there are no dimension-free concentration inequalities for $\left(X_{1}, \ldots, X_{n}\right)$

Main result

Theorem

Let X_{1}, \ldots, X_{n} be centered, independent and

$$
\begin{equation*}
\left\|X_{i}\right\|_{2 p} \leq \alpha\left\|X_{i}\right\|_{p} \quad \text { for } p \geq 2 \text { and } i=1, \ldots, n \tag{2}
\end{equation*}
$$

where α is a finite positive constant. Then for $p \geq 1$ and $T \subset \mathbb{R}^{n}$,
$\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C(\alpha)\left[\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|+\sup _{t \in T}\left(\mathbb{E}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}}\right]$,
where $C(\alpha)$ is a constant depending only on α.
Remark Symmetric r.v's such that $\mathbb{P}\left(\left|X_{i}\right| \geq t\right)=\exp \left(-t^{r}\right)$, $r \in(0,1)$ satisfy the asumptions, but do not have exponential moments, so there are no dimension-free concentration inequalities for $\left(X_{1}, \ldots, X_{n}\right)$.

Ideas of the proof

Standard symmetrization argument shows that we may assume that X_{i} are symmetric.
We have $\left\|X_{i}\right\|_{2^{k} p} \leq \alpha^{k}\left\|X_{i}\right\|_{p}$ so $\left\|X_{i}\right\|_{q} \leq \alpha(q / p)^{\log _{2} \alpha}\left\|X_{i}\right\|_{p}$ for
\qquad
Variables $Y_{i}=\operatorname{sgn}\left(X_{i}\right)\left|X_{i}\right|^{r}$ have sublinear growth of moments for $r=1 / \log _{2} \alpha$. This way we may get the assertion for unconditional sets T.
The main tool to go from unconditional to the general case is Talagrand's contraction principle.

Theorem
Let φ_{i} be 1 -Lipschitz functions on \mathbb{R} such that $\varphi_{i}(0)=0$. Then for any set T

Ideas of the proof

Standard symmetrization argument shows that we may assume that X_{i} are symmetric.
We have $\left\|X_{i}\right\|_{2^{k} p} \leq \alpha^{k}\left\|X_{i}\right\|_{p}$ so $\left\|X_{i}\right\|_{q} \leq \alpha(q / p)^{\log _{2} \alpha}\left\|X_{i}\right\|_{p}$ for $q \geq p \geq 1$.
Variables $Y_{i}=\operatorname{sgn}\left(X_{i}\right)\left|X_{i}\right|^{r}$ have sublinear growth of moments for $r=1 / \log _{2} \alpha$. This way we may get the assertion for unconditional sets T.
The main tool to go from unconditional to the general case is Talagrand's contraction principle.

Theorem
Let φ_{i} be 1-Lipschitz functions on \mathbb{R} such that $\varphi_{i}(0)=0$. Then for
any set T

Ideas of the proof

Standard symmetrization argument shows that we may assume that X_{i} are symmetric.
We have $\left\|X_{i}\right\|_{2^{k} p} \leq \alpha^{k}\left\|X_{i}\right\|_{p}$ so $\left\|X_{i}\right\|_{q} \leq \alpha(q / p)^{\log _{2} \alpha}\left\|X_{i}\right\|_{p}$ for $q \geq p \geq 1$.
Variables $Y_{i}=\operatorname{sgn}\left(X_{i}\right)\left|X_{i}\right|^{r}$ have sublinear growth of moments for $r=1 / \log _{2} \alpha$. This way we may get the assertion for unconditional sets T.

Theorem
Let φ_{i} be 1 -Lipschitz functions on \mathbb{R} such that $\varphi_{i}(0)=0$. Then for
any set T

Ideas of the proof

Standard symmetrization argument shows that we may assume that X_{i} are symmetric.
We have $\left\|X_{i}\right\|_{2^{k} p} \leq \alpha^{k}\left\|X_{i}\right\|_{p}$ so $\left\|X_{i}\right\|_{q} \leq \alpha(q / p)^{\log _{2} \alpha}\left\|X_{i}\right\|_{p}$ for $q \geq p \geq 1$.
Variables $Y_{i}=\operatorname{sgn}\left(X_{i}\right)\left|X_{i}\right|^{r}$ have sublinear growth of moments for $r=1 / \log _{2} \alpha$. This way we may get the assertion for unconditional sets T.
The main tool to go from unconditional to the general case is Talagrand's contraction principle.

