Regularized score matching for graphical models: Non-Gaussianity and missing data

Mathias Drton (with Lina Lin, Ali Shojaie)

Department of Statistics
University of Washington

1. Conditional independence graphs (CIGs)

- $X=\left(X_{1}, \ldots, X_{p}\right)$: random vector with values in \mathbb{R}^{p}
- CIG of X : undirected graph G with $V(G)=\left\{X_{1}, \ldots, X_{p}\right\}$ and
no edge between nodes X_{j} and $X_{k} \Longleftrightarrow X_{j} \Perp X_{k} \mid X_{\{j, k\}}$.

Example

is CIG of X if

$$
\begin{aligned}
& x_{1} \Perp X_{4} \mid X_{2}, X_{3}, \\
& X_{2} \Perp X_{3} \mid X_{1}, X_{4}
\end{aligned}
$$

and no other full conditional independencies.

Motivation

Exploration of expression data to infer gene-gene interactions

number of genes $p>n$ number of samples

Gaussian graphical model

- Consider $X \sim \mathbf{N}_{p}\left(\mu, \mathbf{K}^{-1}\right)$ with log-density:

$$
\log f(x \mid \mu, \mathbf{K})=-\frac{n}{2} \log \operatorname{det}(\mathbf{K})-\frac{1}{2}(x-\mu)^{T} \mathbf{K}(x-\mu)+\text { const }
$$

- $\mathrm{CIG} \equiv$ sparsity pattern in precision matrix $\mathbf{K}=\left(\kappa_{j k}\right)$:

$$
X_{j} \Perp X_{k} \mid X_{\backslash\{j, k\}} \Longleftrightarrow \kappa_{j k}=0
$$

Many methods for high-dim. data: loss + regularizing penalty

Gaussian graphical model

- Consider $X \sim \mathbf{N}_{p}\left(\mu, \mathbf{K}^{-1}\right)$ with log-density:

$$
\log f(x \mid \mu, \mathbf{K})=-\frac{n}{2} \log \operatorname{det}(\mathbf{K})-\frac{1}{2}(x-\mu)^{T} \mathbf{K}(x-\mu)+\text { const }
$$

- $\mathrm{CIG} \equiv$ sparsity pattern in precision matrix $\mathbf{K}=\left(\kappa_{j k}\right)$:

$$
X_{j} \Perp X_{k} \mid X_{\backslash\{j, k\}} \Longleftrightarrow \kappa_{j k}=0
$$

Many methods for high-dim. data: loss + regularizing penalty
Neighbourhood selection (Meinshausen and Bühlmann, 2006)
Graphical lasso/glasso (Yuan and Lin, 2007; Friedman et al., 2008)

Non-Gaussian models: Pairwise interactions

- Log-densities of the form:

$$
\begin{aligned}
& \log f(x \mid \theta)=\sum_{1 \leqslant j, k \leqslant p} \theta_{j k} t_{j k}\left(x_{j}, x_{k}\right)-\psi(\theta) \\
& \theta=\left[\begin{array}{llll}
\theta_{11} & \theta_{21} & \ldots & \theta_{p p}
\end{array}\right] \quad \theta_{j k}=\theta_{k j}, \quad j \neq k
\end{aligned}
$$

$\psi(\theta)$: log-partition function.

- $\mathrm{CIG} \equiv$ support of θ (Hammersley-Clifford):
- Gaussian special case (WLOG, $\mu=0$):

Non-Gaussian models: Pairwise interactions

- Log-densities of the form:

$$
\begin{aligned}
& \log f(x \mid \theta)=\sum_{1 \leqslant j, k \leqslant p} \theta_{j k} t_{j k}\left(x_{j}, x_{k}\right)-\psi(\theta) \\
& \theta=\left[\begin{array}{llll}
\theta_{11} & \theta_{21} & \ldots & \theta_{p p}
\end{array}\right] \quad \theta_{j k}=\theta_{k j}, \quad j \neq k
\end{aligned}
$$

$\psi(\theta)$: log-partition function.

- CIG \equiv support of θ (Hammersley-Clifford):

$$
X_{j} \Perp X_{k} \mid X_{\backslash\{j, k\}} \Longleftrightarrow \theta_{j k}=0
$$

- Gaussian special case (WLOG, $\mu=0$):

Non-Gaussian models: Pairwise interactions

- Log-densities of the form:

$$
\begin{aligned}
& \log f(x \mid \theta)=\sum_{1 \leqslant j, k \leqslant p} \theta_{j k} t_{j k}\left(x_{j}, x_{k}\right)-\psi(\theta) \\
& \theta=\left[\begin{array}{llll}
\theta_{11} & \theta_{21} & \ldots & \theta_{p p}
\end{array}\right] \quad \theta_{j k}=\theta_{k j}, \quad j \neq k
\end{aligned}
$$

$\psi(\theta)$: log-partition function.

- CIG \equiv support of θ (Hammersley-Clifford):

$$
X_{j} \Perp X_{k} \mid X_{\backslash\{j, k\}} \Longleftrightarrow \theta_{j k}=0
$$

- Gaussian special case (WLOG, $\mu=0$):

$$
\theta_{j k}=\kappa_{j k}, \quad t_{j k}\left(x_{j}, x_{k}\right)=x_{j} x_{k}, \quad \psi(\mathbf{K})=-\frac{n}{2} \log \operatorname{det}(\mathbf{K})+\text { const }
$$

Different types of interactions: Example

- Model with densities:

$$
f(x \mid A, B, C) \propto \underbrace{\exp \left\{-\frac{1}{2}\left[\sum_{j \leqslant k} A_{j k} x_{j}^{2} x_{k}^{2}+\sum_{j \leqslant k} B_{j k} x_{j} x_{k}+\sum_{j} C_{j} x_{j}\right]\right\}}_{q(x \mid A, B, C)}
$$

- Normal conditional distributions (Arnold et al., 2001)
- Dependence also through variance
- Intractable log-partition function

