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Supervised Machine Learning
Input/output pair (X, Y) € X x Y, X = RY, following some
unknown distribution p.
Y = R (regression) or {—1,1} (classification).

Goal: find a function 6 : X — R, such that (0, ®(X)) is close to
Y, for some features ®(X) € R¢.

Loss function ¢ : )Y x R — R : squared loss, logistic loss, 0-1
loss, etc.
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Input/output pair (X, Y) € X x Y, X = RY, following some
unknown distribution p.
Y = R (regression) or {—1,1} (classification).

Goal: find a function 6 : X — R, such that (0, ®(X)) is close to
Y, for some features ®(X) € R¢.

Loss function ¢ : )Y x R — R : squared loss, logistic loss, 0-1
loss, etc.

Risk (or generalization error) as
R(0) :=E, [£(Y, (0, ®(X))]-
Minimization problem:

6, = argmin R(0)
6eRd



Stochastic Approximation Framework

Goal: Minimizing a function f defined on R? | given only unbiased
estimates f(6,) of its gradients '(6,) at certain points 6, € R€.

Stochastic Gradient Descent [Robbins and Monro, 1951]:

9,, = 9,,,1 — n f,;(gnfl)

E[f)(0n—1)|Fn-1] = f'(0,—1) for a filtration (F,)n>0, On is Fp
measurable.
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Goal: Minimizing a function f defined on R? | given only unbiased
estimates f(6,) of its gradients '(6,) at certain points 6, € R€.

Stochastic Gradient Descent [Robbins and Monro, 1951]:

9,, = 9,,,1 — n f,;(gnfl)

E[f)(0n—1)|Fn-1] = f'(0,—1) for a filtration (F,)n>0, On is Fp
measurable.

Polyak-Ruppert averaging considers:
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Stochastic Approximation in Machine learning

Loss for a single pair of observations, for any k < n:

() = £(yi, (0, P(xk)))-

For the risk R(0) = Efc(6) = E ¢(y«, (0, P(xk))):
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At step 0 < k< n, use a new point independent of 0, _1:
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Stochastic Approximation in Machine learning
Loss for a single pair of observations, for any k < n:
fi(0) = Uyi, (0, P(xk))).
For the risk R(0) = Efc(6) = E ¢(y«, (0, P(xk))):
For 0 < k < n, Fx = o((x, yi)1<i<k)-

At step 0 < k< n, use a new point independent of 0, _1:

fe(Ok—1) = €' (Vies (Ok—1, P(xx)))

E[f(0x—1)[Fr-1] = R'(0k—-1)

Single pass through the data

“Automatic” regularization.



Stochastic gradient descent



Stochastic gradient descent
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Stochastic gradient descent
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Stochastic gradient descent: averaging !
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Convex stochastic approximation: convergence results

Smooth Non-strongly convex: O(n~1/?)

Attained by averaged stochastic gradient descent with v, x n~1/2
. 1

Smooth p-strongly convex problems: O(ﬂ)

also for ~, o n=1/2:

% adapts to strong convexity.



log1o (R(Fn) — R(6x))

-4 H—1/2R?
—1/2R*\/n
1 2 3 4 5 6

log10(n)

Figure 1: Logistic regression (smooth strongly convex? problem),
dimension 25. Comparison between a constant learning rate and decaying

learning rate as % Final iterate (dashed), and averaged recursion (plain)

Lin fact, only self concordant but behaves similarly. [Bach, 2014]



Real data
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Figure 2: Logistic regression, Covertype dataset, n = 581012, d = 54.
Comparison between a constant learning rate and decaying learning rate

1
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Constant learning rate SGD: a Markov Chain

If v = C (possibly C(n)), then SGD is an homogeneous Markov chain.
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Behavior under limit distribution.

m limit distribution of (0,).
Ergodic theorem: 6, — E_[0] =: 0. Where is 0., 7

01’7 = 9077 - ’y[f’(&oﬂ) + 61(90’7)] I 6y ~ Ty, then 61 ~ Ty
E. [F(6)] =0

In the quadratic case (linear gradients) YE,_ [0 —6.] = 0:
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Constant learning rate SGD: a Markov Chain

If v = C (possibly C(n)), then SGD is an homogeneous Markov chain.

Ergodic theorem:

Vn(f, —6,) 3 N, x71cE Y

with ¥ covariance matrix, C = E[(Y — (®(X), 6,))?d(X)d(X)T].



Convex stochastic approximation: convergence results

Smooth Non-strongly convex: O(n~1/?)

Attained by averaged stochastic gradient descent with v, x n~1/2

1
Smooth strongly convex problems O(ﬂ)
also for ~, o n=1/2:

% adapts to strong convexity.
Least-squares

Averaging and constant step-size 7 = 1/(4R?)
[Bach and Moulines, 2013]

_ 4 2 -0, 2

n yn

Matches statistical lower bound [Tsybakov, 2003].



Behavior under limit distribution.

7y limit distribution of (6,).

Ergodic theorem: 0, — E._[0] =: 0. Where is 6., 7

6177 = QO,W — ’y[f/(eoﬁ) -+ 61(90’7)} I 6y ~ Ty, then 61 ~ Ty
Er, [f'(9)] =0

In the quadratic case (linear gradients) XE,_ [0 — 0] = 0:

0, =10,!

!

In the general case, 0_7 — 0, = YD1 + 7205 + 0o(7?).



What we have :

0, +9A
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What we have :

Recovering convergence closer to 6, by Richardson extrapolation
20ny — On2y



Experiments
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Figure 3: Synthetic data, logistic regression, d = 12, n = 8.10°, averaged
over 50 repetitions.



Experiments: Double Richardson
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Figure 4: Synthetic data, logistic regression, d =4, n = 8.10°, averaged
over 50 repetitions. “Richardson 3v": estimator built using Richardson
on 3 different sequences: 03 = 30, — 20,2, + 20,4,




Stochastic gradient descent as a Markov Chain: Analysis
framework

Analysis outline:

Existence of a limit distribution 7., and fast convergence to this
distribution.

Behavior under the limit distribution (v — 0),

Convergence of second order moments of the chain (n — o),
Recovering LMS,

Comparison to the gradient flow.

Richardson-Romberg iteration

Soon online.
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Assumptions

f is a u-strongly convex function, L-smooth.

Unbiased gradients

E [fi1(0)Fk] = f'(0k) -

fx a.s. L-smooth, and convex. It implies, V0,7

[60) - AW < L{F©®) - F(n).0 1)



Existence of a limit distribution: proof | /IlI

If G ~ A1 then
Oy ~ ALRE

Coupling: 61,62 be independent and distributed according to
A1, A2 respectively, and (95(1%)20,(«95(2;);(20 SGD iterates:
1 1 1 1
{eiﬁm = O =[P 00) + (U]
2l

2 3 3 2
02, =02 —A[F(02) + e (62))] .



Existence of a limit distribution: proof I1/IlI

Wi ARy XeR)) < E [0 - 637
E[[|0* = 46" — (6> = vA(0*))I]
E 0" - 62" — 24(F'(6") - F(62), 6" — 0*)]

+2E |[|£(6") - £(6%)]]

INIA

INZ

< E :H91 - 92!\2]
“24(1— 7L)<f’(91) —(6?),0" — 92>

< (-2 -L)E |6t -2 ,
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