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Clustering arises in various contexts

Clustering individuals w.r.t.
features

Clustering features

Clustering graphs
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Our objectives

Topic of the talk

investigate ”optimality” in clustering (in terms of exact recovery)

probabilistic set-up: data generated by some (more or less) flexible
models

optimality in terms of rate-minimax ”separation” between groups

focus on polynomial time algorithms

Main message

A corrected convex relaxation of Kmeans achieves some rate-optimal
performances in various settings.
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Many classical algorithms (with caveats)

”Geometric” algorithms

Hierarchical clustering: greedy, no global criterion

Kmeans: multiple local minima, NP-hard, greedy approximations
(Lloyd algorithm) very sensitive to initialization

”Model-based”-algorithms

Approximate MLE in mixture models (with EM-like algorithms):
multiples local minima, sensitive to initialization, issue of
misspecification.
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Spectral algorithms and SDP

Two popular alternatives

It has been shown that spectral clustering and some SDP have some
(nearly)-optimal properties in some models (e.g. in assortative SBM,
Gaussian mixture model)

In this talk

We will

focus on a specific SDP derived from Kmeans, which achieves some
optimal performances in a wide range of situations,

connect this SDP to spectral clustering.
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1- Relaxed Kmeans

Peng & Wei (07)
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Kmeans criterion
Applying Kmeans on N data points X1, . . . ,XN amounts to minimizes
among all possible partitions G = {G1, . . . ,GK} of {1, . . . ,N}

Crit(G ) =
K∑

k=1

∑
a∈Gk

‖Xa − X̄Gk
‖2

=
1

2

K∑
k=1

1

|Gk |
∑

a,b∈Gk

‖Xa − Xb‖2

= −
K∑

k=1

∑
a,b∈Gk

1

|Gk |
〈Xa,Xb〉+

N∑
a=1

‖Xa‖2

= −〈BG ,XTX 〉+ ‖X‖2
F

with X = [X1, . . . ,XN ] and

BG
ab = 1/|Gk | if a, b belong to the same group Gk and BG

ab = 0 else.
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Kmeans criterion

Lemma (Peng & Wei (2007))

Solving Kmeans amounts to solve

B̂Kmeans ∈ argmin
B∈D

〈−XTX ,B〉 ,

with

D :=

B ∈ RN×N :

• B < 0
•
∑

a Bab = 1, ∀b
• Bab > 0, ∀a, b
• Tr(B) = K
• B2 = B
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Convexified Kmeans

Idea: drop the B2 = B constraint

Relaxed Kmeans (Peng & Wei (2007))

Solve the SDP
B̂ ∈ argmin

B∈C
〈−XTX ,B〉 ,

with

C :=

B ∈ RN×N :

• B < 0
•
∑

a Bab = 1, ∀b
• Bab > 0, ∀a, b
• Tr(B) = K


Remarks:

1 An additional clustering step is needed when B̂ /∈ D.

2 Convex optimisation but with many constraints.
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Spectral clustering

Drop the constraints Bab ≥ 0 and
∑

a Bab = 1 but keep the (implicit)
condition I < B

Relaxed SDP

Solve the SDP
B̄ ∈ argmin

B∈C̄
〈−XTX ,B〉 ,

with

C̄ :=

{
B ∈ RN×N :

• I < B < 0
• Tr(B) = K

}

Relaxed SDP = Spectral clustering

The solution B̄ is given by B̄ = ŪŪT where Ū collects ”the” K leading
eigenvectors of XTX .
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Numerical comparison
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,Ĝ

)

kmeans++
pecok-ADMM
spectral

12/28
Christophe Giraud (Orsay) Clustering with SDP CIRM July 2017 12 / 28



2- Quantization versus clustering
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Caveheat

A simple model

Assume that the ”points” Xa are independent random variables with

E [Xa] = νa and Tr(cov(Xa)) = Γa.

Mean value

For a partition G we have

E [critKmeans(G )] =
1

2

∑
k

1

|Gk |
∑

a,b∈Gk

‖νa − νb‖2 +
∑
a

Γa −
∑
k

1

|Gk |
∑
a∈Gk

Γa

−→ tends to split ”wide” clusters: a correction is needed!
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Example

Quantization rather than clustering
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Estimation of Γ

Remark: If we knew the groups, we could estimate Γ = diag(Γ1, . . . , ΓN)
by

Γ̂aa = 〈Xa − Xne1(a),Xa − Xne2(a)〉

with ne1(a) and ne2(a) two ”neighbors” of a.