Different types of interactions: Example

- Model with densities:

$$
f(x \mid A, B, C) \propto \underbrace{\exp \left\{-\frac{1}{2}\left[\sum_{j \leqslant k} A_{j k} x_{j}^{2} x_{k}^{2}+\sum_{j \leqslant k} B_{j k} x_{j} x_{k}+\sum_{j} C_{j} x_{j}\right]\right\}}_{q(x \mid A, B, C)}
$$

- Normal conditional distributions (Arnold et al., 2001)
- Dependence also through variance
- Intractable log-partition function

Different types of interactions: Example

- Model with densities:

$$
f(x \mid A, B, C) \propto \underbrace{\exp \left\{-\frac{1}{2}\left[\sum_{j \leqslant k} A_{j k} x_{j}^{2} x_{k}^{2}+\sum_{j \leqslant k} B_{j k} x_{j} x_{k}+\sum_{j} C_{j} x_{j}\right]\right\}}_{q(x \mid A, B, C)}
$$

- Normal conditional distributions (Arnold et al., 2001)
- Dependence also through variance
- Intractable log-partition function

Different types of interactions: Example

- Model with densities:

$$
f(x \mid A, B, C) \propto \underbrace{\exp \left\{-\frac{1}{2}\left[\sum_{j \leqslant k} A_{j k} x_{j}^{2} x_{k}^{2}+\sum_{j \leqslant k} B_{j k} x_{j} x_{k}+\sum_{j} C_{j} x_{j}\right]\right\}}_{q(x \mid A, B, C)}
$$

- Normal conditional distributions (Arnold et al., 2001)
- Dependence also through variance
- Intractable log-partition function

$$
\psi(\theta)=\psi(A, B, C)=\log \int_{\mathbb{R}} \ldots \int_{\mathbb{R}} q(x \mid A, B, C) d x_{1} \ldots d x_{p}
$$

Approaches to inference

- Maximum likelihood

Need to know partition function.

- Pseudo-likelihood

Product of conditional likelihood functions
e.g., neighbourhood selection
(Meinshausen and Bühlmann, Ravikumar et al.)
Mav need approximations of univariate log-partition functions.
Need not be regression problem of standard GLM-type.

- Simpler option: Score matching

Not new but was/is underused?

Approaches to inference

- Maximum likelihood

Need to know partition function.

- Pseudo-likelihood

Product of conditional likelihood functions
e.g., neighbourhood selection
(Meinshausen and Bühlmann, Ravikumar et al.)
May need approximations of univariate log-partition functions.
Need not be regression problem of standard GLM-type.

- Simpler option: Score matching

Not new but was/is underused?

Approaches to inference

- Maximum likelihood

Need to know partition function.

- Pseudo-likelihood

Product of conditional likelihood functions
e.g., neighbourhood selection
(Meinshausen and Bühlmann, Ravikumar et al.)
May need approximations of univariate log-partition functions.
Need not be regression problem of standard GLM-type.

- Simpler option: Score matching

Not new but was/is underused?

Approaches to inference

- Maximum likelihood

Need to know partition function.

- Pseudo-likelihood

Product of conditional likelihood functions
e.g., neighbourhood selection
(Meinshausen and Bühlmann, Ravikumar et al.)
May need approximations of univariate log-partition functions.
Need not be regression problem of standard GLM-type.

- Simpler option: Score matching

Not new but was/is underused?

Approaches to inference

- Maximum likelihood

Need to know partition function.

- Pseudo-likelihood

Product of conditional likelihood functions
e.g., neighbourhood selection (Meinshausen and Bühlmann, Ravikumar et al.)
May need approximations of univariate log-partition functions. Need not be regression problem of standard GLM-type.

- Simpler option: Score matching

Not new but was/is underused?

Approaches to inference

- Maximum likelihood

Need to know partition function.

- Pseudo-likelihood

Product of conditional likelihood functions
e.g., neighbourhood selection (Meinshausen and Bühlmann, Ravikumar et al.)
May need approximations of univariate log-partition functions.
Need not be regression problem of standard GLM-type.

- Simpler option: Score matching

Not new but was/is underused?

Approaches to inference

- Maximum likelihood

Need to know partition function.

- Pseudo-likelihood

Product of conditional likelihood functions
e.g., neighbourhood selection (Meinshausen and Bühlmann, Ravikumar et al.)
May need approximations of univariate log-partition functions.
Need not be regression problem of standard GLM-type.

- Simpler option: Score matching

Not new but was/is underused?

Approaches to inference

- Maximum likelihood

Need to know partition function.

- Pseudo-likelihood

Product of conditional likelihood functions
e.g., neighbourhood selection (Meinshausen and Bühlmann, Ravikumar et al.)
May need approximations of univariate log-partition functions.
Need not be regression problem of standard GLM-type.

- Simpler option: Score matching

Not new but was/is underused?

Approaches to inference

- Maximum likelihood

Need to know partition function.

- Pseudo-likelihood

Product of conditional likelihood functions
e.g., neighbourhood selection (Meinshausen and Bühlmann, Ravikumar et al.)
May need approximations of univariate log-partition functions.
Need not be regression problem of standard GLM-type.

- Simpler option: Score matching

Not new but was/is underused?

2. Score matching (Hyvärinen, 2005)

- $X:$ continuous observation with support $\mathcal{X} \subset \mathbb{R}^{p}$
- Density $f\left(x \mid \theta^{*}\right)$ from a parametric model $f(x \mid \theta), \theta \in \Theta$.
- Idea: Avoid log-partition function by considering divergence

$$
\mathcal{L}(\theta)=\frac{1}{2} \mathbb{E}_{\theta *}[\|\underbrace{\nabla_{x} \log f(x \mid \theta)-\nabla_{x} \log f\left(\left.x\right|^{*}\right)}_{\text {score matching" }}\|_{2}^{2}]
$$

- If support $\mathcal{X}=\mathbb{R}^{p}$, then under some mild conditions:

$$
\mathcal{L}(\theta)=\mathbb{E}_{\theta *}\left[\Delta_{x} \log f(x \mid \theta)+\frac{1}{2}\left\|\nabla_{x} \log f(x \mid \theta)\right\|_{2}^{2}\right]+\text { const }
$$

