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A large scale genomic application

Expression quantitative trait loci (eQTLs) studies aim to identify
genetic variants associated with gene expression (eQTL SNPs).

Within a single tissue may lack power to detect the association due to
small sample size.

The discovery power of eQTL SNPs predictive of gene expression
across multiple tissues may be increased by aggregate testing across
tissue types.

For the n=17 tumor tissues in The Cancer Genome Atlas (TCGA)

Project, we have m = 7, 732, 750 candidate cis-eQTL SNPs .
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The cross-tissue eQTL dataset

The m × n = 7, 732, 750× 17 matrix of p-values is our starting point:

BLCA BRCA COAD GBM HNSC KIRC KIRP LAML LGG LIHC LUAD LUSC OV PAAD PRAD SKCM UCEC

rs10896016 0.013 0.733 0.266 0.361 0.922 0.007 0.996 0.023 0.140 0.016 0.000 0.129 0.067 0.257 0.141 0.016 0.592
rs1437891 0.455 0.000 0.002 0.902 0.547 0.000 0.520 0.778 0.000 0.344 0.001 0.303 0.163 0.642 0.005 0.415 0.429

rs13066873 0.002 0.000 0.001 0.007 0.544 0.014 0.008 0.003 0.001 0.010 0.000 0.041 0.010 0.043 0.064 0.000 0.002
rs2784574 0.022 0.621 0.874 0.058 0.305 0.507 0.285 0.654 0.693 0.080 0.074 0.086 0.696 0.462 0.922 0.983 0.707

rs11681508 0.109 0.161 0.106 0.928 0.684 0.499 0.739 0.449 0.137 0.601 0.862 0.608 0.844 0.583 0.750 0.528 0.000
rs224962 0.831 0.306 0.814 0.885 0.450 0.579 0.197 0.752 0.478 0.473 0.863 0.212 0.730 0.889 0.741 0.000 0.862
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Ruth Heller (TAU) Inference Following Aggregate Level Hypothesis Testing July 13, 2017 3 / 28



Two goals for inference

1. To identify the SNPs that influence expression in at least one tissue.

BLCA BRCA COAD GBM HNSC KIRC KIRP LAML LGG LIHC LUAD LUSC OV PAAD PRAD SKCM UCEC

rs10896016 0.013 0.733 0.266 0.361 0.922 0.007 0.996 0.023 0.140 0.016 0.000 0.129 0.067 0.257 0.141 0.016 0.592
rs1437891 0.455 0.000 0.002 0.902 0.547 0.000 0.520 0.778 0.000 0.344 0.001 0.303 0.163 0.642 0.005 0.415 0.429

rs13066873 0.002 0.000 0.001 0.007 0.544 0.014 0.008 0.003 0.001 0.010 0.000 0.041 0.010 0.043 0.064 0.000 0.002
rs2784574 0.022 0.621 0.874 0.058 0.305 0.507 0.285 0.654 0.693 0.080 0.074 0.086 0.696 0.462 0.922 0.983 0.707

rs11681508 0.109 0.161 0.106 0.928 0.684 0.499 0.739 0.449 0.137 0.601 0.862 0.608 0.844 0.583 0.750 0.528 0.000
rs224962 0.831 0.306 0.814 0.885 0.450 0.579 0.197 0.752 0.478 0.473 0.863 0.212 0.730 0.889 0.741 0.000 0.862
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2. For identified eQTL SNPs, identify the non-null tissues.

BLCA BRCA COAD GBM HNSC KIRC KIRP LAML LGG LIHC LUAD LUSC OV PAAD PRAD SKCM UCEC

rs10896016 0.013 0.733 0.266 0.361 0.922 0.007 0.996 0.023 0.140 0.016 3.58e-5 0.129 0.067 0.257 0.141 0.016 0.592

BLCA BRCA COAD GBM HNSC KIRC KIRP LAML LGG LIHC LUAD LUSC OV PAAD PRAD SKCM UCEC

rs1437891 0.455 2.98e-4 0.002 0.902 0.547 2.56e-7 0.520 0.778 4.54e-5 0.344 0.001 0.303 0.163 0.642 0.005 0.415 0.429

BLCA BRCA COAD GBM HNSC KIRC KIRP LAML LGG LIHC LUAD LUSC OV PAAD PRAD SKCM UCEC
rs13066873 0.002 2.60e-4 0.001 0.007 0.544 0.014 0.008 0.003 0.001 0.010 1.24e-7 0.041 0.010 0.043 0.064 1.83e-4 0.002
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Goal 1: meta-analysis

For feature (row) i :

Hij , j = 1, . . . , n are the n null hypotheses.

