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Motivation

(Of course) very common to collect high-dimensional data
Let p denote the ambient dimension of the data & n the sample
size
If p� n, we need to exploit lower-dimensional structure in the data
Common to suppose data do not live everywhere in p-dimensional
space
May be concentrated near a subspaceM having dimension d
with d � p.
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Subspace assumptions

Suppose Xi = (Xi1, . . . ,Xip)T ∈M ⊂ Rp, for i = 1, . . . ,n, with
d � p.
M = unknown support of the data having intrinsic dimension d
Most dimensionality reduction methods assumeM is linear
By learning the mapping Φ : Rp →M, we can replace the
p-dimensional coordinates with d-dimensional coordinates
Improve statistical efficiency & useful for interpretability
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Common linear dimensionality reduction approaches

Independent Component Analysis (ICA)
Principal Component Analysis (PCA)
Singular Value Decomposition (SVD)
Factor Analysis (FA)
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Nonlinear algorithms

Sammon’s Mapping
Principal Curves and Manifolds
Diffusion Maps
Locally-Linear Embedding
Hessian Locally-Linear Embedding
Modified Locally-Linear Embedding
Multicale Analysis of Plane Arrangements
Geometric Multi-Resolution Analysis (GMRA)
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Our motivations

UQ: we would like to incorporate uncertainty in dimensionality
reduction & propagate this uncertainty
Most approaches multistage - (i) estimate lower-dimensional
coordinates; (ii) plug-in a second stage analysis
Better dictionaries: we would like to flexibly represent a richer
class of subspaces using fewer pieces
MaybeM has locally varying curvature & is not a manifold
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Two topics

Bayesian manifold regression: we first consider the problem of
manifold regression from a Bayes nonparametric perspective
We show theoretically that (under some conditions) one can
bypass manifold learning & rely on off-the-shelf Gaussian process
Spherelets: we then propose a new dictionary for subspace
learning using pieces of spheres
A simple algorithm is shown to have state-of-the-art performance
A Bayesian implementation for nonparametric subspace learning
is also implemented
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Regression on low dimensional manifold

θ=0

θ=π/2

θ=π

θ=3π/2

θ

Assumption: the covariates X = (X1, . . . ,Xp)T lie on a
d-dimensional manifoldM in the ambient space Rp

For Σ = Cα(M), space of all α smooth functions onM,

minimax rate � n−
α

2α+d

Ad hoc approach:
1 project X into an estimated low dimensional space
2 do nonparametric regression with projected coordinates
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Regression on low dimensional manifold

Drawbacks of the two stage approach: need to estimate
high-dimensional nuisance parameters related toM
Question: possible to bypass the need of estimatingM, but can
still exploit the low-dimensional manifold structure when exists?

Ye & Zhou (2008): least-square regularized method; Bickel & Li
(2007): local polynomial regression
Drawback: good performance relies on optimally choosing tuning
parameters
Our contribution: a tuning-free Bayesian nonparametric model
based on Gaussian process prior,

near minimax optimal rate up to log n terms
adaptive to the unknown smoothness and manifold structure
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Gaussian process prior

A Gaussian process GP(m,K ) is specified by:
Mean function

m(x) = E[f (x)]

Covariance function

K (x, y) = E
[
f (x)− Ef (x)

][
f (y)− Ef (y)

]

Usually use zero mean function in the prior
Popular choices for stationary covariance function K : square
exponential kernel Ka(x, y) = exp

{
− a2||x − y||2

}
, Matérn

covariance kernel, etc.
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GP prior with random inverse bandwidth
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Adaptivity: let data choose the best inverse bandwidth parameter
A
Hierarchical prior structure:

f |A ∼ GP(0,KA), A ∼ F

Assume the p-variate truth f0 has Hölder smoothness α
van der Vaart & van Zanten (2009): If Ap ∼ Ga(a0,b0), then for M
sufficiently large, posterior distribution satisfies

Π
(
||f − f0||2 ≥ Mn−α/(2α+p)(log n)β

∣∣Dn)→ 0 in Pf0 , n→∞
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Bayesian manifold regression

GP prior for the regression function:

f |A ∼ GP(0,KA), Ad ∼ Ga(a0,b0),

with Ka(x, y) = exp{−a2||x − y||2} and || · || is the usual Euclidean
norm in Rp.
Many ways to estimate the intrinsic dimension d: Likelihood based
method (Levina & Bickel, 2004), multiscale SVD (Little et al. 2009)
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Posterior convergence rate for Bayesian manifold
regression