2. Score matching (Hyvärinen, 2005)

- $X:$ continuous observation with support $\mathcal{X} \subset \mathbb{R}^{p}$
- Density $f\left(x \mid \theta^{*}\right)$ from a parametric model $f(x \mid \theta), \theta \in \Theta$.
- Idea: Avoid log-partition function by considering divergence

$$
\mathcal{L}(\theta)=\frac{1}{2} \mathbb{E}_{\theta^{*}}[\|\underbrace{\nabla_{x} \log f(x \mid \theta)-\nabla_{x} \log f\left(x \mid \theta^{*}\right)}\|_{2}^{2}]
$$

score matching

- If support $\mathcal{X}=\mathbb{R}^{p}$, then under some mild conditions:

$$
\mathcal{L}(\theta)=\mathbb{E}_{\theta^{*}}\left[\Delta_{x} \log f(x \mid \theta)+\frac{1}{2}\left\|\nabla_{x} \log f(x \mid \theta)\right\|_{2}^{2}\right]+\text { const }
$$

2. Score matching (Hyvärinen, 2005)

- $X:$ continuous observation with support $\mathcal{X} \subset \mathbb{R}^{p}$
- Density $f\left(x \mid \theta^{*}\right)$ from a parametric model $f(x \mid \theta), \theta \in \Theta$.
- Idea: Avoid log-partition function by considering divergence

$$
\mathcal{L}(\theta)=\frac{1}{2} \mathbb{E}_{\theta^{*}}[\|\underbrace{\nabla_{x} \log f(x \mid \theta)-\nabla_{x} \log f\left(x \mid \theta^{*}\right)}_{\text {"score matching" }}\|_{2}^{2}]
$$

- If support $\mathcal{X}=\mathbb{R}^{p}$, then under some mild conditions:

2. Score matching (Hyvärinen, 2005)

- $X:$ continuous observation with support $\mathcal{X} \subset \mathbb{R}^{p}$
- Density $f\left(x \mid \theta^{*}\right)$ from a parametric model $f(x \mid \theta), \theta \in \Theta$.
- Idea: Avoid log-partition function by considering divergence

$$
\mathcal{L}(\theta)=\frac{1}{2} \mathbb{E}_{\theta^{*}}[\|\underbrace{\nabla_{x} \log f(x \mid \theta)-\nabla_{x} \log f\left(x \mid \theta^{*}\right)}_{\text {"score matching" }}\|_{2}^{2}]
$$

- If support $\mathcal{X}=\mathbb{R}^{p}$, then under some mild conditions:

$$
\mathcal{L}(\theta)=\mathbb{E}_{\theta^{*}}\left[\Delta_{x} \log f(x \mid \theta)+\frac{1}{2}\left\|\nabla_{x} \log f(x \mid \theta)\right\|_{2}^{2}\right]+\text { const }
$$

Score matching

- $\mathcal{L}(\theta)$ minimized $(=0)$ when $f(\cdot \mid \theta)=f\left(\cdot \mid \theta^{*}\right)$, so $\theta=\theta^{*}$ under identifiability.
- Estimate θ via

- Derivatives $\frac{\partial}{\partial x} \Longrightarrow$ No normalizing constant, no problems!
- Hyvärinen (2007) extends approach for $\mathcal{\chi}=\mathbb{R}^{P}$

More on that later, for now denote that loss function $\hat{\mathcal{L}}_{+}(\mathbf{x}, \theta)$.

Score matching

- $\mathcal{L}(\theta)$ minimized $(=0)$ when $f(\cdot \mid \theta)=f\left(\cdot \mid \theta^{*}\right)$, so $\theta=\theta^{*}$ under identifiability.
- Estimate θ via

$$
\hat{\theta}=\arg \min _{\theta} \underbrace{\frac{1}{n} \sum_{i=1}^{n}\left(\Delta_{x} \log f\left(x^{i} \mid \theta\right)+\frac{1}{2}\left\|\nabla_{x} \log f\left(x^{i} \mid \theta\right)\right\|_{2}^{2}\right)}_{\equiv \hat{\mathcal{L}}(\mathbf{x}, \theta)}
$$

- Derivatives $\frac{\partial}{\partial x} \Longrightarrow$ No normalizing constant, no problems!
- Hyvärinen (2007) extends approach for $\mathcal{X}=\mathbb{R}_{+}^{p}$

More on that later, for now denote that loss function $\hat{\mathcal{L}}_{+}(\mathrm{x}, \theta)$.

Score matching

- $\mathcal{L}(\theta)$ minimized $(=0)$ when $f(\cdot \mid \theta)=f\left(\cdot \mid \theta^{*}\right)$, so $\theta=\theta^{*}$ under identifiability.
- Estimate θ via

$$
\hat{\theta}=\arg \min _{\theta} \underbrace{\frac{1}{n} \sum_{i=1}^{n}\left(\Delta_{x} \log f\left(x^{i} \mid \theta\right)+\frac{1}{2}\left\|\nabla_{x} \log f\left(x^{i} \mid \theta\right)\right\|_{2}^{2}\right)}_{\equiv \hat{\mathcal{L}}(\mathbf{x}, \theta)}
$$

- Derivatives $\frac{\partial}{\partial x} \Longrightarrow$ No normalizing constant, no problems!
- Hyvärinen (2007) extends approach for $\mathcal{X}=\mathbb{R}_{+}^{P}$

More on that later, for now denote that loss function $\hat{\mathcal{L}}_{+}(\mathbf{x}, \theta)$.

Score matching

- $\mathcal{L}(\theta)$ minimized $(=0)$ when $f(\cdot \mid \theta)=f\left(\cdot \mid \theta^{*}\right)$, so $\theta=\theta^{*}$ under identifiability.
- Estimate θ via

$$
\hat{\theta}=\arg \min _{\theta} \underbrace{\frac{1}{n} \sum_{i=1}^{n}\left(\Delta_{x} \log f\left(x^{i} \mid \theta\right)+\frac{1}{2}\left\|\nabla_{x} \log f\left(x^{i} \mid \theta\right)\right\|_{2}^{2}\right)}_{\equiv \hat{\mathcal{L}}(\mathbf{x}, \theta)}
$$

- Derivatives $\frac{\partial}{\partial x} \Longrightarrow$ No normalizing constant, no problems!
- Hyvärinen (2007) extends approach for $\mathcal{X}=\mathbb{R}_{+}^{p}$

More on that later, for now denote that loss function $\hat{\mathcal{L}}_{+}(\mathbf{x}, \theta)$.