HiG = ∩n
j=1Hij is the meta-analysis (global) null hypothesis.

The goal is to test H1G , . . . ,HmG , in order to identify the rows with signal
in at least one column.

A two-step process:
1 Pooling the evidence into an aggregate test (by row).

p11 . . . p1n p1G

...
. . .

...
...

pm1 . . . pmn pmG

2 Applying a multiple testing procedure on the aggregate test p-values

p1G , . . . , pmG.
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Pooling strategies for the first step of the meta-analysis

For row i , Pij , j = 1, . . . , n are the independent p-values, PiG is the global
null p-value.

The Fisher and Pearson combining methods1:

piG = Pr(χ2
2n ≥ −2

n∑
j=1

log pij ).

piG = 2Pr

χ2
2n ≥ max

−2
n∑

j=1

log pL
ij ,−2

n∑
j=1

log(1− pL
ij )


 .

The Stouffer combining method: PiG = 1−Φ(
∑n

j=1 zij/
√

n), zij = Φ−1(1− pij ).

Association analysis based on SubSETs (ASSET)2: significance based
on

∑
j∈Smax

wj Zj/
√
|Smax|, where Smax is the set with largest weighted

Stouffer test statistic.

· · ·

1Owen, 2009. Karl Pearson’s meta-analysis revisited.
2Bhattacharjee et al., 2012. A subset-based approach improves power and

interpretation for the combined analysis of genetic association studies of heterogeneous
traits.

Ruth Heller (TAU) Inference Following Aggregate Level Hypothesis Testing July 13, 2017 6 / 28



Pooling strategies for the first step of the meta-analysis

For row i , Pij , j = 1, . . . , n are the independent p-values, PiG is the global
null p-value.

The Fisher and Pearson combining methods1:

piG = Pr(χ2
2n ≥ −2

n∑
j=1

log pij ).

piG = 2Pr

χ2
2n ≥ max

−2
n∑

j=1

log pL
ij ,−2

n∑
j=1

log(1− pL
ij )


 .

The Stouffer combining method: PiG = 1−Φ(
∑n

j=1 zij/
√

n), zij = Φ−1(1− pij ).

Association analysis based on SubSETs (ASSET)2: significance based
on

∑
j∈Smax

wj Zj/
√
|Smax|, where Smax is the set with largest weighted

Stouffer test statistic.

· · ·
1Owen, 2009. Karl Pearson’s meta-analysis revisited.
2Bhattacharjee et al., 2012. A subset-based approach improves power and

interpretation for the combined analysis of genetic association studies of heterogeneous
traits.

Ruth Heller (TAU) Inference Following Aggregate Level Hypothesis Testing July 13, 2017 6 / 28



Results for the cross-tissue eQTL meta-analysis
using Pearson’s p-values, adjusting for multiplicity by Bonferonni or BH

1.

0 5000 10000 15000 20000 25000 30000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

sorted index

A
d

ju
st

e
d

 g
lo

b
a

l n
u

ll 
p

−
va

lu
e

s

Adjusted Bonferroni
Adjusted BH
The error level q=0.05

1Benjamini and Hochberg, 1995. Controlling the False Discovery Rate: A Practical
and Powerful Approach to Multiple Testing.

Ruth Heller (TAU) Inference Following Aggregate Level Hypothesis Testing July 13, 2017 7 / 28



Goal 2: Inference following selection by aggregate level
testing

In meta-analysis, aggregate level hypotheses testing is performed for
powerful identification of rows with signal1.

