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1. Conditional independence graphs (CIGs)

X “ pX1, . . . ,Xpq : random vector with values in Rp

CIG of X : undirected graph G with V pGq “ tX1, . . . ,Xpu and

no edge between nodes Xj and Xk ðñ Xj KKXk | Xztj,ku.

Example

X1

X2 X3

X4

is CIG of X if

X1KKX4 | X2,X3,

X2KKX3 | X1,X4

and no other full conditional
independencies.
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Motivation

Exploration of expression data to infer gene-gene interactions
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number of genes p ą n number of samples
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Gaussian graphical model

Consider X „ Nppµ,K´1q with log-density:

log f px |µ,Kq “ ´n
2 log detpKq ´ 1

2px ´ µq
T Kpx ´ µq ` const

CIG ” sparsity pattern in precision matrix K “ pκjkq:

Xj KKXk | Xztj,ku ðñ κjk “ 0.

Many methods for high-dim. data: loss ` regularizing penalty

Neighbourhood selection (Meinshausen and Bühlmann, 2006)
Graphical lasso/glasso (Yuan and Lin, 2007; Friedman et al., 2008)
. . .
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Graphical lasso/glasso (Yuan and Lin, 2007; Friedman et al., 2008)
. . .

3 / 23



Non-Gaussian models: Pairwise interactions

Log-densities of the form:

log f px |θq “
ÿ

1ďj,kďp
θjktjkpxj , xkq ´ ψpθq

θ “
“

θ11 θ21 . . . θpp
‰

θjk “ θkj , j ‰ k

ψpθq : log-partition function.

CIG ” support of θ (Hammersley-Clifford):

Xj KKXk | Xztj,ku ðñ θjk “ 0.

Gaussian special case (WLOG, µ “ 0):

θjk “ κjk , tjkpxj , xkq “ xjxk , ψpKq “ ´n
2 log detpKq ` const
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Different types of interactions: Example

Model with densities:

f px |A,B,Cq 9 exp
#

´
1
2

«

ÿ

jďk
Ajkx2

j x2
k `

ÿ

jďk
Bjkxjxk `

ÿ

j
Cjxj

ff+

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

qpx |A,B,Cq

Normal conditional distributions (Arnold et al., 2001)

Dependence also through variance

Intractable log-partition function

ψpθq “ ψpA,B,Cq “ log
ż

R
. . .

ż

R
qpx |A,B,Cqdx1 . . . dxp
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Approaches to inference

Maximum likelihood
Need to know partition function.

Pseudo-likelihood
Product of conditional likelihood functions
e.g., neighbourhood selection
(Meinshausen and Bühlmann, Ravikumar et al.)
May need approximations of univariate log-partition functions.
Need not be regression problem of standard GLM-type.

Simpler option: Score matching
Not new but was/is underused?
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(Meinshausen and Bühlmann, Ravikumar et al.)
May need approximations of univariate log-partition functions.
Need not be regression problem of standard GLM-type.

Simpler option: Score matching
Not new but was/is underused?

6 / 23



Approaches to inference

Maximum likelihood
Need to know partition function.

Pseudo-likelihood
Product of conditional likelihood functions
e.g., neighbourhood selection
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2. Score matching (Hyvärinen, 2005)

X : continuous observation with support X Ă Rp

Density f px |θ˚q from a parametric model f px |θq, θ P Θ.

Idea: Avoid log-partition function by considering divergence

Lpθq “ 1
2 Eθ˚

“

}∇x log f px |θq ´∇x log f px |θ˚q
loooooooooooooooooomoooooooooooooooooon

“score matching”

}22
‰

If support X “ Rp, then under some mild conditions:

Lpθq “ Eθ˚

„

∆x log f px |θq ` 1
2 }∇x log f px |θq}22



` const
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Score matching

Lpθq minimized (“ 0) when f p¨|θq “ f p¨|θ˚q, so θ “ θ˚ under
identifiability.

Estimate θ via

θ̂ “ arg min
θ

1
n

n
ÿ

i“1

ˆ

∆x log f
`

x i |θ
˘

`
1
2
›

›∇x log f
`

x i |θ
˘›

›

2
2

˙

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

” L̂px,θq

Derivatives B
Bx ùñ No normalizing constant, no problems!

Hyvärinen (2007) extends approach for X “ Rp
`

More on that later, for now denote that loss function L̂`px, θq.
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Quadratic loss

Pairwise interaction (PI) models,

log f px |θq “
ÿ

1ďjďkďp
θjktjkpxj , xkq ` ψpθq,

are exponential families.

Then, L̂px, θq and L̂`px, θq are semi-definite quadratic.