Quadratic loss

- Pairwise interaction (PI) models,

$$
\log f(x \mid \theta)=\sum_{1 \leqslant j \leqslant k \leqslant p} \theta_{j k} t_{j k}\left(x_{j}, x_{k}\right)+\psi(\theta),
$$

are exponential families.

- Then, $\hat{\mathcal{L}}(\mathbf{x}, \theta)$ and $\hat{\mathcal{L}}_{+}(\mathbf{x}, \theta)$ are semi-definite quadratic.
- Generically, the ℓ_{1}-regularized objective is

$\Gamma(\mathbf{x}) \geq 0$ is $p^{2} \times p^{2}$ block-diagonal
- Lasso-type objective: simple computation and theory!

Quadratic loss

- Pairwise interaction (PI) models,

$$
\log f(x \mid \theta)=\sum_{1 \leqslant j \leqslant k \leqslant p} \theta_{j k} t_{j k}\left(x_{j}, x_{k}\right)+\psi(\theta),
$$

are exponential families.

- Then, $\hat{\mathcal{L}}(\mathbf{x}, \theta)$ and $\hat{\mathcal{L}}_{+}(\mathbf{x}, \theta)$ are semi-definite quadratic.
- Generically, the ℓ_{1}-regularized objective is

$\Gamma(\mathbf{x}) \geq 0$ is $p^{2} \times p^{2}$ block-diagonal
- Lasso-type objective: simple computation and theory!

Quadratic loss

- Pairwise interaction (PI) models,

$$
\log f(x \mid \theta)=\sum_{1 \leqslant j \leqslant k \leqslant p} \theta_{j k} t_{j k}\left(x_{j}, x_{k}\right)+\psi(\theta),
$$

are exponential families.

- Then, $\hat{\mathcal{L}}(\mathbf{x}, \theta)$ and $\hat{\mathcal{L}}_{+}(\mathbf{x}, \theta)$ are semi-definite quadratic.
- Generically, the ℓ_{1}-regularized objective is

$$
\hat{\mathcal{L}}_{\lambda_{n}}(\mathbf{x}, \theta)=\frac{1}{2} \theta^{T} \boldsymbol{\Gamma}(\mathbf{x}) \theta-\gamma(\mathbf{x})^{T} \theta+\boldsymbol{c}(\mathbf{x})+\lambda_{n}\|\theta\|_{1}
$$

$\Gamma(\mathrm{x}) \geq 0$ is $p^{2} \times p^{2}$ block-diagonal

- Lasso-type objective: simple computation and theory!

Quadratic loss

- Pairwise interaction (PI) models,

$$
\log f(x \mid \theta)=\sum_{1 \leqslant j \leqslant k \leqslant p} \theta_{j k} t_{j k}\left(x_{j}, x_{k}\right)+\psi(\theta),
$$

are exponential families.

- Then, $\hat{\mathcal{L}}(\mathbf{x}, \theta)$ and $\hat{\mathcal{L}}_{+}(\mathbf{x}, \theta)$ are semi-definite quadratic.
- Generically, the ℓ_{1}-regularized objective is

$$
\hat{\mathcal{L}}_{\lambda_{n}}(\mathbf{x}, \theta)=\frac{1}{2} \theta^{T} \boldsymbol{\Gamma}(\mathbf{x}) \theta-\gamma(\mathbf{x})^{T} \theta+\boldsymbol{c}(\mathbf{x})+\lambda_{n}\|\theta\|_{1}
$$

$\boldsymbol{\Gamma}(\mathbf{x}) \geq 0$ is $p^{2} \times p^{2}$ block-diagonal

- Lasso-type objective: simple computation and theory!

Quadratic loss

- Pairwise interaction (PI) models,

$$
\log f(x \mid \theta)=\sum_{1 \leqslant j \leqslant k \leqslant p} \theta_{j k} t_{j k}\left(x_{j}, x_{k}\right)+\psi(\theta)
$$

are exponential families.

- Then, $\hat{\mathcal{L}}(\mathbf{x}, \theta)$ and $\hat{\mathcal{L}}_{+}(\mathbf{x}, \theta)$ are semi-definite quadratic.
- Generically, the ℓ_{1}-regularized objective is

$$
\hat{\mathcal{L}}_{\lambda_{n}}(\mathbf{x}, \theta)=\frac{1}{2} \theta^{T} \boldsymbol{\Gamma}(\mathbf{x}) \theta-\gamma(\mathbf{x})^{T} \theta+\boldsymbol{c}(\mathbf{x})+\lambda_{n}\|\theta\|_{1}
$$

$$
\Gamma(\mathbf{x}) \geq 0 \text { is } p^{2} \times p^{2} \text { block-diagonal }
$$

- Lasso-type objective: simple computation and theory!

