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Gene expression and RNA-Seq data

I Gene expression level =
number of its RNA copies in
the biological sample

I RNA-Seq = technology
allowing to quantify RNA
copies from each gene

I Gene expression matrix :
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Single cell RNA-Seq : from tissue level to cell level

I Gene expressions varies across tissues (healthy vs illness)

I Gene expression also varies from cell to cell inside the same tissue !

Standard RNA-Seq :

sensitive enough to measure gene expressions
averaged across single cells of the same tissue

Single-cell RNA-Seq (2009) :

sensitive enough to measure gene expressions in
individual single cells

I Compare gene expression distributions
instead of their averages

I Study and compare structures of
intercellular heterogeneity of expressions
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Dimension reduction for single-cell data analysis

Each single cell is described by J ≈ 104 features → need the dimension
reduction for visualization and clustering :

gene 1 gene 2 . . . gene J
cell 1 Y11 Y12 . . . Y1J
cell 2 Y21 Y22 . . . Y2J
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cell n Yn1 Yn2 . . . YnJ

 −→

Why do we need a new statistical model for the dimension reduction ?
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Count data with inflation of zeros : many genes
have positive RNA counts in some cells but zero
counts in other cells (“dropout”)

Over-dispersion : variance > mean

Systematic noise : technical factors affecting
measurements, normalization factors, etc.
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Dimension reduction with zero-inflated count noise model and covariates

I Low-dimensional projection of data should summarize biological
sources of expressional heterogeneity

I Low-dimensional projection by standard methods is determined by
variation in number of 6= 0 genes and technical variation

Dimension reduction with zero-inflated count noise and covariates :
gene 1 gene 2 . . . gene J

cell 1 Y11 Y12 . . . Y1J
cell 2 Y21 Y22 . . . Y2J
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 noisy version of


gene 1 gene 2 . . . gene J

cell 1 µ11 µ12 . . . µ1J
cell 2 µ21 µ22 . . . µ2J
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Yij ∼ πijδ0(y) + (1− πij)fNB(y ;µij , θij)

fNB(y ;µ, θ) =
Γ(y + θ)

Γ(y + 1)Γ(θ)

(
θ

θ + µ

)θ (
µ

µ+ θ

)y

, ∀y ∈ N.

4 π := {πij} unknown latent matrix of zero inflation probabilities
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ZINB-WaVE : matrix factorisation model

logµ and logitπ may be explained by a small number of known and
latent factors :

I X : n ×M known matrix of cell level covariates (biol. or tech.)

I V : J × L known matrix of gene level covariates (e.g. gene length)

I W : n × K unknown matrix of K latent factors

I βµ, γµ, αµ, βπ, γπ, απ are unknown matrices of coefficients
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Summary of the model and comments

Summary of the model : Yij ∼ πijδ0(y) + (1− πij)fNB(y ;µij , θij)

log(µij) =
(
Xβµ + (V γµ)> + Wαµ + Oµ

)
ij

logit(πij) =
(
Xβπ + (V γπ)> + Wαπ + Oπ

)
ij

ln(θij) = ζj

Comments :

I Higher expression of gene ⇒ smaller probability of non
detection ⇒ factors X ,V ,W are shared

I W is n × K matrix giving a low dimensional representation
of n cells in K -dimensional space (≈ PCA with the
appropriate model for noise)

I X and V allows to account explicitly for known covariates
and capture in W only unknown sources of heterogeneity
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Estimation of the model

The observed data is a n × J matrix of counts {Yij}, the log-likelihood
function is given by :

`(β, γ,W , α, ζ) =
n∑

i=1

J∑
j=1

ln fZINB(Yij ;µij , θij , πij)

Parameters are estimated via the max of the penalized log-likelihood :

max
β,γ,W ,α,ζ

{`(β, γ,W , α, ζ)− Pen(β, γ,W , α, ζ)} ,

with

Pen(β, γ,W , α, ζ) =
εβ
2
||β0||2+

εγ
2
||γ0||2+

εW
2
||W ||2+

εα
2
||α||2+

εζ
2

var(ζ) ,

where (εβ , εγ , εW , εα, εζ) is the set of regularization parameters and β0

means β without the intercept
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Initialization. Approximate positive counts by log-normal distribution and

alternate between the following steps :

1. Adjust for known covariates (βµ and γµ) by ridge regression :

min
βµ,γµ

∑
(i,j)∈P

(Lij − (Xβµ)ij − (V γµ)ji )
2 +

εβ
2
||β0

µ||2 +
εγ
2
||γ0

µ||2 .

2. Regress out known effect and optimize in W and αµ :

min
W ,αµ

∑
(i,j)∈P

(
Lij − (V γ̂µ)ji − (X β̂µ)ij − (Wαµ)ij

)2

+
εW
2
||W ||2+

εα
2
||αµ||2 .

3. Initialize (βπ, γπ, απ) as solutions of regularized logistic regression :

min
(βπ,απ,γπ)

∑
(i,j)

[
− Ẑij(Xβπ + (V γπ)> + Ŵαπ)ij

+ ln
(

1 + e(Xβπ+(Vγπ)>+Ŵαπ)ij
) ]

+
εβ
2
||βπ||2 +

εγ
2
||γπ||2 +

εα
2
||απ||2 .
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Optimization. Alternate between the following steps :

1. Optimize in dispersion parameter :

ζ̂ ← arg max
ζ

{
`(β̂, γ̂, Ŵ , α̂, ζ)− εζ

2
var(ζ)

}
2. Optimize in cell level unknown coefficients :(

γ̂, Ŵ
)
← arg max

(γ,W )

{
`(β̂, γ,W , α̂, ζ̂)− εγ

2
||γ0||2 − εW

2
||W ||2

}
3. Optimize in gene level unknown coefficients :(

β̂, α̂
)
← arg max

(β,α)

{
`(β, γ̂, Ŵ , α, ζ̂)− εβ

2
||β0||2 − εα

2
||α||2

}
4. Orthogonalization (orthogonalize factors ; maximize locally)(

Ŵ , α̂
)
← arg min

(W ,α) : Wα=Ŵ α̂

1

2

(
εW ||W ||2 + εα||α||2

)
.
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Simulations

PCA, ZIFA, ZINB-WaVE were compared on
simulated data :

I Data were simulated from ZINB-WaVE
model, using W with K = 2

I Rows of W were simulated in a way to
induce known clusters of single cells

I Different proportions of zeros

Criteria :

Quality of the low dimensional projection :
correlation of distances between cells in true
and estimated projection

Quality of cluster recovery : silhouette width of
clustering based on estimated W
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Glioblastoma dataset : real data with 430 cells from 5 patients suffering

from glioblastoma :

I ZINB-WaVE leads to tighter clusters grouping cells by patients

I ZINB-WaVE axes less correlated to quality control measures of cells
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Conclusion and references

Conclusions :

I Dimension reduction based on zero-inflated negative binomial model
of noise allows for a better quality of low-dimensional representation
of the data

I Clustering based on ZINB-based low-dimensional representation is
higher quality compared to PCA or ZIFA.

I Covariates allow to include all known information and W captures
only the unknown sources of heterogeneity

References :

I Preprint : http://biorxiv.org/content/early/2017/04/06/125112

I Package : http://github.com/drisso/zinbwave

13/13

http://biorxiv.org/content/early/2017/04/06/125112
http://github.com/drisso/zinbwave

	Introduction