Generically, the `1-regularized objective is

L̂λnpx, θq “
1
2θ

T Γpxqθ ´ γpxqT θ `���cpxq ` λn}θ}1

Γpxq ľ 0 is p2 ˆ p2 block-diagonal
Lasso-type objective: simple computation and theory!

9 / 23



Quadratic loss

Pairwise interaction (PI) models,

log f px |θq “
ÿ

1ďjďkďp
θjktjkpxj , xkq ` ψpθq,

are exponential families.

Then, L̂px, θq and L̂`px, θq are semi-definite quadratic.

Generically, the `1-regularized objective is

L̂λnpx, θq “
1
2θ

T Γpxqθ ´ γpxqT θ `���cpxq ` λn}θ}1

Γpxq ľ 0 is p2 ˆ p2 block-diagonal
Lasso-type objective: simple computation and theory!

9 / 23



Quadratic loss

Pairwise interaction (PI) models,

log f px |θq “
ÿ

1ďjďkďp
θjktjkpxj , xkq ` ψpθq,

are exponential families.

Then, L̂px, θq and L̂`px, θq are semi-definite quadratic.

Generically, the `1-regularized objective is

L̂λnpx, θq “
1
2θ

T Γpxqθ ´ γpxqT θ `���cpxq ` λn}θ}1

Γpxq ľ 0 is p2 ˆ p2 block-diagonal
Lasso-type objective: simple computation and theory!

9 / 23



Quadratic loss

Pairwise interaction (PI) models,

log f px |θq “
ÿ

1ďjďkďp
θjktjkpxj , xkq ` ψpθq,

are exponential families.

Then, L̂px, θq and L̂`px, θq are semi-definite quadratic.

Generically, the `1-regularized objective is

L̂λnpx, θq “
1
2θ

T Γpxqθ ´ γpxqT θ `���cpxq ` λn}θ}1

Γpxq ľ 0 is p2 ˆ p2 block-diagonal
Lasso-type objective: simple computation and theory!

9 / 23



Quadratic loss

Pairwise interaction (PI) models,

log f px |θq “
ÿ

1ďjďkďp
θjktjkpxj , xkq ` ψpθq,

are exponential families.

Then, L̂px, θq and L̂`px, θq are semi-definite quadratic.

Generically, the `1-regularized objective is

L̂λnpx, θq “
1
2θ

T Γpxqθ ´ γpxqT θ `���cpxq ` λn}θ}1

Γpxq ľ 0 is p2 ˆ p2 block-diagonal
Lasso-type objective: simple computation and theory!

9 / 23



Gaussian theory: CIG/support recovery

WLOG, consider µ “ 0. Define W “ xT x
n (sample covariance).

Objective:

L̂λnpKq “ ´trpKq ` 1
2trpKKWq ` λn}K}1.

Taking θ “ vecpKq, we have

Γpxq “ Ipˆp bW, and γpxq “ γ “ vecpIpˆpq.

Under irrepresentability and beta-min condition, CIG recovered
w.h.p. if

n ľ Cd2 log p

where d is maximal node degree; λn —
a

plog pq{n

“State of the art”. . .
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Non-negative Gaussians

Gaussian truncated: f px |Kq 9 expt´1
2xT Kxu, x P Rp

`

Objective: (may think log transform . . . )

L̂`,λnpKq “
1
n

n
ÿ

i“1

p
ÿ

j“1
2xijx piqTκj´x2

ijκjj`
1
2κ

T
j

´

x2
ij x piqx piqT

¯

κj`λn}K}1

Under irrepresentability and beta-min condition, CIG recovered
w.h.p. if

n ľ d2plog pq8

Rate not sharp; based on concentration inequality for log-concave
densities
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Irrepresentability condition

There exists an α P p0, 1s such that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇΓ˚ScSpΓ˚SSq
´1ˇ
ˇ

ˇ

ˇ

ˇ

ˇ

8
ď p1´ αq.

Intuition:
Regression coefficients for ‘Noise’ vs. ‘Signal’ not too large.

Neighborhood selection: condition on covariance matrix
glasso: condition on Hessian of log-determinant

In Example from Meinshausen (2008) we have the implications

glasso ñ Regularized score matching ñ MB
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Necessary conditions in a Gaussian example
Consider normal distribution with below covariance. Its CIG is the
bottom-left graph.

Σ “

¨

˚

˚

˝

1 ρ ρ 2ρ2

ρ 1 0 ρ
ρ 0 1 ρ

2ρ2 ρ ρ 1

˛

‹

‹

‚

, ρ ě 0.