Gaussian theory: CIG/support recovery

WLOG, consider $\mu=0$. Define $\mathbf{W}=\frac{\mathbf{x}^{\top} \mathbf{x}}{n}$ (sample covariance).
Objective:

$$
\hat{\mathcal{L}}_{\lambda_{n}}(\mathbf{K})=-\operatorname{tr}(\mathbf{K})+\frac{1}{2} \operatorname{tr}(\mathbf{K} \mathbf{K} \mathbf{W})+\lambda_{n}\|\mathbf{K}\|_{1} .
$$

Taking $\theta=\operatorname{vec}(\mathbf{K})$, we have

Under irrepresentability and beta-min condition, CIG recovered w.h.p. if

$$
n \geq C d^{2} \log p
$$

where d is maximal node degree; $\lambda_{n}=\sqrt{(\log p) / n}$

Gaussian theory: CIG/support recovery

WLOG, consider $\mu=0$. Define $\mathbf{W}=\frac{\mathbf{x}^{\top} \mathbf{x}}{n}$ (sample covariance).
Objective:

$$
\hat{\mathcal{L}}_{\lambda_{n}}(\mathbf{K})=-\operatorname{tr}(\mathbf{K})+\frac{1}{2} \operatorname{tr}(\mathbf{K K W})+\lambda_{n}\|\mathbf{K}\|_{1} .
$$

Taking $\theta=\operatorname{vec}(\mathbf{K})$, we have

$$
\boldsymbol{\Gamma}(\mathbf{x})=I_{p \times p} \otimes \mathbf{W}, \quad \text { and } \quad \gamma(\mathbf{x})=\gamma=\operatorname{vec}\left(\mathbf{I}_{p \times p}\right) .
$$

Under irrepresentability and beta-min condition, CIG recovered w.h.p. if

$$
n \geq C d^{2} \log p
$$

where d is maximal node degree; $\lambda_{n} \simeq \sqrt{(\log p) / n}$

Gaussian theory: CIG/support recovery

WLOG, consider $\mu=0$. Define $\mathbf{W}=\frac{\mathbf{x}^{\top} \times}{n}$ (sample covariance).
Objective:

$$
\hat{\mathcal{L}}_{\lambda_{n}}(\mathbf{K})=-\operatorname{tr}(\mathbf{K})+\frac{1}{2} \operatorname{tr}(\mathbf{K} \mathbf{K W})+\lambda_{n}\|\mathbf{K}\|_{1} .
$$

Taking $\theta=\operatorname{vec}(\mathbf{K})$, we have

$$
\boldsymbol{\Gamma}(\mathbf{x})=I_{p \times p} \otimes \mathbf{W}, \quad \text { and } \quad \gamma(\mathbf{x})=\gamma=\operatorname{vec}\left(\mathbf{I}_{p \times p}\right) .
$$

Under irrepresentability and beta-min condition, CIG recovered w.h.p. if

$$
n \geq C d^{2} \log p
$$

where d is maximal node degree; $\lambda_{n}=\sqrt{(\log p) / n}$
"State of the art". . .

Non-negative Gaussians

Gaussian truncated: $f(x \mid \mathbf{K}) \propto \exp \left\{-\frac{1}{2} x^{\top} \mathbf{K} x\right\}, \quad x \in \mathbb{R}_{+}^{p}$ Objective: (may think log transform ...)
$\hat{\mathcal{L}}_{+, \lambda_{n}}(\mathbf{K})=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{p} 2 x_{i j} x^{(i) T} \kappa_{j}-x_{i j}^{2} \kappa_{i j}+\frac{1}{2} \kappa_{j}^{\top}\left(x_{i j}^{2} x^{(i)} x^{(i) T}\right) \kappa_{j}+\lambda_{n}\|\mathbf{K}\|_{1}$
Under irrepresentability and beta-min condition, CIG recovered w.h.p. if

$$
n \geq d^{2}(\log p)^{8}
$$

Rate not sharp; based on concentration inequality for log-concave densities

Non-negative Gaussians

Gaussian truncated: $f(x \mid \mathbf{K}) \propto \exp \left\{-\frac{1}{2} x^{\top} \mathbf{K} x\right\}, \quad x \in \mathbb{R}_{+}^{p}$
Objective: (may think log transform ...)

$$
\hat{\mathcal{L}}_{+, \lambda_{n}}(\mathbf{K})=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{p} 2 x_{i j} x^{(i) T} \kappa_{j}-x_{i j}^{2} \kappa_{j j}+\frac{1}{2} \kappa_{j}^{T}\left(x_{i j}^{2} x^{(i)} x^{(i) T}\right) \kappa_{j}+\lambda_{n}\|\mathbf{K}\|_{1}
$$

Under irrepresentability and beta-min condition, CIG recovered w.h.p. if

$$
n \geq d^{2}(\log p)^{8}
$$

Rate not sharp; based on concentration inequality for log-concave densities

Irrepresentability condition

There exists an $\alpha \in(0,1]$ such that

$$
\left\|\boldsymbol{\Gamma}_{S^{c} S}^{*}\left(\boldsymbol{\Gamma}_{S S}^{*}\right)^{-1}\right\|_{\infty} \leqslant(1-\alpha) .
$$

- Intuition:

Regression coefficients for 'Noise' vs. 'Signal' not too large.

- Neighborhood selection: condition on covariance matrix
- glasso: condition on Hessian of log-determinant
- In Example from Meinshausen (2008) we have the implications

$$
\text { glasso } \Rightarrow \text { Regularized score matching } \Rightarrow \mathrm{MB}
$$

Necessary conditions in a Gaussian example

Consider normal distribution with below covariance. Its CIG is the bottom-left graph.

$$
\Sigma=\left(\begin{array}{cccc}
1 & \rho & \rho & 2 \rho^{2} \\
\rho & 1 & 0 & \rho \\
\rho & 0 & 1 & \rho \\
2 \rho^{2} & \rho & \rho & 1
\end{array}\right), \quad \rho \geqslant 0
$$

Necessary for graph recovery:

- Reg. score matching: $\rho \leqslant 0.41$
- Neighborhood selection: $\rho \leqslant 0.5$
- glasso: $\rho \leqslant 0.23$

Simulation

$\exp \left\{-\frac{1}{2} x^{T} \mathbf{K} x\right\}$

$$
n=750, p=625
$$

lattice

$$
\exp \left\{-\frac{1}{2}\left[\sum_{j \leqslant k} A_{j k} x_{j}^{2} x_{k}^{2}+\sum_{j} C_{j} x_{j}\right]\right\}
$$

Illustration of analysis of RNAseq data using truncated normal models in paper...

3. Missing data: Problem setup

Suppose observations are missing completely-at-random.
We observe z:

$$
\begin{aligned}
& z_{i j}=x_{i j} \times \delta_{i j} \\
& \delta_{i j} \sim \operatorname{Bernoulli}(1-\rho), \quad \rho \in[0,1)
\end{aligned}
$$

$\delta_{i j}$'s represent the observed indicators.
Can also consider variable-denendent missingness: $\delta_{i j} \sim \operatorname{Bernoulli}\left(1-\rho_{j}\right), \rho_{j} \in[0,1) \forall j$

Question: how do we adjust for missing values?