M is a d-dimensional compact Cγ submanifold of Rp

Truth f0 has smoothness α ≤ min{2, γ − 1}

Theorem
For some sufficiently large M > 0, we have

Π
(
||f − f0||2 ≥ Mεn

∣∣ Dn)→ 0 in Pf0 , n→∞,
with εn � n−

α
2α+d (log n)d+1.
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Switching gears - learning the subspace

In the above approach, the subspaceM is a nuisance parameter
We show that you can bypass estimation ofM in certain cases
However, often there is interest in inference on the
lower-dimensional structure in the data
In addition,M may not be such a regular manifold
M may have varying curvature & may be a stratified space
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Pros and Cons of Current ‘Manifold Learning’ algs
Pros

Computational efficiency
Work well for many “nice” manifolds

Cons
Tend to find too many pieces (small scale) when the manifold has
large curvature
Can fail ifM is not a manifold
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New dictionary

First order −→ second order: x>Hx + f>x + c = 0.
Number of unknown parameters = p(p+1)

2 + p + 1 = O(p2).
f (x) = f (a) + f ′(a)(x − a) + R1(x),
|R1(x)| ≤ M (x−a)2

2! , |f ′′(x)| ≤ M.

Curvature
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Definition
A complete, simply connected constant sectional curvature
Riemannian manifold is called a space form.

Theorem
Let Md be a space form with curvature c, then

Md ∼=


Sd ( 1√

c ) c > 0
Rd c = 0
Hd (c) c < 0

,

where Sd ( 1√
c ) is d dimensional sphere with radius 1√

c and Hd (c) is d
dimensional hyperbolic space with curvature c.
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Spheres
Why spheres?

Compactness.
Hd has p symmetric axis, N(Hd ) = pN(Sd ).
Hyperplane=sphere with infinite radius.
Projection Φ is easy to compute.
Cell complex structure: Sd = Sd−1 ∪ ed

1 ∪ ed
2
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Spherelets

Definition
Spherical error ε : Fp → R≥.

ε(X ) = inf
c,r

1
n

n∑
i=1

inf
x∈S(c,r)

‖Xi − x‖2

Riemannian divergence: dR(X ,Y ) = ε(X ∪ Y )
Euclidean divergence: dE(X ,Y ) = inf

i,j
‖xi − yj‖

Spherical divergence:

dλ : Fp ×Fp → R≥ : (X ,Y ) 7→ dR(X ,Y ) +∞1dE (X ,Y )>λ
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Algorithm

Input: X , ε, λ
Output: label, centers, radii, MSE

normalize X ;
label=split(Xtrain,ε, λ);
label=merge(Xtrain, label, ε, λ);
find centers and radii;
calculate MSE;

λ⇐⇒ Euclidean⇐⇒ Topology (Path connectedness)
ε⇐⇒Riemannian⇐⇒ Geometry (sphere)

Cross validation
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Olympic rings
n = 1000, ε = 10−5,λ = 0.1, MSE=1.7063× 10−07
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Noised spiral

n = 500, ε = 10−4, λ = 0.1, MSE = 1.4× 10−4.
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Swissroll

n = 1000
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Dragon

n = 1000
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Armadillo
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Atmosphere Boundary
Above the earth surface, where are two layers in the Troposphere: planetary
boundary layer (L0) and free atmosphere (L1). The concentration of certain
pollutants drop suddenly around this boundary, which provides an approach
to estimate the altitude of this boundary. The data set contains the
coordinates of the boundary surface
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Bayesian nonparametric approach

We can also take a likelihood-based approach
Mixture of spherelets model
ith data point is generated from the hth sphere with probability πh

Data in component h are drawn by a von Mises-Fisher distribution
with component-specific location & concentration
Gaussian noise added to allow data to not fall exactly on a
particular sphere
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Computation - Mixture of spherelets model

For a finite mixture model, an EM algorithm or MCMC algorithm
can be easily implement for computation
We initially take a fully Bayesian approach, placing default priors
on the unknown parameters, and running MCMC
A simple data augmentation Gibbs sampler can be defined -
starting the chain at the output of our initial algorithm
We use the over-fitted mixtures approach of Rousseau &
Mengerson (2011) to allow uncertainty in the number of mixture
components/clusters
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Olympic Rings and Spiral-Bayesian version
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Discussion

The spherelets idea is *very* new & we are currently working on
theoretical support
One idea is to define the complexity ofM using a spherelet
covering number
Allow manifolds & stratified spaces with locally varying curvature -
more realistic than most notions in the literature
The linear approximation covering number will be vastly larger
than the spherelet cover
Looking to obtain bounds on approximation error showing better
performance for spherelets
Also many interesting applied/methods directions - eg., data do
not have to be real-valued vectors
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