Theorem

Let φ_{i} be 1 -Lipschitz functions on \mathbb{R} such that $\varphi_{i}(0)=0$. Then for any set T

$$
\mathbb{E} \sup _{t \in T} \sum_{i=1}^{n} \varphi_{i}\left(t_{i}\right) \varepsilon_{i} \leq \mathbb{E} \sup _{t \in T} \sum_{i=1}^{n} t_{i} \varepsilon_{i}
$$

Optymality of the assumptions

It turns out that in the i.i.d case the main theorem may be reversed.

Theorem

Let X_{1}, X_{2}, \ldots be i.i.d. random variables. Assume that there exists a constant L such that for every $p \geq 1$, every n and every non-empty set $T \subset \mathbb{R}^{n}$ we have
$\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{1 / p} \leq L\left[\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|+\sup _{t \in T}\left(\mathbb{E}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{1 / p}\right]$.
Then

$$
\begin{equation*}
\left\|X_{1}\right\|_{2 p} \leq \alpha(L)\left\|X_{1}\right\|_{p} \quad \text { for } p \geq 2 \tag{4}
\end{equation*}
$$

where $\alpha(L)$ is a constant which depends only on $L \geq 1$.

Optymality of the assumptions - idea of the proof

Comparison of weak and strong moments for $T=\left\{e_{1}, \ldots, e_{n}\right\}$ gives

$$
\begin{equation*}
\left(\mathbb{E} \max _{i \leq n}\left|X_{i}\right|^{p}\right)^{1 / p} \leq L\left(\mathbb{E} \max _{i \leq n}\left|X_{i}\right|+\left(\mathbb{E}\left|X_{i}\right|^{p}\right)^{1 / p}\right) \tag{6}
\end{equation*}
$$

Fix $p \geq 2$ and set $n:=\left\lfloor(4 L)^{2 p}\right\rfloor+1, A:=n^{1 / p}\left\|X_{1}\right\|_{p}$. Then $\mathbb{P}\left(\left|X_{1}\right| \geq A\right) \leq 1 / n$.
Standard bound on the tail of maxima
together with integration by parts yield

Simple calculations show that (6) with $2 p$ instead of p implies

Optymality of the assumptions - idea of the proof

Comparison of weak and strong moments for $T=\left\{e_{1}, \ldots, e_{n}\right\}$ gives

$$
\begin{equation*}
\left(\mathbb{E} \max _{i \leq n}\left|X_{i}\right|^{p}\right)^{1 / p} \leq L\left(\mathbb{E} \max _{i \leq n}\left|X_{i}\right|+\left(\mathbb{E}\left|X_{i}\right|^{p}\right)^{1 / p}\right) . \tag{6}
\end{equation*}
$$

Fix $p \geq 2$ and set $n:=\left\lfloor(4 L)^{2 p}\right\rfloor+1, A:=n^{1 / p}\left\|X_{1}\right\|_{p}$. Then $\mathbb{P}\left(\left|X_{1}\right| \geq A\right) \leq 1 / n$.
Standard bound on the tail of maxima

$\frac{1}{3}$
together with integration by parts yield

Simple calculations show that (6) with $2 p$ instead of p implies

Optymality of the assumptions - idea of the proof

Comparison of weak and strong moments for $T=\left\{e_{1}, \ldots, e_{n}\right\}$ gives

$$
\begin{equation*}
\left(\mathbb{E} \max _{i \leq n}\left|X_{i}\right|^{p}\right)^{1 / p} \leq L\left(\mathbb{E} \max _{i \leq n}\left|X_{i}\right|+\left(\mathbb{E}\left|X_{i}\right|^{p}\right)^{1 / p}\right) . \tag{6}
\end{equation*}
$$