3. Missing data: Problem setup

Suppose observations are missing completely-at-random.
We observe z:

$$
\begin{aligned}
z_{i j} & =x_{i j} \times \delta_{i j} \\
\delta_{i j} & \sim \operatorname{Bernoulli}(1-\rho), \quad \rho \in[0,1)
\end{aligned}
$$

$\delta_{i j}$'s represent the observed indicators.
Can also consider variable-dependent missingness: $\delta_{i j} \sim$ Bernoulli $\left(1-\rho_{j}\right), \rho_{j} \in[0,1) \forall j$

Question: how do we adjust for missing values?

3. Missing data: Problem setup

Suppose observations are missing completely-at-random.
We observe z:

$$
\begin{aligned}
z_{i j} & =x_{i j} \times \delta_{i j} \\
\delta_{i j} & \sim \operatorname{Bernoulli}(1-\rho), \quad \rho \in[0,1)
\end{aligned}
$$

$\delta_{i j}$'s represent the observed indicators.
Can also consider variable-dependent missingness: $\delta_{i j} \sim \operatorname{Bernoulli}\left(1-\rho_{j}\right), \rho_{j} \in[0,1) \forall j$

Question: how do we adjust for missing values?

3. Missing data: Problem setup

Suppose observations are missing completely-at-random.
We observe z:

$$
\begin{aligned}
z_{i j} & =x_{i j} \times \delta_{i j} \\
\delta_{i j} & \sim \operatorname{Bernoulli}(1-\rho), \quad \rho \in[0,1)
\end{aligned}
$$

$\delta_{i j}$'s represent the observed indicators.
Can also consider variable-dependent missingness:

$$
\delta_{i j} \sim \operatorname{Bernoulli}\left(1-\rho_{j}\right), \rho_{j} \in[0,1) \forall j
$$

Question: how do we adjust for missing values?

3. Missing data: Problem setup

Suppose observations are missing completely-at-random.
We observe \mathbf{z} :

$$
\begin{aligned}
z_{i j} & =x_{i j} \times \delta_{i j} \\
\delta_{i j} & \sim \operatorname{Bernoulli}(1-\rho), \quad \rho \in[0,1)
\end{aligned}
$$

$\delta_{i j}$'s represent the observed indicators.
Can also consider variable-dependent missingness:

$$
\delta_{i j} \sim \operatorname{Bernoulli}\left(1-\rho_{j}\right), \rho_{j} \in[0,1) \forall j
$$

Question: how do we adjust for missing values?

Using surrogates

$$
\hat{\mathcal{L}}_{\lambda_{n}}(\mathbf{x}, \theta)=\frac{1}{2} \theta^{T} \boldsymbol{\Gamma}(\mathbf{x}) \theta-\gamma(\mathbf{x})^{T} \theta+\boldsymbol{c}(\mathbf{x})+\lambda_{n}\|\theta\|_{1}
$$

Idea: Use surrogates $\tilde{\boldsymbol{\Gamma}}(\mathbf{z})$ and $\tilde{\gamma}(\mathbf{z})$ in place of $\boldsymbol{\Gamma}(\mathbf{x})$ and $\gamma(\mathbf{x})$.
Criterion: Surrogates must be unbiased, i.e.,

$$
\begin{aligned}
& \mathbb{E}_{\theta^{*}}[\mathbf{\Gamma}(\mathbf{X})]=\mathbb{E}_{\theta^{*}}[\tilde{\mathbf{r}}(\mathbf{Z})] \\
& \mathbb{E}_{\theta^{*}}[\gamma(\mathbf{X})]=\mathbb{E}_{\theta^{*}}[\tilde{\gamma}(\mathbf{Z})]
\end{aligned}
$$

We extend the ideas presented in:

- I oh and W/ainwright (2012): multin licative de-biasing use only complete tuples

Using surrogates

$$
\hat{\mathcal{L}}_{\lambda_{n}}(\mathbf{x}, \theta)=\frac{1}{2} \theta^{T} \boldsymbol{\Gamma}(\mathbf{x}) \theta-\gamma(\mathbf{x})^{T} \theta+c(\mathbf{x})+\lambda_{n}\|\theta\|_{1}
$$

Idea: Use surrogates $\tilde{\boldsymbol{\Gamma}}(\mathbf{z})$ and $\tilde{\gamma}(\mathbf{z})$ in place of $\boldsymbol{\Gamma}(\mathbf{x})$ and $\gamma(\mathbf{x})$.
Criterion: Surrogates must be unbiased, i.e.,

$$
\begin{aligned}
\mathbb{E}_{\theta^{*}}[\mathbf{\Gamma}(\mathbf{X})] & =\mathbb{E}_{\theta^{*}}[\tilde{\boldsymbol{\Gamma}}(\mathbf{Z})] \\
\mathbb{E}_{\theta^{*}}[\gamma(\mathbf{X})] & =\mathbb{E}_{\theta^{*}}[\tilde{\gamma}(\mathbf{Z})]
\end{aligned}
$$

We extend the ideas presented in:

Using surrogates

$$
\hat{\mathcal{L}}_{\lambda_{n}}(\mathbf{x}, \theta)=\frac{1}{2} \theta^{T} \boldsymbol{\Gamma}(\mathbf{x}) \theta-\gamma(\mathbf{x})^{T} \theta+\boldsymbol{c}(\mathbf{x})+\lambda_{n}\|\theta\|_{1}
$$