A natural follow-up question is which studies contain signal within a
discovered row.

Testing Hi1, . . . ,Hin following rejection of HiG without accounting for
the fact that HiG was rejected using an aggregate-level test statistic,
will produce biased inference 2 and hence an inflation of
non-replicable results.

1Bhattacharjee et al., 2012. A subset-based approach improves power and
interpretation for the combined analysis of genetic association studies of heterogeneous
traits.

2Bogomolov and Benjamini, 2014. Selective inference on multiple families of
hypotheses.
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Distribution of a null p-value following selection

Figure: Given that the meta-analysis of n = 20 studies had Pearson’s PG ≤ t, for
a single null hypothesis the quantile plot of the conditional p-value (row 1) and
naive p-value (row 2) versus the uniform.
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Control over false positives

When considering the family of all individual level hypotheses within
all selected rows, regardless of row membership:

With overall FDR control, the false discovery proportions can be as
high as one within a specific row.
With overall error control, the power may be low for large m.

We suggest

FWER/FDR control conditional on the row being selected. 1.

This type of false positive control is particularly important if a
researcher conducts different follow-up studies for each selected row.

A related goal: Controlling the average FWER/FDR over the selected
rows2.

1Heller, Chatterjee, Krieger, and Shi, 2016. Post-selection inference following
aggregate level hypotheses testing in large scale genomic data.

2Benjamini and Bogomolov, 2014. Selective inference on multiple families of
hypotheses.
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The conditional error

S ⊆ {1, . . . ,m} is the set of selected rows, e.g., all hypotheses
rejected by Bonferroni/BH on the global null p-values.

Vi = number of false discoveries for row i .

Ri = number of discoveries for row i .

The conditional FWER for row i is

E (I [Vi > 0]|i ∈ S).

The conditional FDR for row i is

E (Vi/max{Ri , 1}|i ∈ S).
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Our approach for inference following row-selection

1 Compute the conditional p-values, conditional on being selected.

2 Apply a valid FWER/FDR controlling procedure on the conditional
p-values.

Questions we address:

1 The row may contain both null and non-null p-values, so the
probability of selection is not known even for the simplest rule
{PiG ≤ t}. How can the conditional p-values be computed?

2 Even though the original p-values in a row are independent, the
conditional p-values will be dependent.
What is a valid FDR controlling procedure?
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The conditional p-value computation for a selected row

Per column, we compute the p-value conditional on the event that the row
was selected, holding all other p-values in the row fixed .

For example, for the first column:

p′i1 = pi1/bi1, bi1 = max{p : piG (p, pi2, . . . , pin) ≤ t}.

This is a valid p-value, since:

Pi1 is independent of Pi2, . . . ,Pin.

if Hi1 is null, then

Pi1 | PiG ≤ t,Pi2 = pi2, . . . ,Pin = pin ∼ U(0, bi1).
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Properties of the conditional p-values

If PiG (1, pi2, . . . , pin) ≤ t, there is no correction: p′i1 − pi1 = 0.

The ranking of the conditional p-values is the same as that of the
original p-values, using Fisher’s or Stouffer’s combining method for
aggregate testing.

With Bonferroni-Holm/BH at level α on p′i1, . . . , p
′
in, the conditional

FWER/FDR is controlled.
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Theoretical results for FDR control

Following selection of rows using a fixed cut-off

Theorem

If piG ≤ ti , then for the BH procedure at level α on p′i1, . . . , p
′
in,

E (Vi/max{Ri , 1}|i ∈ S) ≤ n0(i)

n
α.

Equality follows if the global null p-value is Fisher’s.

Following adaptive selection of rows, e.g., BH on {piG , i = 1, . . . ,m}

Theorem

Under row independence, if piG ≤ t(|S|), then for the BH procedure at
level α on p′i1, . . . , p

′
in,

E (Vi/max{Ri , 1}|i ∈ S) ≤ n0(i)

n
α.
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Proof when row selection is by a fixed cut-off

Assume the first column is null.

I = 1 if H1 is rejected.

R = number of discoveries in the row.