Fix $p \geq 2$ and set $n:=\left\lfloor(4 L)^{2 p}\right\rfloor+1, A:=n^{1 / p}\left\|X_{1}\right\|_{p}$. Then $\mathbb{P}\left(\left|X_{1}\right| \geq A\right) \leq 1 / n$.
Standard bound on the tail of maxima $\frac{1}{3} \min \left\{1, n \mathbb{P}\left(\left|X_{1}\right| \geq t\right)\right\} \leq \mathbb{P}\left(\max _{i \leq n}\left|X_{i}\right| \geq t\right) \leq \min \left\{1, n \mathbb{P}\left(\left|X_{1}\right| \geq t\right)\right\}$. together with integration by parts yield
$\mathbb{E} \max _{i \leq n}\left|X_{i}\right| \leq A+n^{\frac{1}{p}}\left\|X_{1}\right\|_{p}$,
$\left(\mathbb{E} \max _{i \leq n}\left|X_{i}\right|^{2 p}\right)^{\frac{1}{2 p}} \geq\left(\frac{n}{3}\right)^{\frac{1}{2 p}}\left(\left\|X_{1}\right\|_{2 p}-A\right)$.

Simple calculations show that (6) with $2 p$ instead of p implies

Optymality of the assumptions - idea of the proof

Comparison of weak and strong moments for $T=\left\{e_{1}, \ldots, e_{n}\right\}$ gives

$$
\begin{equation*}
\left(\mathbb{E} \max _{i \leq n}\left|X_{i}\right|^{p}\right)^{1 / p} \leq L\left(\mathbb{E} \max _{i \leq n}\left|X_{i}\right|+\left(\mathbb{E}\left|X_{i}\right|^{p}\right)^{1 / p}\right) . \tag{6}
\end{equation*}
$$

Fix $p \geq 2$ and set $n:=\left\lfloor(4 L)^{2 p}\right\rfloor+1, A:=n^{1 / p}\left\|X_{1}\right\|_{p}$. Then $\mathbb{P}\left(\left|X_{1}\right| \geq A\right) \leq 1 / n$.
Standard bound on the tail of maxima $\frac{1}{3} \min \left\{1, n \mathbb{P}\left(\left|X_{1}\right| \geq t\right)\right\} \leq \mathbb{P}\left(\max _{i \leq n}\left|X_{i}\right| \geq t\right) \leq \min \left\{1, n \mathbb{P}\left(\left|X_{1}\right| \geq t\right)\right\}$. together with integration by parts yield
$\mathbb{E} \max _{i \leq n}\left|X_{i}\right| \leq A+n^{\frac{1}{p}}\left\|X_{1}\right\|_{p}, \quad\left(\mathbb{E} \max _{i \leq n}\left|X_{i}\right|^{2 p}\right)^{\frac{1}{2 p}} \geq\left(\frac{n}{3}\right)^{\frac{1}{2 p}}\left(\left\|X_{1}\right\|_{2 p}-A\right)$.
Simple calculations show that (6) with $2 p$ instead of p implies

$$
\left\|X_{1}\right\|_{2 p} \leq\left(4+\frac{1}{2 L}\right)\left(16 L^{2}+1\right)\left\|X_{1}\right\|_{p}
$$

Under the assumptions of the main theorem one may also compare weak and strong tails.

Corollary

Assume that $X_{i}, 1 \leq i \leq n$ are centered, independent and $\left\|X_{i}\right\|_{2 p} \leq \alpha\left\|X_{i}\right\|_{p}$ for $p \geq 1$. Then for $u \geq 0$ and $T \subset \mathbb{R}^{n}$,

$$
\begin{align*}
& \mathbb{P}\left(\sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right| \geq C_{1}(\alpha)\left[\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|+u\right]\right) \\
& \leq C_{2}(\alpha) \sup _{t \in T} \mathbb{P}\left(\left|\sum_{i=1}^{n} t_{i} X_{i}\right| \geq u\right), \tag{7}
\end{align*}
$$

where constants $C_{1}(\alpha)$ and $C_{2}(\alpha)$ depend only on α.