Idea: Use surrogates $\tilde{\boldsymbol{\Gamma}}(\mathbf{z})$ and $\tilde{\gamma}(\mathbf{z})$ in place of $\boldsymbol{\Gamma}(\mathbf{x})$ and $\gamma(\mathbf{x})$.
Criterion: Surrogates must be unbiased, i.e.,

$$
\begin{aligned}
\mathbb{E}_{\theta^{*}}[\mathbf{\Gamma}(\mathbf{X})] & =\mathbb{E}_{\theta^{*}}[\tilde{\boldsymbol{\Gamma}}(\mathbf{Z})] \\
\mathbb{E}_{\theta^{*}}[\gamma(\mathbf{X})] & =\mathbb{E}_{\theta^{*}}[\tilde{\gamma}(\mathbf{Z})]
\end{aligned}
$$

We extend the ideas presented in:

- Loh and Wainwright (2012): multiplicative de-biasing

Using surrogates

$$
\hat{\mathcal{L}}_{\lambda_{n}}(\mathbf{x}, \theta)=\frac{1}{2} \theta^{T} \boldsymbol{\Gamma}(\mathbf{x}) \theta-\gamma(\mathbf{x})^{T} \theta+\boldsymbol{c}(\mathbf{x})+\lambda_{n}\|\theta\|_{1}
$$

Idea: Use surrogates $\tilde{\boldsymbol{\Gamma}}(\mathbf{z})$ and $\tilde{\gamma}(\mathbf{z})$ in place of $\boldsymbol{\Gamma}(\mathbf{x})$ and $\gamma(\mathbf{x})$.
Criterion: Surrogates must be unbiased, i.e.,

$$
\begin{aligned}
\mathbb{E}_{\theta^{*}}[\mathbf{\Gamma}(\mathbf{X})] & =\mathbb{E}_{\theta^{*}}[\tilde{\boldsymbol{\Gamma}}(\mathbf{Z})] \\
\mathbb{E}_{\theta^{*}}[\gamma(\mathbf{X})] & =\mathbb{E}_{\theta^{*}}[\tilde{\gamma}(\mathbf{Z})]
\end{aligned}
$$

We extend the ideas presented in:

- Loh and Wainwright (2012): multiplicative de-biasing
- Kolar and Xing (2012): use only complete tuples

A demonstration (centered Gaussian)

Recall that:

$$
\boldsymbol{\Gamma}(\mathbf{x})=I_{p \times p} \otimes \mathbf{W}, \quad \text { and } \quad \gamma(\mathbf{x})=\operatorname{vec}\left(\mathbf{I}_{p \times p}\right)
$$

- Surrogates based on de-biasing:

$$
\tilde{\Gamma}(z)=\Gamma(z) \odot\left(1_{p \times p} \otimes M\right)
$$

with $\mathbf{M}=\left(m_{j k}\right) \in \mathbb{R}^{p \times p}$ and

- Surrogates based on complete tuples: straightforward

A demonstration (centered Gaussian)

Recall that:

$$
\boldsymbol{\Gamma}(\mathbf{x})=I_{p \times p} \otimes \mathbf{W}, \quad \text { and } \quad \gamma(\mathbf{x})=\operatorname{vec}\left(\mathbf{I}_{p \times p}\right)
$$

- Surrogates based on de-biasing:

$$
\tilde{\boldsymbol{\Gamma}}(\mathbf{z})=\boldsymbol{\Gamma}(\mathbf{z}) \odot\left(\mathbf{I}_{p \times p} \otimes \mathbf{M}\right) \quad \tilde{\gamma}=\gamma
$$

with $\mathbf{M}=\left(m_{j k}\right) \in \mathbb{R}^{p \times p}$ and

$$
m_{j k}=\left\{\begin{array}{ll}
1-\rho & \text { if } j=k \\
(1-\rho)^{2} & \text { if } j \neq k
\end{array} .\right.
$$

- Surrogates based on complete tuples:

A demonstration (centered Gaussian)

Recall that:

$$
\boldsymbol{\Gamma}(\mathbf{x})=I_{p \times p} \otimes \mathbf{W}, \quad \text { and } \quad \gamma(\mathbf{x})=\operatorname{vec}\left(\mathbf{I}_{p \times p}\right)
$$

- Surrogates based on de-biasing:

$$
\tilde{\boldsymbol{\Gamma}}(\mathbf{z})=\boldsymbol{\Gamma}(\mathbf{z}) \odot\left(\mathbf{I}_{p \times p} \otimes \mathbf{M}\right) \quad \tilde{\gamma}=\gamma
$$

with $\mathbf{M}=\left(m_{j k}\right) \in \mathbb{R}^{p \times p}$ and

$$
m_{j k}=\left\{\begin{array}{ll}
1-\rho & \text { if } j=k \\
(1-\rho)^{2} & \text { if } j \neq k
\end{array} .\right.
$$

- Surrogates based on complete tuples: straightforward

Non-convex objective

- Surrogate-based loss need not be convex ($\tilde{\boldsymbol{\Gamma}}(\mathbf{z})$ not p.s.d.)
- Instead:

Two tuning parameters: R and λ_{n}.

- Paralleling/extending the complete data case, possible to get high-dimensional consistency/support recovery (see Sara's talk) Sample size scaling as in complete data case:

$$
\begin{aligned}
n \geq c(p) d^{2} \log p & \text { (Gaussian) } \\
n \geq c(\rho) d^{2}(\log p)^{8} & \text { (Non-negative Gaussian) }
\end{aligned}
$$

Non-convex objective

- Surrogate-based loss need not be convex ($\tilde{\boldsymbol{\Gamma}}(\mathbf{z})$ not p.s.d.)
- Instead:

$$
\hat{\theta} \in \arg \min _{\forall_{j}\left\|\theta_{\cdot j}\right\|_{1} \leqslant R} \frac{1}{2} \theta^{T} \tilde{\boldsymbol{\Gamma}}(\mathbf{z}) \theta-\tilde{\gamma}(\mathbf{z})^{T} \theta+\lambda_{n}\|\theta\|_{1}
$$

Two tuning parameters: R and λ_{n}.