1

2 3

4

Necessary for graph recovery:
Reg. score matching: ρ ď 0.41
Neighborhood selection: ρ ď 0.5
glasso: ρ ď 0.23
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Simulation
score mb space glasso spacejam skeptic
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n “ 600, p “ 1000 n “ 750, p “ 625
lattice lattice

exp
"

´
1
2xT Kx

*

exp
#

´
1
2

«

ÿ

jďk
Ajkx2

j x2
k `

ÿ

j
Cjxj

ff+

Illustration of analysis of RNAseq data using truncated normal models
in paper. . .
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3. Missing data: Problem setup

Suppose observations are missing completely-at-random.

We observe z:

zij “ xij ˆ δij

δij „ Bernoullip1´ ρq, ρ P r0, 1q

δij ’s represent the observed indicators.

Can also consider variable-dependent missingness:

δij „ Bernoullip1´ ρjq, ρj P r0, 1q @j

Question: how do we adjust for missing values?
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Using surrogates

L̂λnpx, θq “
1
2θ

T Γpxqθ ´ γpxqT θ `�
��cpxq ` λn}θ}1

Idea: Use surrogates Γ̃pzq and γ̃pzq in place of Γpxq and γpxq.

Criterion: Surrogates must be unbiased, i.e.,

Eθ˚rΓpXqs “ Eθ˚rΓ̃pZqs
Eθ˚rγpXqs “ Eθ˚rγ̃pZqs

We extend the ideas presented in:

Loh and Wainwright (2012): multiplicative de-biasing

Kolar and Xing (2012): use only complete tuples
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A demonstration (centered Gaussian)

Recall that:

Γpxq “ Ipˆp bW, and γpxq “ vecpIpˆpq.

Surrogates based on de-biasing:

Γ̃pzq “ Γpzq c pIpˆp bMq γ̃ “ γ,

with M “
`

mjk
˘

P Rpˆp and

mjk “

#

1´ ρ if j “ k
p1´ ρq2 if j ‰ k

.

Surrogates based on complete tuples: straightforward
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Non-convex objective

Surrogate-based loss need not be convex (Γ̃pzq not p.s.d.)
Instead:

θ̂ P arg min
@j}θ¨j}1ďR

1
2θ

T Γ̃pzqθ ´ γ̃pzqT θ ` λn}θ}1

Two tuning parameters: R and λn.

Paralleling/extending the complete data case, possible to get
high-dimensional consistency/support recovery (see Sara’s talk)
Sample size scaling as in complete data case:

n ľ cpρqd2 log p (Gaussian)
n ľ cpρqd2plog pq8 (Non-negative Gaussian)
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Numerical experiments (p “ 100, n “ 1000)

f px |Kq 9 exp
"

1
2xT Kx

*

,

x P Rp
`

G1: linear chain
G2: lattice
G3: Erdős-Rényi

Estimation error
“ max

j
}θ̂¨j ´ θ

˚
¨j}1
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4. Modification of non-negative score matching loss
For the case of support equal to Rp

`, Hyvärinen (2007) proposes

L`pf q “
ż

Rp
`

f0pxq
«

›

›

›

›

∇x log f pxq ˝ x ´∇x log f0pxq ˝ x
›

›

›

›

2

2

ff

dx ,

Under mild conditions,

L`pf q “
ż

Rp
`

f0pxqS`px , f q dx ` const, with

S`px , f q “
p
ÿ

j“1

«

2xj
B log f pxq
Bxj

` x2
j
B2 log f pxq
Bx2

j
`

1
2x2

j

ˆ

B log f pxq
Bxj

˙2
ff

.

Non-neg Gaussian example:

L̂`pKq “
1
n

n
ÿ

i“1

p
ÿ

j“1
2xijx piqTκj ´ x2

ijκjj `
1
2κ

T
j

´

x2
ij x piqx piqT

¯

κj

20 / 23



Ongoing work
Idea: Replace “˝x” by bounded function
Improved performance and theoretical guarantees
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p “ 100, n “ 1000, Erdos-Renyi graph with 0.03 edge density.
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Conclusion

No normalizing constants, no problems
Quadratic loss also for non-Gaussian models
Convenient computationally, tractable theoretically
EJS paper: Lin et al. (2016)

Related work:
§ Liu and Luo (2015): SCIO = Gaussian case
§ Zhang and Zou (2014): D-trace loss = Gaussian case
§ Forbes and Lauritzen (2015): Colored Gaussian graphical

models
§ Janofsky (2015): exponential series models
§ Sun et al. (2015): infinite-dimensional exponential families
§ Yu et al. (2016): confidence intervals
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