Chebyshev's inequality implies

$$
\mathbb{P}\left(|Y| \geq e\|Y\|_{p}\right) \leq e^{-p} \text { for } p \geq 1
$$

One may reverse this inequality for regular random variables. Using the Paley-Zygmund inequality

$$
\mathbb{P}\left(Z \geq \frac{1}{2} \mathbb{E} Z\right) \geq \frac{(\mathbb{E} Z)^{2}}{4 \mathbb{E} Z^{2}}
$$

for $Z=|Y|^{q}$ and choosing in a right way q one may show that if $\|Y\|_{2 p} \leq \alpha\|Y\|_{p}$ for $p \geq 1$, then

$$
\mathbb{P}\left(|Y| \geq c(\alpha)\|Y\|_{p}\right) \geq e^{-p} \text { for } p \geq C(\alpha) \text {. }
$$

Chebyshev's inequality implies

$$
\mathbb{P}\left(|Y| \geq e\|Y\|_{p}\right) \leq e^{-p} \text { for } p \geq 1
$$

One may reverse this inequality for regular random variables. Using the Paley-Zygmund inequality

$$
\mathbb{P}\left(Z \geq \frac{1}{2} \mathbb{E} Z\right) \geq \frac{(\mathbb{E} Z)^{2}}{4 \mathbb{E} Z^{2}}
$$

for $Z=|Y|^{q}$ and choosing in a right way q one may show that if $\|Y\|_{2 p} \leq \alpha\|Y\|_{p}$ for $p \geq 1$, then

$$
\mathbb{P}\left(|Y| \geq c(\alpha)\|Y\|_{p}\right) \geq e^{-p} \text { for } p \geq C(\alpha)
$$

Khinchine-Kahane type inequalities

Corollary

Assume that independent, centered random variables X_{i} satisfy $\left\|X_{i}\right\|_{2 p} \leq \alpha\left\|X_{i}\right\|_{p}$ for $p \geq 1$. Then for $p \geq q \geq 2$ and $T \subset \mathbb{R}^{n}$ we have
$\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C_{3}(\alpha)\left(\frac{p}{q}\right)^{\max \left\{\frac{1}{2}, \log _{2} \alpha\right\}}\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{q}\right)^{\frac{1}{q}}$, where a constant $C_{3}(\alpha)$ depends only on α.

Remark. Exponent $\max \left\{1 / 2, \log _{2} \alpha\right\}$ is optimal. Indeed, since $\|g\|_{p} \sim \sqrt{p / e}$ as $p \rightarrow \infty$ one cannot go below $1 / 2$ by the Central Limit Theorem. Moreover, symmetric r.v's with tails $\exp \left(-t^{r}\right)$ have moments of order $p^{1 / r}$ and one may check that satisfy the assumptions with $\alpha=2^{1 / r}$, so exponent cannot be lower than $\log _{2} \alpha$.

Khinchine-Kahane type inequalities

Corollary

Assume that independent, centered random variables X_{i} satisfy $\left\|X_{i}\right\|_{2 p} \leq \alpha\left\|X_{i}\right\|_{p}$ for $p \geq 1$. Then for $p \geq q \geq 2$ and $T \subset \mathbb{R}^{n}$ we have
$\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C_{3}(\alpha)\left(\frac{p}{q}\right)^{\max \left\{\frac{1}{2}, \log _{2} \alpha\right\}}\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{q}\right)^{\frac{1}{q}}$,
where a constant $C_{3}(\alpha)$ depends only on α.
Remark. Exponent $\max \left\{1 / 2, \log _{2} \alpha\right\}$ is optimal. Indeed, since $\|g\|_{p} \sim \sqrt{p / e}$ as $p \rightarrow \infty$ one cannot go below $1 / 2$ by the Central Limit Theorem. Moreover, symmetric r.v's with tails $\exp \left(-t^{r}\right)$ have moments of order $p^{1 / r}$ and one may check that satisfy the assumptions with $\alpha=2^{1 / r}$, so exponent cannot be lower than $\log _{2} \alpha$.

