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Functional data
Gas offer curve

Liberalisation of the Italian energy market: different providers
who trade gas to equilibrate their stocks.
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Functional data
Gas offer curve

Some comments on the data:
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Functional data

Motivation for Bayesian forecast

Statistical challenge = h-steps-ahead functional
forecasting

@ Market traders want to predict the next days’ curves (short
term forecast)
@ Full curve needed to design strategies

@ Uncertainty needed

Some strengths of Bayesian Nonparametrics:

@ great flexilibility for the curves’ irregular shapes
@ propagation of uncertainty to forecast is simple



A dependent Dirichlet model for trended data

Description through a latent particle system

More options available for specifying a stochastic
process for particle systems than curves.

@ Monotone functional data can be represented by a latent
n-particle system {X;(t)};—1, .7
@ X((t) = (X4(1),..., Xn(t)) is a vector of interacting [0, 1]
valued processes
@ This latent particle system is related to the data by:
1 n
Di(x) = n Z 1(X(t) < x)

i=1



A dependent Dirichlet model for trended data

A population genetics model (Moran/Wright-Fisher

model)[Canale and Ruggiero, 2016]

Given the state X("(t — 1) the next state X(")(t) is obtained as
follows:

@ delete M particles with:
M ~ Binom(n, p)

@ and replace them sequentially by M particles sampled from a
Blackwell-MacQueen Polya urn with total mass parameter ¢ and
base measure Py(.) = Beta, s(.) conditionally on the remaining
(n— M) particles.

X ~ 9+n—1—M+k (9P0(-) + Z 5)(,-(-))

jE€remaining particles

This induces a Dependent Dirichlet process structure in time.
Markovian process — prediction around the last observed value.



A dependent Dirichlet model for trended data

Adding a locally auto-regressive rule (Trended model)

Inertia phenomenon
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A dependent Dirichlet model for trended data

[llustration of the new model
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Posterior inference using ABC
Likelihood is not available

Likelihood is unavailable:

@ Data are fully observed curves because all trading activity
is recorded.

@ No obvious expression for the likelihood on this functional
data on a functional space.

— We resort to a likelihood-free method, Approximate Bayesian
Computing (ABC).

Another possible (frequentist) option: Functional Data Analysis
approach[Canale and Vantini, 2016]



Posterior inference using ABC
General principle behind ABC

Simplest ABC algorithm
@ Sample some 6 from prior
@ Simulate (D;)1<t<7|0k and compute Sy
© Retain all 6 s.t. d(Sp, Sk) < ¢ to form the posterior

L dimensional summary statistic:

S((Dt)1<t<t) = (S1,---,5L)
Distance function:

d(.,.): Rt x RE = RT
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Posterior inference using ABC

Quality of summaries is paramount

Good summaries:
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Posterior inference using ABC

Semi-automatic

summaries[Fearnhead and Prangle, 2010]

@ Finding good summaries is instructive but difficult.

@ Alternative solution: large number of good or bad
summaries (potentially the whole data) and selection of
influential summaries.

One solution: multivariate regression on a pilot run

Ok = m(Sk) + ek

Several Implementations: Partial Least Squares, Lasso, neural
networks . . .
Accept-reject algorithm: Population ABC[Prangle, 2016]
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Fit and forecasting

Check model identifiability on simulated data

Density
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Fit and forecasting

Application to the Italian natural gas market data
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@ The trended model offers less forecast uncertainty
@ Trendless model needs larger p to explain trend
@ smaller average predictive error 7 days ahead

14/15



Fit and forecasting
Concluding remarks

@ Allowing for a trend mechanism can be necessary, else the
prediction is stuck around the last value.

@ Likelihood-free method — general framework for inference

@ In particular, interesting developments could be:

e Time-dependent trend
o Discrete base measure (mortality data)
e Two dependent samples
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Thanks for your attention !

See also the poster if you want more details !

contact: guillaume.konkamking.work@gmail.com
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