Definition

Set U(a, b) := max
c,d∈[n]\{a,b}

∣∣〈Xa − Xb,
Xc − Xd

‖Xc − Xd‖
〉
∣∣ and

n̂e1(a) := argmin
b∈[n]\{a}

U(a, b) and n̂e2(a) := argmin
b∈[n]\{a,n̂e1(a)}

U(a, b)

Then, the estimator Γ̂ is the diagonal matrix defined by

Γ̂aa = 〈Xa − Xn̂e1(a),Xa − Xn̂e2(a)〉
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Corrected convexified Kmeans

In the above simple model

E[XTX ] = a ”block structured” matrix + Γ.

Corrected convexified Kmeans (F. Bunea, C. G., M. Royer, N. Verzelen
(2016))

Solve the SDP
B̂ ∈ argmin

B∈C
〈Γ̂− XTX ,B〉 ,

with

C :=

B ∈ RN×N :

• B < 0
•
∑

a Bab = 1, ∀b
• Bab > 0, ∀a, b
• Tr(B) = K
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The correction can be useful
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3- Some theory
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Model 1: clustering ”individuals”

Clustered independent subGaussian variables

X1, . . . ,Xn ∈ Rp are independent with

E[Xa] = µk if a ∈ G ∗k
Xa ∼ SubGauss(Σa)

For simplicity, we will focus here on the case where each group has the
same size |G ∗k | = n/K

Exact recovery (M. Royer (2017))

Exact recovery with probability at least 1− 1/n as soon as

min
j 6=k

‖µj − µk‖2

maxa |Σa|op
& K ∨ log(n) +

√
r∗(K ∨ log(n))

n
with r∗ =

maxa Tr(Σa)

maxa |Σa|op
.
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Optimality

Some optimality

Optimal rate when Σa = σ2Ip and K = O(log(n)).

Computational gap for K � log(n)? (as in SBM)

Remarks:

The general case requires further investigations.

The assumption of identical mean within groups can be relaxed.
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Illustrations
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Model 2: clustering ”features”

We have n i.i.d. observations of a p-dimensional vector of features with
N (0,Σ) distribution.

So the rows of the matrix X = [Xia]i=1,...,n; a=1,...,p are independent, with
N (0,Σ) distribution.

We want to cluster the features.

Block-structured covariance matrix

We assume the (unknown) block structure

Σab = Ckj if a ∈ G ∗k , b ∈ G ∗j and a 6= b

Σaa = Ckk + Γa

C is positive semi-definite (⇐⇒ a latent model)

For simplicity, we focus here on the case where each group of features has
the same size |G ∗k | = p/K
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Minimax-optimal recovery

Exact recovery (Bunea, G., Royer, Verzelen (2016))

Exact recovery with probability at least 1− 1/p as soon as

min
j 6=k

Cjj + Ckk − 2Cjk

|Γ|∞
&

√
log(p) ∨ K

np/K
+

log(p) ∨ K

n
.

rate-minimax optimal for K = O(log(p)),

computational gap otherwise?

can be extended to Subgaussian vectors,

the same result can be achieved when K is unknown, with a slight
variation of the SDP (drop the constraint tr(B) = K and add λ̂I to
Γ̂).
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Model 3: graph clustering

(conditional) SBM

Assume that the graph is generated by a SBM with Qjk =probability of
connection between groups j and k .
Let X =adjacency matrix of the graph ∈ {0, 1}N×N .

Remark: the SDP is applied to XTX = X 2 instead of X .

As before, we focus here on the case where each group of feature has the
same size |G ∗k | = N/K

Exact recovery (Emin and Lemhadri (2017?))

Exact recovery with probability at least 1− 1/N as soon as

min
j 6=k
‖Q•j − Q•k‖2 & |Q|∞

K ∨ log(N)

N/K
+

log(N)

(N/K )2
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4- Practice
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Computational issues

Practical benefit?

solving the SDP is very intensive when we cluster many ”points”
(many constraints)

Intensive research for fast approximate solvers

But does it make sense?

May be: we can expect that approximate solvers are less greedy than
Lloyd-like algorithms (under investigation...)
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Many thanks to all the organizers

for this great meeting!
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