- Paralleling/extending the complete data case, possible to get high-dimensional consistency/support recovery (see Sara's talk) Sample size scaling as in complete data case:

$$
\begin{aligned}
n \geq c(\rho) d^{2} \log p & (\text { Gaussian }) \\
n \geq c(\rho) d^{2}(\log p)^{8} & \text { (Non-negative Gaussian) }
\end{aligned}
$$

Non-convex objective

- Surrogate-based loss need not be convex ($\tilde{\boldsymbol{\Gamma}}(\mathbf{z})$ not p.s.d.)
- Instead:

$$
\hat{\theta} \in \arg \min _{\forall_{j}\left\|\theta_{\cdot j}\right\|_{1} \leqslant R} \frac{1}{2} \theta^{T} \tilde{\Gamma}(\mathbf{z}) \theta-\tilde{\gamma}(\mathbf{z})^{T} \theta+\lambda_{n}\|\theta\|_{1}
$$

Two tuning parameters: R and λ_{n}.

- Paralleling/extending the complete data case, possible to get high-dimensional consistency/support recovery (see Sara's talk) Sample size scaling as in complete data case:

$$
\begin{aligned}
n \geq c(\rho) d^{2} \log p & \text { (Gaussian) } \\
n \geq c(\rho) d^{2}(\log p)^{8} & \text { (Non-negative Gaussian) }
\end{aligned}
$$

Numerical experiments $(p=100, n=1000)$

> G2: lattice
> G3: Erdős-Rényi
> Estimation error
> $=\max _{j}\left\|\hat{\theta}_{\cdot j}-\theta_{. j}^{*}\right\|_{1}$

4. Modification of non-negative score matching loss

- For the case of support equal to \mathbb{R}_{+}^{p}, Hyvärinen (2007) proposes

$$
\mathcal{L}_{+}(f)=\int_{\mathbb{R}_{+}^{p}} f_{0}(x)\left[\left\|\nabla_{x} \log f(x) \circ x-\nabla_{x} \log f_{0}(x) \circ x\right\|_{2}^{2}\right] d x,
$$

- Under mild conditions,

$$
\begin{gathered}
\mathcal{L}_{+}(f)=\int_{\mathbb{R}_{+}^{p}} f_{0}(x) S_{+}(x, f) d x+\text { const, with } \\
S_{+}(x, f)=\sum_{j=1}^{p}\left[2 x_{j} \frac{\partial \log f(x)}{\partial x_{j}}+x_{j}^{2} \frac{\partial^{2} \log f(x)}{\partial x_{j}^{2}}+\frac{1}{2} x_{j}^{2}\left(\frac{\partial \log f(x)}{\partial x_{j}}\right)^{2}\right] .
\end{gathered}
$$

- Non-neg Gaussian example:

$$
\hat{\mathcal{L}}_{+}(\mathbf{K})=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{p} 2 x_{i j} x^{(i) T} \kappa_{j}-x_{i j}^{2} \kappa_{j j}+\frac{1}{2} \kappa_{j}^{T}\left(x_{i j}^{2} x^{(i)} x^{(i) T}\right) \kappa_{j}
$$

Ongoing work

- Idea: Replace "ox" by bounded function
- Improved performance and theoretical guarantees

$p=100, n=1000$, Erdos-Renyi graph with 0.03 edge density.

Conclusion

- No normalizing constants, no problems
- Quadratic loss also for non-Gaussian models
- Convenient computationally, tractable theoretically
- EJS paper: Lin et al. (2016)
- Related work:
- Liu and Luo (2015): SCIO = Gaussian case
- Zhang and Zou (2014): D-trace loss = Gaussian case
- Forbes and Lauritzen (2015): Colored Gaussian graphical models
- Janofsky (2015): exponential series models
- Sun et al. (2015): infinite-dimensional exponential families - Yu et al. (2016): confidence intervals

Conclusion

- No normalizing constants, no problems
- Quadratic loss also for non-Gaussian models
- Convenient computationally, tractable theoretically
- EJS paper: Lin et al. (2016)
- Related work:
- Liu and Luo (2015): SCIO = Gaussian case
- Zhang and Zou (2014): D-trace loss = Gaussian case
- Forbes and Lauritzen (2015): Colored Gaussian graphical
models
- Janofsky (2015): exponential series models
- Sun et al. (2015): infinite-dimensional exponential families
- Yu et al. (2016): confidence intervals

Conclusion

- No normalizing constants, no problems
- Quadratic loss also for non-Gaussian models
- Convenient computationally, tractable theoretically
- EJS paper: Lin et al. (2016)
- Related work:

Conclusion

- No normalizing constants, no problems
- Quadratic loss also for non-Gaussian models
- Convenient computationally, tractable theoretically
- EJS paper: Lin et al. (2016)
- Related work:

Conclusion

- No normalizing constants, no problems
- Quadratic loss also for non-Gaussian models
- Convenient computationally, tractable theoretically
- EJS paper: Lin et al. (2016)
- Related work:
- Liu and Luo (2015): SCIO = Gaussian case
- Zhang and Zou (2014): D-trace loss = Gaussian case
- Forbes and Lauritzen (2015): Colored Gaussian graphical models
- Janofsky (2015): exponential series models
- Sun et al. (2015): infinite-dimensional exponential families
- Yu et al. (2016): confidence intervals

References I

Forbes, P. G. M. and Lauritzen, S. (2015), "Linear estimating equations for exponential families with application to Gaussian linear concentration models," Linear Algebra Appl., 473, 261-283.
Janofsky, E. (2015), "Exponential series approaches for nonparametric graphical models," Ph.D. thesis, The University of Chicago.
Lin, L., Drton, M., and Shojaie, A. (2016), "Estimation of high-dimensional graphical models using regularized score matching," Electron. J. Stat., 10, 806-854.
Liu, W. and Luo, X. (2015), "Fast and adaptive sparse precision matrix estimation in high dimensions," J. Multivariate Anal., 135, 153-162.
Sun, S., Kolar, M., and Xu, J. (2015), "Learning structured densities via infinite dimensional exponential families," in NIPS, pp. 2287-2295.
Yu, M., Kolar, M., and Gupta, V. (2016), "Statistical Inference for Pairwise Graphical Models Using Score Matching," in NIPS, pp. 2829-2837.
Zhang, T. and Zou, H. (2014), "Sparse precision matrix estimation via lasso penalized D-trace loss," Biometrika, 101, 103-120.