Using the representation of FDR from Benjamini and Yekutieli
(2001)3, the conditional FDR is

n0

n∑
k=1

1

k
Pr (I = 1,R = k | pG (P1,P2, . . . ,Pn) ≤ t)

We condition on p2, . . . , pn so that it is sufficient to show that

n∑
k=1

1

k
Pr (I = 1,R = k | pG (P1, p2, . . . , pn) ≤ t,P2 = p2, . . . ,Pn = pn) ≤ α

n
.

3Benjamini and Yekutieli, 2001. The control of the false discovery rate in
multiple testing under dependency.

Ruth Heller (TAU) Inference Following Aggregate Level Hypothesis Testing July 13, 2017 16 / 28



Proof when row selection is by a fixed cut-off

p′1 = p1/b1, b1 = max{p : pG (p, p2, . . . , pn) ≤ t}.

As p′1 increases b2, . . . , bn will be non-increasing.

There must be 0 = a0 < a1 < . . . < aL = 1 so that R(p′1) = kl for
al−1 ≤ p′1 ≤ al , l = 1, . . . , L, where k1 > k2 > . . . > kL.

Since we need I = 1, or p′1 ≤ R(p′1)α/n, there exists t such that

n∑
k=1

1

k
Pr (I = 1,R = k | pG (P1, p2, . . . , pn) ≤ t,P2 = p2, . . . ,Pn = pn)

=
t−1∑
k=1

1

k l
(al − al−1) +

1

k t
(ktα/n − at−1) ≤ 1

kt

ktα

n
≤ α

n
.
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Results for the cross-tissue eQTL analysis in TCGA

Table: The original two-sided p-values, conditional two-sided p-values, and
BH-adjusted conditional two-sided p-values for each tissue, for three eQTL SNPs
that differ in the number of post-selection discoveries.

rs10896016-CTSW p-values rs1437891-ASNSD1 p-values rs13066873-LARS2 p-values

pij p′ij BHadj p′ij pij p′ij BHadj p′ij pij p′ij BHadj p′ij
BLCA 0.01259 0.29510 0.38590 0.45523 0.45523 0.64491 0.00199 0.00199 0.00484
BRCA 0.73273 0.73273 0.83043 0.00030 0.00804 0.02278 0.00026 0.00026 0.00147
COAD 0.26604 0.29510 0.38590 0.00231 0.00231 0.02278 0.00099 0.00099 0.00362

GBM 0.36091 0.29510 0.38590 0.90232 0.90232 0.90232 0.00716 0.00716 0.01353
HNSC 0.92247 0.92247 0.98012 0.54711 0.54711 0.66435 0.54393 0.54393 0.54393
KIRC 0.00743 0.29510 0.38590 2.56e-7 0.00804 0.02278 0.01362 0.01362 0.01781
KIRP 0.99577 0.99577 0.99577 0.51974 0.51974 0.66435 0.00834 0.00834 0.01418

LAML 0.02349 0.29510 0.38590 0.77827 0.77827 0.82691 0.00345 0.00345 0.00733
LGG 0.13963 0.29510 0.38590 0.00005 0.00804 0.02278 0.00107 0.00107 0.00362

LIHC 0.01575 0.29510 0.38590 0.34415 0.34415 0.64491 0.01007 0.01007 0.01426
LUAD 0.00004 0.29510 0.38590 0.00078 0.00804 0.02278 1.24e-7 1.24e-7 2.11e-6
LUSC 0.12911 0.29510 0.38590 0.30344 0.30344 0.64481 0.04074 0.04074 0.04827

OV 0.06658 0.29510 0.38590 0.16256 0.16256 0.39479 0.00961 0.00961 0.01426
PAAD 0.25674 0.25674 0.38590 0.64167 0.64167 0.72723 0.04259 0.04259 0.04827
PRAD 0.14091 0.29510 0.38590 0.00495 0.00804 0.02278 0.06407 0.06407 0.06807
SKCM 0.01577 0.29510 0.38590 0.41503 0.41503 0.64491 0.00018 0.00018 0.00147
UCEC 0.59226 0.59226 0.71917 0.42909 0.42909 0.64491 0.00167 0.00167 0.00473

piG 3× 10−9 2× 10−10 < 10−20
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An existing alternative approach1

The BB selection adjusted procedure: apply an FWER/FDR controlling

procedure within selected rows at level |S|m α.