Proof of the Khinchine-Kahane inequality

Comparison of weak and strong moments implies that it is enough to show for $t \in \mathbb{R}^{n}$ and $p \geq q \geq 2$,

$$
\left\|\sum_{i=1}^{n} t_{i} X_{i}\right\|_{p} \leq C_{3}(\alpha)\left(\frac{p}{q}\right)^{\beta}\left\|\sum_{i=1}^{n} t_{i} X_{i}\right\|_{q},
$$

where $\beta=\max \left\{1 / 2, \log _{2} \alpha\right\}$.
It is enough to establish the bound in the case when $p=2 k$, $q=2 l$, where $k \geq I$ are positive integers and X_{i} are symmetric. By hypercontractivity method it is enough to show that for any $u \in \mathbb{R}$ and all i,

where $\sigma_{k, I}(\alpha)^{-1} \leq C(\alpha)(k / l)^{\beta}$
One may show it with $C(\alpha)=2 \sqrt{2}$ e α expanding even moments and using the standard estimates.

Comparison of weak and strong moments implies that it is enough to show for $t \in \mathbb{R}^{n}$ and $p \geq q \geq 2$,

$$
\left\|\sum_{i=1}^{n} t_{i} X_{i}\right\|_{p} \leq C_{3}(\alpha)\left(\frac{p}{q}\right)^{\beta}\left\|\sum_{i=1}^{n} t_{i} X_{i}\right\|_{q},
$$

where $\beta=\max \left\{1 / 2, \log _{2} \alpha\right\}$.
It is enough to establish the bound in the case when $p=2 k$, $q=2 I$, where $k \geq I$ are positive integers and X_{i} are symmetric.

Comparison of weak and strong moments implies that it is enough to show for $t \in \mathbb{R}^{n}$ and $p \geq q \geq 2$,

$$
\left\|\sum_{i=1}^{n} t_{i} X_{i}\right\|_{p} \leq C_{3}(\alpha)\left(\frac{p}{q}\right)^{\beta}\left\|\sum_{i=1}^{n} t_{i} X_{i}\right\|_{q}
$$

where $\beta=\max \left\{1 / 2, \log _{2} \alpha\right\}$.
It is enough to establish the bound in the case when $p=2 k$, $q=2 I$, where $k \geq I$ are positive integers and X_{i} are symmetric. By hypercontractivity method it is enough to show that for any $u \in \mathbb{R}$ and all i,

$$
\left\|1+\sigma_{k, I}(\alpha) u X_{i}\right\|_{2 k} \leq\left\|1+u X_{i}\right\|_{2 l}
$$

where $\sigma_{k, I}(\alpha)^{-1} \leq C(\alpha)(k / I)^{\beta}$

Comparison of weak and strong moments implies that it is enough to show for $t \in \mathbb{R}^{n}$ and $p \geq q \geq 2$,

$$
\left\|\sum_{i=1}^{n} t_{i} X_{i}\right\|_{p} \leq C_{3}(\alpha)\left(\frac{p}{q}\right)^{\beta}\left\|\sum_{i=1}^{n} t_{i} X_{i}\right\|_{q}
$$

where $\beta=\max \left\{1 / 2, \log _{2} \alpha\right\}$.
It is enough to establish the bound in the case when $p=2 k$, $q=2 I$, where $k \geq I$ are positive integers and X_{i} are symmetric. By hypercontractivity method it is enough to show that for any $u \in \mathbb{R}$ and all i,

$$
\left\|1+\sigma_{k, I}(\alpha) u X_{i}\right\|_{2 k} \leq\left\|1+u X_{i}\right\|_{2 l}
$$

where $\sigma_{k, I}(\alpha)^{-1} \leq C(\alpha)(k / I)^{\beta}$
One may show it with $C(\alpha)=2 \sqrt{2} e \alpha$ expanding even moments and using the standard estimates.

Bibliograhy

國 S．J．Dilworth，S．J．Montgomery－Smith，The distribution of vector－valued Rademacher series，Ann．Probab． 21 （1993）， 2046－2052．
R Rafał Latała，Tail and moment estimates for sums of independent random vectors with logarithmically concave tails， Studia Math． 118 （1996），301－304．
（ R．Latała，M．Strzelecka，Comparison of weak and strong moments for vectors with independent coordinates，przyjęte do Mathematika，arXiv：1612．02407．
图 R．Latała，T．Tkocz，A note on suprema of canonical processes based on random variables with regular moments，Electron．J． Probab． 20 （2015），no．36，1－17．
围 M．Strzelecka，M．Strzelecki，T．Tkocz，On the convex infimum convolution inequality with optimal cost function， arXiv：1702．07321．

Thank you for your attention!

