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Supervised Machine Learning

Input/output pair (X ,Y ) ∈ X × Y, X = Rd , following some
unknown distribution ρ.

Y = R (regression) or {−1, 1} (classification).

Goal: find a function θ : X → R, such that 〈θ,Φ(X )〉 is close to
Y , for some features Φ(X ) ∈ Rd .

Loss function ` : Y × R→ R+: squared loss, logistic loss, 0-1
loss, etc.

Risk (or generalization error) as

R(θ) := Eρ [`(Y , 〈θ,Φ(X )〉)] .

Minimization problem:

θ∗ = argmin
θ∈Rd

R(θ)
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Stochastic Approximation Framework

Goal: Minimizing a function f defined on Rd , given only unbiased
estimates f ′n(θn) of its gradients f ′(θn) at certain points θn ∈ Rd .

Stochastic Gradient Descent [Robbins and Monro, 1951]:

θn = θn−1 − γn f ′n(θn−1)

E[f ′n(θn−1)|Fn−1] = f ′(θn−1) for a filtration (Fn)n≥0, θn is Fn

measurable.

Polyak-Ruppert averaging considers:

θ̄n =
1

n + 1

n∑
k=0

θk
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Stochastic Approximation in Machine learning

Loss for a single pair of observations, for any k ≤ n:

fk(θ) = `(yk , 〈θ,Φ(xk)〉).

For the risk R(θ) = Efk(θ) = E `(yk , 〈θ,Φ(xk)〉):

For 0 ≤ k ≤ n, Fk = σ((xi , yi )1≤i≤k).

At step 0 < k≤ n, use a new point independent of θk−1:

f ′k(θk−1) = `′(yk , 〈θk−1,Φ(xk)〉)

E[f ′k(θk−1)|Fk−1] = R ′(θk−1)

Single pass through the data

“Automatic” regularization.
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Stochastic gradient descent
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Stochastic gradient descent: averaging !
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Convex stochastic approximation: convergence results

Smooth Non-strongly convex: O(n−1/2)
Attained by averaged stochastic gradient descent with γn ∝ n−1/2

Smooth µ-strongly convex problems: O( 1
µn )

also for γn ∝ n−1/2:
# adapts to strong convexity.

Least-squares: R(θ) = 1
2E
[
(Y − 〈Φ(X ), θ〉)2

]
with θ ∈ Rd

Averaging and constant step-size γ = 1/(4R2)
[Bach and Moulines, 2013]

ER(θ̄n)− R(θ∗) 6
4σ2d

n
+
‖θ0 − θ∗‖2

γn

Matches statistical lower bound [Tsybakov, 2003].
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Figure 1: Logistic regression (smooth strongly convex2 problem),
dimension 25. Comparison between a constant learning rate and decaying
learning rate as 1√

n
. Final iterate (dashed), and averaged recursion (plain)

1in fact, only self concordant but behaves similarly. [Bach, 2014]
2in fact, only self concordant but behaves similarly. [Bach, 2014]



Real data
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Figure 2: Logistic regression, Covertype dataset, n = 581012, d = 54.
Comparison between a constant learning rate and decaying learning rate
as 1√

n
.



Constant learning rate SGD: a Markov Chain

If γ = C (possibly C (n)), then SGD is an homogeneous Markov chain.
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Behavior under limit distribution.

πγ limit distribution of (θn).

Ergodic theorem: θ̄n → Eπγ [θ] =: θ̄γ . Where is θ̄γ ?

θ1,γ = θ0,γ − γ
[
f ′(θ0,γ) + ε1(θ0,γ)

]
. If θ0 ∼ πγ , then θ1 ∼ πγ .

Eπγ
[
f ′(θ)

]
= 0

In the quadratic case (linear gradients) ΣEπγ [θ − θ∗] = 0:

θ̄γ = θ∗!

In the general case, θ̄γ − θ∗ = γ∆1 + γ2∆2 + o(γ2).
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Constant learning rate SGD: a Markov Chain

If γ = C (possibly C (n)), then SGD is an homogeneous Markov chain.

θ0

Ergodic theorem:

√
n(θn − θ∗)

d→ N (0,Σ−1CΣ−1)

with Σ covariance matrix, C = E[(Y − 〈Φ(X ), θ∗〉)2Φ(X )Φ(X )>].
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Recovering convergence closer to θ∗ by Richardson extrapolation
2θ̄n,γ − θ̄n,2γ
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Experiments
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Figure 3: Synthetic data, logistic regression, d = 12, n = 8.106, averaged
over 50 repetitions.



Experiments: Double Richardson
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Figure 4: Synthetic data, logistic regression, d = 4, n = 8.106, averaged
over 50 repetitions. “Richardson 3γ”: estimator built using Richardson
on 3 different sequences: θ̃3n = 8

3 θ̄n,γ − 2θ̄n,2γ + 1
3 θ̄n,4γ



Stochastic gradient descent as a Markov Chain: Analysis
framework

Analysis outline:

Existence of a limit distribution πγ , and fast convergence to this
distribution.

Behavior under the limit distribution (γ → 0),

Convergence of second order moments of the chain (n→∞),

Recovering LMS,

Comparison to the gradient flow.

Richardson-Romberg iteration

Soon online.
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Assumptions

f is a µ-strongly convex function, L-smooth.

Unbiased gradients

E
[
f ′k+1(θ)|Fk

]
= f ′(θk) .

fk a.s. L-smooth, and convex. It implies, ∀θ, η∥∥f ′1(θ)− f ′1(η)
∥∥2 ≤ L

〈
f ′(θ)− f ′(η), θ − η

〉



Existence of a limit distribution: proof I /III

If θ0 ∼ λ1 then
θk,γ ∼ λ1Rk

γ

Coupling: θ1, θ2 be independent and distributed according to

λ1, λ2 respectively, and (θ
(1)
k,γ)≥0,(θ

(2)
k,γ)k≥0 SGD iterates:{

θ
(1)
k+1,γ = θ

(1)
k,γ − γ

[
f ′(θ

(1)
k,γ) + εk+1(θ

(1)
k,γ)
]

θ
(2)
k+1,γ = θ

(2)
k,γ − γ

[
f ′(θ

(2)
k,γ) + εk+1(θ

(2)
k,γ)
]
.



Existence of a limit distribution: proof II/III

W 2
2 (λ1Rγ , λ2Rγ) ≤ E

[
‖θ(1)1,γ − θ

(2)
1,γ‖

2
]

≤ E
[
‖θ1 − γf ′1(θ1)− (θ2 − γf ′1(θ2)))‖2

]
i)

≤ E
[∥∥θ1 − θ2∥∥2 − 2γ

〈
f ′(θ1)− f ′(θ2), θ1 − θ2

〉]
+γ2E

[∥∥f ′1(θ1)− f ′1(θ2)
∥∥2]

ii)

≤ E
[∥∥θ1 − θ2∥∥2]
−2γ(1− γL)

〈
f ′(θ1)− f ′(θ2), θ1 − θ2

〉
iii)

≤ (1− 2µγ(1− γL))E
[∥∥θ1 − θ2∥∥2] ,
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