Theorem ( Benjamini and Bogomolov, 2014)
If for each column, the set of p-values is PRDS on the subset of p-values corresponding to true
null hypotheses, the selection is by fixed thresholding/BH on the global null p-values, and the
procedure used for testing each selected row is level α (a) Bonferroni or (b) BH,
then the select-adjusted procedure guarantees in case (a)

E

(∑
i∈S I [Vi > 0]

max{|S|, 1}

)
≤ α,

and in case (b)

E

(∑
i∈S Vi/max{Ri , 1}

max{|S|, 1}

)
≤ α.

.

1Benjamini and Bogomolov, 2014. Selective inference on multiple families of
hypotheses.
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Results for the cross-tissue eQTL analysis in TCGA

The BB selection adjusted procedure applies the BH procedure on the

original p-values at level 19,690
7,732,750 0.05 = 0.00013 . With BB: no

discoveries are made for the first eQTL SNP; a single discovery is made for
the second and third eQTL SNP.

rs10896016-CTSW p-values rs1437891-ASNSD1 p-values rs13066873-LARS2 p-values

pij p′ij BHadj p′ij pij p′ij BHadj p′ij pij p′ij BHadj p′ij
BLCA 0.01259 0.29510 0.38590 0.45523 0.45523 0.64491 0.00199 0.00199 0.00484
BRCA 0.73273 0.73273 0.83043 0.00030 0.00804 0.02278 0.00026 0.00026 0.00147
COAD 0.26604 0.29510 0.38590 0.00231 0.00231 0.02278 0.00099 0.00099 0.00362
GBM 0.36091 0.29510 0.38590 0.90232 0.90232 0.90232 0.00716 0.00716 0.01353
HNSC 0.92247 0.92247 0.98012 0.54711 0.54711 0.66435 0.54393 0.54393 0.54393
KIRC 0.00743 0.29510 0.38590 2.56e − 7 0.00804 0.02278 0.01362 0.01362 0.01781
KIRP 0.99577 0.99577 0.99577 0.51974 0.51974 0.66435 0.00834 0.00834 0.01418
LAML 0.02349 0.29510 0.38590 0.77827 0.77827 0.82691 0.00345 0.00345 0.00733
LGG 0.13963 0.29510 0.38590 0.00005 0.00804 0.02278 0.00107 0.00107 0.00362
LIHC 0.01575 0.29510 0.38590 0.34415 0.34415 0.64491 0.01007 0.01007 0.01426
LUAD 0.00004 0.29510 0.38590 0.00078 0.00804 0.02278 1.24e − 7 1.24e-7 2.11e− 6
LUSC 0.12911 0.29510 0.38590 0.30344 0.30344 0.64481 0.04074 0.04074 0.04827

OV 0.06658 0.29510 0.38590 0.16256 0.16256 0.39479 0.00961 0.00961 0.01426
PAAD 0.25674 0.25674 0.38590 0.64167 0.64167 0.72723 0.04259 0.04259 0.04827
PRAD 0.14091 0.29510 0.38590 0.00495 0.00804 0.02278 0.06407 0.06407 0.06807
SKCM 0.01577 0.29510 0.38590 0.41503 0.41503 0.64491 0.00018 0.00018 0.00147
UCEC 0.59226 0.59226 0.71917 0.42909 0.42909 0.64491 0.00167 0.00167 0.00473

piG 3× 10−9 2× 10−10 < 10−20
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Comparison of approaches: error rate guarantees

Denote empirical control with and theoretical control with .

With a fixed cut-off row-selection rule (e.g., Bonferroni)
Conditional error for a

Approach Average error nonnull row null row
Row independence Naive X X X

BB X

conditional
Row dependence Naive X X X

BB PRDS X X

conditional PRDS

With a data-adaptive row-selection rule (e.g., BH)
Conditional error for a

Approach Average error nonnull row null row
Row independence Naive X X X

BB X

conditional
Row PRDS Naive X X X

BB X X

conditional X
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Simulations with block dependence

We consider 100 blocks of 11 rows, where the signal within non-null blocks
is N11(~µ,Σ) and within null blocks is N11(~0,Σ), where

~µ =



ρ5µ
...
ρµ
µ
ρµ
...
ρ5µ


, Σ =


1 ρ ρ2 . . . ρB−1

ρ 1 ρ . . . ρB−2

...
...

...
. . .

...
ρB−1 ρB−2 ρB−3 . . . 1

 ,

In n1 studies there was one non-null block, and the remaining n − n1
studies where all null:

N11(~µ,Σ) . . . N11(~µ,Σ) N11(~0,Σ) . . . N11(~0,Σ)

N11(~0,Σ) . . . N11(~0,Σ) N11(~0,Σ) . . . N11(~0,Σ)
...

...
...

...
...

...

 ,
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Results on error control:
conditional approach (solid), BB (dashed), naive (dotted)

(n, n1) = (21, 7), Row Selection by: (n, n1) = (10, 2), Row Selection by:
Bonferroni BH Bonferroni BH
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Results on power:
conditional approach (solid), BB (dashed), naive (dotted)

(n, n1) = (21, 7), Row Selection by: (n, n1) = (10, 2), Row Selection by:
Bonferroni BH Bonferroni BH
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Comparison of valid approaches: power

The Benjamini and Bogomolov (2014) approach has increased power
as the fraction of selected rows, |S|/m, increases.

The conditional approach has increased power as the number of
non-null columns in the row increases.

For moderate signal distributed sparsely within a row, and |S|/m not
too small, the approach of Benjamini and Bogomolov (2014) may have
better power.

For identification of eQTL SNPs in TCGA, since |S|/m is small and the
signal is not very sparse across tissues, the conditional approach has
greater power than the approach of Benjamini and Bogomolov (2014).
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Summary

In large scale analysis of genomic data, it is common to perform tests
at an aggregate (row) level for powerful identification of the signal.

Following row-selection, we presented a valid and powerful selection
adjusted method for identification of columns/studies that drive the
signal in the row1.

The choice of aggregate level test, and rule for row selection, affect
the power of the meta-analysis as well as the post-selection inference.

- For identification of eQTL SNPs, Bonferroni row-selection based on the
Pearson global null p-values worked well.

1Heller, Chatterjee, Krieger, and Shi, 2016. Post-selection inference following
aggregate level hypotheses testing in large scale genomic data.
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An extension to dependent columns

For dependent columns, with known dependence, we can compute
valid p-values following row selection using the polyhedral lemma2.

An example application is GWAS, where aggregate tests are used for
gene discovery and the dependence within the gene is known. An
open question is inference at the variant level following gene-level
association testing.

We suggest valid conditional p-values for inference at the individual
level, as well estimation of effect sizes, following selection by an
aggregate test that takes the known dependence into account3.

2Lee, Sun, Sun and Taylor, 2016. Exact post model selection inference, with
application to the lasso.

3Heller, Meir, and Chatterjee, work in progress.
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Some open questions

Theoretical justification for average error control when the rows are
dependent and the row selection is data-adaptive.

Examination of the conditional error control when using a plug-in
estimate of the fraction of nulls in a row with an FDR controlling
procedure on the conditional p-values.

Investigation of multi-layer strategies with the conditional approach
(e.g., first identify sets of rows, then rows, then columns...)4.

4Great progress has been recently made in controlling the FDR at multiple
resolutions: Foygel Barber and Ramdas (2016). The p-filter: multi-layer FDR
control for grouped hypotheses; Liu, Sarkar, Zhao (2016). A new approach to
multiple testing of grouped hypotheses; Bogomolov, Peterson, Benjamini,
Sabatti (2017). Testing hypotheses on a tree: new error rates and controlling
strategies; Katsevich and Sabatti (2017). Multilayer Knockoff Filter: Controlled
variable selection at multiple resolutions.
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